ELINEM
An Autonomous Agent That Teaches Kids Colors

University of Florida
Department of Electrical and Computer Engineering
EEL 5666
Intelligent Machines Design Laboratory

Name: Lynette Miller
Date: 08/08/03

TAs: Uriel Rodriguez
Louis Brandy

Vinh Trinh

Instructor: Dr. A. A. Arroyo

Table of Contents
Abstract
Introduction
Integrated System
Mobile Platform
Actuation

Sensors

Behaviors
Conclusion

Documentation

Abstract

The goal of this project was to design an autonomous agent to entertain young children
while being educational. ELINEM is an autonomous color teaching robot that randomly
moves around in a designated area asking a child to find specific colors. If the child
picks up a block with a color that does not correspond with the color requested, the robot
will eject the block. If the color of the block matches the color requested, ELINEM will
hold onto the block until all the blocks have been collected.

Executive Summary

ELINEM has a playing mat that is black with white edges. It roams freely demonstrating
obstacle avoidance while staying within its playing area with IR Emitter/Detectors and
photoreflectors. ELINEM interacts with children by speaking with the use of a voice
synthesizer. The robot will ask for the child to find a color and will wander and continue
asking for the color until the child has chosen a color block and has placed it into the
robot. Once the robot has detected that a block has been chosen, it will stop and
determine the color of the selected block with the use of LED’s and a CdS cell. ELINEM
tells the child what the color of the block is and whether or not the choice is correct. If
the choice is incorrect the robot ejects the block with the use of a solenoid and asks the
child to try again. If the child is correct the robot drops the block into the storage area
with an un-hacked servo. This continues until all the colors have been found.

Introduction

Parents enjoy toys in which their child can play with while learning. This robot moves
and interacts with children while teaching them colors. In order for the child to learn
from their mistakes the robot will tell the child what the correct color of the block is
before ejecting the block.

This paper will discuss each of the robot’s interlinked systems including the platform and
drive systems, computing hardware and electronics, and sensors.

Integrated System

The robot uses a square platform for optimum block storage. This allows the robot to
hold more blocks than a rounded platform. Mounted on this are two 12 V gear head
motors to drive this system. The brain of ELINEM is an Atmel Mega 128
microcontroller on a letATwork development board. Two Infrared (IR) sensors (Sharp
GP2D12) are used to detect the presence of an obstacle in the robot’s vicinity. Two
photoreflectors (Hamamatsu P5587) are also mounted at the front of the robot to sense if
the robot is crossing the boundary it is to remain within. One CdS cell is used for color
detection, which uses LEDs that help in this task. A voice synthesizer module (V8699A)
creates the robot’s voice that will instruct the child to find a color and whether or not they
are correct.

Mobile Platform

The robot uses a square platform in order to hold more blocks within a smaller area. The
platform will be built in order to support the weight placed on it and small enough to
maneuver within a suitable playing area. A two driven wheel and caster design was
chosen for its simplicity. The battery is located at the rear of the platform and is
supported by a ball caster with the front end supported by the two wheels. The platform
was designed in AutoCad and cut from 1/8” balsa wood on the T-Tech machine in the lab.

Actuation

A 7.2Ah 12 V sealed lead acid battery was used as the power source. The robot’s drive
system has to be powerful enough to handle the weight placed on it by the battery,
platform, and any pressure placed on it by the child. These needs could not be met by
hacked servos. Instead the robot uses 12 V gear head motors.

Sensors

The three types of sensors used in this robot are: IR detectors, photoreflectors, and CdS
cell. The CdS cell is used to detect the color of the blocks put through the robot. Values
are read from the CdS cell when each LED is turned on and from this the color can be
determined.

Two infrared detectors are used for this robot. They are mounted on the top in the front
of the robot. They are mounted facing inwards at 20 degrees in order to detect a larger
range. These sensors are the Sharp GP2D12 IR detectors which output an analog voltage
relating to the amount of IR light bouncing back from an object. The closer the object the
greater amount of IR the detector receives.

Two photoreflectors are mounted on the bottom at the front of the robot. The
photoreflectors are mounted of the robot in the front and are used to remain within the
playing area. The sensors are the Hamamatsu P5587 photoreflectors. They are surface
mounted on boards designed in Protel and milled out on the T-Tech machine in the lab.

Behaviors

ELINEM demonstrates obstacle avoidance by using its infrared sensors. When an object
is detected, it will turn either left or right until an object is no longer in its way. After the
child puts an incorrect block into the robot, the robot will tell the child what color the
block actually is and then eject it by use of a solenoid. If the block is matched correctly
then the robot uses a servo to put the block into the storage area located at the front of the
robot.

Conclusion

ELINEM moves around within its playing mat avoiding obstacles. While doing this
ELINEM asks for the player to find a color. The robot is able to detect the color of the
blocks and communicate this to the child. The goal of this project was to build a robot
that would teach kids colors. At this end of this project I discovered that children that
know their colors can also find this robot fun and entertaining.

Documentation
Atmel Corp., “Atmel AtMegal28 Datasheet”,

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

Bergmann-Electronics, “letATwork Manual”,

http://www.bergmann-electronics.com/datenblaetter/letatwork/letatwork _man_en.pdf

Appendices
led.c

//Author: Max Billingsley
/* PORTBO - DB4

* PORTBI - DB5

* PORTB2 - DB6

* PORTB3 - DB7

* PORTB4 - RS

* PORTBS - EN

* RS: Register Select:

* 0 - Command Register

* 1 - Data Register

*/

#include <inttypes.h>
#include <avr/io.h>

#include "lcd2.h"

void lcd_init(void)

{
lcd_send _command(0x33);
lcd_send command(0x32);
lcd_send _command(0x2c);
lcd_send command(0x0f);
lcd_send _command(0x01);
b

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.bergmann-electronics.com/datenblaetter/letatwork/letatwork_man_en.pdf

void led delay(void)
{

uintl6 ttimel;

for (timel = 0; timel < 65000; time1++);
for (timel = 0; timel < 65000; timel++);

}

void led send_str(char *s)

{
b

void lcd_send byte(uint8 t val)
{

while (*s) lcd_send byte(*s++);

uint8_t temp = val;

val >>=4;
val |= 0x10; /* set data mode */
PORTA = val;

lcd_delay();

PORTA |= ENABLE;
PORTA &= ~ENABLE;

temp &= 0x0f;
temp |= 0x10; /* set data mode */
PORTA = temp;

led_delay();

PORTA |= ENABLE;
PORTA &=~ENABLE;

lcd_delay();
b

void lcd_send command(uint8 t val)

{

uint8 t temp = val;

val >>=4;
PORTA = val;

}

led_delay();

PORTA |= ENABLE;
PORTA &= ~ENABLE;

temp &= 0x0f;
PORTA = temp;

lcd_delay();

PORTA |= ENABLE;
PORTA &= ~ENABLE;

led_delay();

#define TO_ASCII(x) ((x) + 0x30)

char * uint8 to_str(uint8_t val, char *str)

{

nt i;

for(1=2;1>=0;1--) {
str[i] = TO_ASCII(val % 10);
val /= 10;

}

str[3] ="0";

return str;

} /* end of intstr() */

Lcd2.h

//Author: Max Billingsley

#define ENABLE 0x20

void lcd_init(void);

void lcd_delay(void);

void lcd_send_str(char *s);

void lcd_send byte(uint8_t val);

void lcd_send command(uint8 t val);

Demo.c

#include <inttypes.h>

#include <avr/io.h>

#include "lcd2.h"

#define TO ASCII(x) ((x) + 0x30)

char * uint8 to_str(uint8 t val, char *str);
void simple adc_init(void);

void io_init(void);

void pwm_init(void);

void long_wait(void);

void mywait(uint16_t waittime);
uint8_t getad(int channel);

void move _this(void);

void whiteLED(void);

void turn_left(void);

void turn_right(void);

void reverse(void);

void forward(void);

void stop(void);

void cds(void);

int detect(int white, int blue, int green, int orange, int red);
void declare(int color);

void read_color(void);

void wrong(void);

void correct(void);

void askforcolor(void);

void voice_init(void);

void voice delay(void);

void voice_send_str(char *s);

void voice send byte(uint8 t val);

uint8 t analog;

uint8 t analogl;
uint8_t analog2;
uint8 t analog3;
uint8 t analog4;
char output[10];

int channel;

int white, blue, green, orange, red,
int color;

int block = 0;

int request = 1;

int count = 0;

int main(void)
{
10_init();
simple_adc_init();
led init();
pwm_init();
voice_init();
voice_send byte('');
voice send byte('");
voice_send byte('');
voice send byte('");
long_wait();

while (1) {
led send command(1);
analogl = getad(1);
analog2 = getad(2);
analog3 = getad(3);
analog4 = getad(4);
move_this();

if(count == 8){

askforcolor();
count = 0;

}

count++;

if (request == 9){
voice_send_str("you have found all the colors,");
voice send byte(0);

}
whiteLED();
if (block){
lcd_send command(1);
stop();
read_color();
color = detect(white, blue, green, orange, red);
declare(color);
block = 0;
J
mywait(300);
}//end of while
return 0;

}//end of main

void askforcolor(void)

{
if (request !=9){
voice_send_str("Find the color,");
if (request == 1){
voice send str("blue,");
}
if (request == 2){
voice send_str("orange,");
}
if (request == 3){
voice send_str("yellow,");
}
if (request == 4){
voice_send_str("purple,");
}
if (request == 5){
voice send str("green,");
}
if (request == 6){
voice send_str("black,");
}
if (request == 7){
voice_send_str("white,");
}
if (request == 8){
voice_send_str("red,");
b
voice_send_byte(0);
b
§
void whiteLED(void)
{
OCR1C=0x0280; //test
cbi(PORTC, 6);
sbi(PORTC, 2);
mywait(500);
cds();
white = analog;
led send str("White: ");
lcd_send_str(output);
if (white < 80){
block = 1;
b
§

void turn_left(void)

10

PORTC |= (1 << 0);//DIRECTION - left
PORTC &= ~(1 << 1);

PORTB |= (1 << 5);//ENABLE - go
PORTB |= (1 << 6);

}

void turn_right(void)

{
PORTC |= (1 << 1);//DIRECTION - right
PORTC &= ~(1 << 0);
PORTB |= (1 << 5);//ENABLE - go
PORTB |= (1 << 6);

}

void reverse(void)

{
PORTC |= (1 << 0);//DIRECTION - reverse
PORTC |= (1 << 1);
PORTB |= (1 << 5);//ENABLE - go
PORTB |- (1 << 6);

}

void forward(void)
{
PORTC &= ~(1 << 0);
PORTC &= ~(1 << 1);
PORTB |= (1 << 5);/ENABLE - go
PORTB |= (1 << 6);

}

void stop(void)

{
PORTB &= ~(1 << 5);//stop
PORTB &= ~(1 << 6);

}

void move _this(void)

{
if (((analogl > 50) && (analog2 > 50))||((analog3 > 50) && (analog4 >
50))) {//CHANGE 3 AND 4 TO WHITE = 255: <<<<<
lcd_send_str("back up");
reverse();
long_wait();
turn_left();

11

long_wait();
long wait();
}
else if (analog2 > 50) {//CHANGE 3 TO < <<<<<<<<<<
led_send_str("left");
turn_left();
}
else if (analog3 > 50) {
lcd_send_str("back up");
reverse();
long_wait();
led send str("left");
turn_left();
}
else if (analogl > 50) {//CHANGE 4 TO < <<<<<<<<<<
led send str("right");
turn_right();
}
else if (analog4 > 50) {
led send str("back up");
reverse();
long wait();
led _send_str("right");
turn_right();
}
else if (((analogl <51) && (analog2 < 51))||((analog3 < 51) && (analog4
<51))) {/CHANGE 3 AND 4 TO < <<<<<<<<<
led _send_str("go");

forward();
b

}
uint8_t getad(int channel)
{

ADMUX &= 0xEO;

ADMUX |= channel;

ADCSRA |= (1 << ADSC);

while (!(ADCSRA & (1 << ADIF))); // wait until conversion
complete

analog = ADCH;
ADCSRA |= (1 << ADIF);

uint8 to_str(analog, output);
/Nled_send command(1);

lcd_send_str(output);

led _send_str("");

12

return analog;

}

void voice _send_str(char *s)
{
while (*s) voice send byte(*s++);

}

void voice send byte(uint8 t num)
{
DDRD = 0x00;
sbi(PORTE, 7);
cbi(PORTE, 6);

voice delay();
voice_delay();
voice delay();

sbi(PORTE, 6);

cbi(PORTE, 7);

DDRD = 0xff;
TN
PORTD = num;
sbi(PORTE, 7);

s
voice delay();

b
void pwm_init(void)
{
TCCRI1A = 0x0A;
TCCRIB =0x12; // divider = 8;

ICR1 = 20000;
b

void simple adc_init()
{
ADMUX |= (1 << ADLAR); // left adjust result
ADCSRA |= (1 << ADEN); // enable
//ADCSRA |= (1 << ADFR); // free running
ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPSO0); // prescaler =
128

}

void io_init(void)

13

DDRA = 0x3f;
DDRB = 0xff;
DDRC = 0xff;
DDRD = 0xFF;
DDRE = 0xC0;
DDREF = 0x00;
h
void voice_init(void)
{
//DDRE = 0xff;
DDRD = 0x00;

sbi(PORTE, 7);
cbi(PORTE, 6);

while (1(PIND & 0x10))
{

}

sbi(PORTE, 6);
cbi(PORTE, 7);

DDRD = 0xff:

void voice delay(void)

{

uintl6_t timel;

for (timel = 0; timel < 65000; time1++);
for (timel = 0; timel < 65000; timel++);

h

void mywait(uint16_t waittime)

{
uint16_t timel, time2, time3;
for (timel = 0; timel < waittime; timel++) {
for (time2 = 0; time2 < 500; time2++){
for (time3 = 0; time3 < 50; time3++);
3

H

void long_wait(void)

{

uintl6_t timel, time?2;

14

}

for (timel = 0; timel < 1000; timel++)

for (time2 = 0; time2 < 65000; time2++);

void wrong(void){

}

voice_send_str("Try again,");
voice send byte(0);
OCR1C=0x0110; //close
mywait(2000);
//OCR1C=0x0280; //test
//mywait(2000);
//IOCR1C=0x0110; //close
//mywait(2000);

sbi(PORTC, 7);//solenoid on
mywait(500);

cbi(PORTC, 7);//solenoid off

void correct(void){

}

voice _send str("You are correct,");
voice send byte(0);
OCR1C=0x0370;//drop block
long_wait();

OCR1C=0x0110; //close
request+-+;

void declare(int color){

if (color !=9){
voice_send_str("This is the color,");
if (color == 1){
led_send_str("BLUE");
voice send_str("blue,");
}
else if (color == 2){
lcd_send_str("ORANGE");
voice send_str("orange,");
}
else if (color == 3){
led send str("YELLOW");
voice send_str("yellow,");
}
else if (color == 4){
led send_str("PURPLE");
voice send_str("purple,");
}
else if (color == 5){

15

led_send str("GREEN");
voice send_str("green,");
}
else if (color == 6){
led send str("BLACK");
voice send str("black,");
}
else if (color == 7){
led send_str("WHITE");
voice send str("white,");
}
else if (color == 8){
lcd_send_str("RED");
voice send str("red,");
}
H
else if (color == 9){
led_send_str("NOTHING");
}

voice send byte(0);

if (request == color){

correct();
}
else {
if (color !=9){
wrong();
}
}

}

void read_color(void) {
//OCR1C=0x0110; //shut
OCR1C=0x0280; //test
long_wait();
cbi(PORTC, 6);
sbi(PORTC, 2);
mywait(500);
cds();
white = analog;
led send_str("White: ");
lcd_send_str(output);

cbi(PORTC, 2);

sbi(PORTC, 3);
mywait(500);

16

cds();

blue = analog;
lcd_send_str("Blue: ");
led send_str(output);

cbi(PORTC, 3);
sbi(PORTC, 4);
mywait(500);

cds();

green = analog;

led _send_str("Green: ");
led send_str(output);

cbi(PORTC, 4);
sbi(PORTC, 5);
mywait(500);

cds();

orange = analog;
led_send_str("Orange: ");
led send_str(output);

cbi(PORTC, 5);
sbi(PORTC, 6);
mywait(500);

cds();

red = analog;
lcd_send_str("Red: ");
lcd_send_str(output);

}
int detect(int white, int blue, int green, int orange, int red)
{
if ((white + blue + green + orange + red) >= 746){
return 9;
}

if ((white + blue + green + orange + red) >= 525){ //581
if((green + orange) >= 190){
return 6;
}
h

if ((white + blue + green + orange + red) >= 365){ //503//420
if ((white + green + orange + red - blue) >= 160){ //200
if (green + green + green > 279)
return 4;

}

else if((white + green + orange + red - blue) >= 110){

17

return §;

b
}
if ((white + blue + green + orange + red) >= 300){ //1384//275
if ((blue + green) >= 220){ //236//163
if ((green + orange) >= 160){
if ((orange + red) >= 80)
return §;
}
}
if ((blue + red - green) >= 110){
//130
return 5;
}
else if ((orange +red) >=111) {
return 1;
}
b
if ((white + blue + green + orange + red) >= 200){ /1273
return 2;
}
if ((blue + blue + green) >= 125){
//blue + green 102 L65
return 3;
}
else {
return 7;
}
}
void cds(void)
{

ADMUX &= 0xEO;

ADCSRA |= (1 << ADSC);

while (I(ADCSRA & (1 << ADIF))); // wait
until conversion complete

analog = ADCH;

ADCSRA |= (1 << ADIF);

uint8 to_str(analog, output);

18

	University of Florida

