Sensor Report

EEL 5666

Intelligent Machine Design Lab

Sara Keen

March 17, 2005

Table of Contents

Introduction………………………………………………………….. 3

Infrared Sensors………………………………………………….. 3

Ultrasonic Sensors………………………………………………. 5

Bump Switches……………………………………………………….. 8

RF………………………..…………………………………………………. 9

Conclusion……………………………………………………………. 11

Sources for parts………………………………………………… 12

Introduction

My two robots, Zack and A.C. will be equipped with numerous sensors that will enable them to perform intelligently in any environment. Ultimately all of the sensors working together will permit both robots to “see” and understand what is happening around them and their partner. This report discusses the four sensors I am using and their purposes.

Infrared Sensors

I am using 4 Sharp GP2D12 Infrared distance sensors to employ obstacle avoidance. Each sensor requires a JST three pin connector to be interfaced with the microcontroller.

[image: image1.jpg]

Theory of Operation

While the GP2D12 is connected to ground and power the sensor takes continuous distance readings and outputs the result as an analog voltage. I connected the GP2D12s directly to the pins for the analog-to-digital converter on my microcontroller to obtain digital results. The sensors have a range of approximately 4 to 30 inches. Following is a chart showing readings from all four sensors at various distances.

	 Dist (in)
	 IR1
	 IR2
	 IR3
	 IR4

	1
	190
	188
	172
	172

	2
	351
	328
	347
	332

	3
	495
	485
	517
	505

	4
	508
	456
	456
	511

	5
	427
	380
	388
	403

	6
	333
	317
	328
	320

	7
	277
	281
	291
	284

	8
	246
	251
	260
	256

	9
	223
	226
	234
	233

	10
	205
	208
	214
	214

	11
	196
	196
	200
	198

	12
	182
	180
	182
	178

	13
	162
	161
	164
	164

	14
	151
	150
	157
	155

	15
	141
	146
	149
	144

	16
	134
	133
	142
	140

	17
	125
	130
	133
	132

	18
	122
	126
	125
	123

	19
	126
	119
	121
	115

	20
	122
	113
	122
	111

	21
	118
	106
	109
	107

	22
	113
	101
	105
	103

	23
	109
	98
	102
	96

	24
	102
	94
	97
	92

Software Implementation

It is obvious from the above chart that all of the sensors are nearly identical, therefore my code need not acknowledge which sensor the robot is reading from. At extremely close distances readings tend to be inaccurate, and my code accounts for this by beginning to turn when an obstacle is about ten inches away. I used the main clock to create interrupts every millisecond to take readings from the sensors. A polling routine can not count the time before an infrared signal is echoed back because any interrupt could pause the polling routine and render all of the readings. Using timer interrupts the analog to digital converter takes five readings every millisecond and returns their average. The following code shows the timer interrupt initializations and ADC calculations.

void init_timer0(void)

{

 TCCR0 = 0;

 TIFR |= BV(OCIE0)|BV(TOIE0);

 TIMSK |= BV(TOIE0)|BV(OCIE0); /* enable output compare interrupt */

 TCCR0 = BV(WGM01)|BV(CS02)|BV(CS00); /* CTC, prescale = 128 */

 TCNT0 = 0;

 OCR0 = OCR_1MS; /* match in aprox 1 ms */

}

uint16_t adc_readn(uint8_t channel, uint8_t n)

{

 uint16_t t;

 uint8_t i;

 adc_chsel(channel);

 adc_start();

 adc_wait();

 adc_start();

 /* sample selected channel n times, take the average */

 t = 0;

 for (i=0; i<n; i++) {

 adc_wait();

 t += adc_read();

 adc_start();

 }

Using the constant readings from the GP2D12s it was easy to implement an obstacle avoidance routine. Here is an example of how the robot would search for and react to an obstacle on the left.

while (1) {

 //read left sensor

 irleft = adc_readn(2, 5); /* sample channel 5 times, take average */

//read right sensor

 irright = adc_readn(3, 5); /* sample channel 5 times, take average */

 if ((irleft > 200) & (irright < 200)) {

if (irflag != 1) { //if this is the first detection

 clr_lcd();

 printf("Obstacle on left");

irflag = 1;

SERVO5 = SERVO_FOR4; // left servo faster than

SERVO6 = SERVO_FOR2;

 // right servo

}

}

}

As my robots are small and will not be moving at high speeds, only two sensors are required for each robot. The sensors are placed on the front corners of the platform facing approximately 20(outward. This allows plenty of warning before collision occurs.

Ultrasonic Sensors

Both robots will be equipped with two Devantech SRF04 Ultrasonic rangefinders to position themselves in front of objects they will pick up. With two sensors that have a known angle between them a robot can easily determine perpendicular distance.

[image: image2.jpg]

Theory of Operation

These sensors can be controlled by using the timers and normal i/o pins on the microcontroller. To begin a reading a signal to the trigger input of the SRF04 must be held high for at least 10 us. At the falling edge of the trigger the ultrasonic ping is emitted. After about 100us the microcontroller begins listening for the echo using an input pin. The timing diagram of the SRF04 is shown below.

[image: image3.png]Trigger Input
odule

SRF04 Timing Diagram

Trigger Pulse
10uS Min

Sonic Burst
From Module

8Cycle
Sonic Burdt

Allow 10mS From
End of Echo To Next

Trigger Puise

Echo Pulse Outpt
ToUser Tirring Circit

Echo Pulse
100uS to 18mS

Note. Echo Pulse
is Approx. 36mS
if 1o Object Detected

 The table below contains readings from all four sensors. Note that the readings are not representative of distance, they simply represent the number of delays that occurred before an echo was received. To detect nearby objects the robots look for readings less than a certain value.

	Dist (in)
	1
	2
	3
	4

	1
	15
	17
	15
	15

	1.375
	14
	16
	18
	14

	1.625
	17
	18
	20
	17

	2
	21
	24
	22
	21

	2.375
	22
	25
	26
	22

	2.625
	26
	29
	33
	26

	3
	30
	34
	38
	30

	3.375
	34
	39
	37
	34

	3.625
	35
	41
	41
	35

	4
	43
	50
	47
	43

	4.375
	47
	53
	51
	47

	4.625
	50
	54
	55
	50

	5
	54
	57
	59
	54

	5.375
	63
	62
	64
	63

	5.625
	64
	65
	66
	64

	6
	73
	69
	70
	73

	6.375
	75
	74
	77
	75

	6.625
	79
	77
	79
	79

	7
	84
	81
	84
	84

	7.375
	90
	85
	89
	90

	7.625
	89
	88
	93
	89

	8
	94
	93
	94
	94

	8.375
	98
	98
	101
	98

	8.625
	102
	107
	106
	102

	9
	106
	105
	109
	106

	10
	118
	117
	121
	118

	11
	129
	129
	131
	129

	12
	144
	141
	143
	144

	13
	152
	151
	157
	152

	14
	166
	167
	171
	166

	15
	179
	177
	179
	179

As with the GP2D12 sensors, all four are very similar and can be programmed identically.

Software Implementation

The time it takes to receive the echo is used to calculate distance. I used the following code to take measurements.

int timeout = 50;

 while(((PIND&0x02) == 0x02) && timeout) // port D pin1 is where echo is read

 {

 // when echo is low reading is complete

 left_dist++;

//count # delays

 delay_10us(1);

timeout--;

//timeout makes sure loop ends

 }

The timeout ensures that if an error occurs and the echo pulse never goes low the robot will not be trapped in an endless loop. Another factor taken into consideration was that the accuracy of the distance readings are dependent upon on the above loop not being interrupted. To prevent this I programmed a timer interrupt every millisecond to send a ping and wait for a response using the loop above. Below I have included a picture of my platform while the positioning of the GP2D12s and SRF04s was being tested. All of the sensors had to be precisely angled for the behaviors be effective.

[image: image4.jpg]

Bump Switches

The simplest sensor I will use is a bump switch. The purpose of the switches will be to inform the robot when the inside of its “hand” is touching an object.

Theory of Operation

Using the sonar detectors the robot will position itself a predetermined distance away from the object it wants to lift. It will then open its hand and move forward until the bump switch is depressed. When this happens the value of the input pin connected to the bump switch will change and the robot knows to stop moving. At this point the robot can grasp and lift the object. The bump switches should not be necessary, as sonar is extremely accurate for distance calculation. They are a preventative measure and act as error detection in my behavior routines.

Software Implementation

The simple program shown here demonstrates to use of bump switches.

while(bump != pushed)

{

SERVO5 = SERVO_FOR1;

SERVO6 = SERVO_FOR1;
//robot slowly moves forward

}

SERVO5 = SERVO_STOP

SERVO6 = SERVO_STOP

lift_arm();

RF

The robots will communicate using AM-RTD-315 transceivers. As canbe inferred from their name, these transceivers use amplitude modulation to communicate at a frequency of 315 MHz. The robots only need to send each other messages when they find things, but to

[image: image5.png]

Theory of Operation

The AM-RTD-315 uses the TX and RX pins to send and receive serial data. To put data in serial format I used UART1 of the microcontroller and connected the input and output directly to the transceiver. When the robot has data to send it can turn off the receiver using pin25 to achieve half-duplex communication.

[image: image6.png]Pin Description

1) Ground
2) TX data input
ov=Tx Off Ground
5V=Tx Continuous On Ground

12) Ground
13)
14)
16)
Ground 20) Ground
2)
2)
2)
25)

Ground

6)

8) Tx +5V supply RX analog Out
9) Antenna RX digital Out
0)
1)

Ground Not Used

Ground RX + 5V Supply

Standard RF protocol dictates that a quarter-wavelength antenna be used, which is 8.91 in. in this case. Encoding is not necessary to send or receive data, but can ensure reliable transmission. This can be easily achieved with an encoder chip or done in software. Manchester encoding is the most simple and most widely used. I am using a parity bit as my only form of error checking to send raw data. This is because the robots will never be very far apart and messages can be sent multiple times. Without encoding the data rate is about 10kbps

The transceivers are mounted on the back of the robot with the antenna as far as possible from the batteries. This picture shows how the antenna is connected to the back of both robots.

[image: image7.jpg]

Software Implementation

The following code shows the UART1 initializations.

int init_uart1(void)

{

/* enable UART1 */

 UBRR1H = (BAUD_RR >> 8) & 0xff;

 UBRR1L = BAUD_RR & 0xff;

 UCSR1B = ((1<<RXEN) | (1<<TXEN) | (RXCIE1)); //ENABLE TX, RX AND RX

 //INTERRUPT

 UCSR1C = ((UPM11) | (UPM10) | (UCSZ11) | (UCSZ10));//SET FOR 8 BIT CHAR,

// ODD PARITY

}

The RX interrupt was enabled to allow the robots to go about their business until they receive a message rather than use polling. When a robot needs to transmit data they can use the following routine. The receiver is turned off in the beginning and the enables again at the end so as not to interrupt transmission.

void USART1_TX(unsigned char DATA_TX)

{

PORTC = (PORTC & 0xFE);

while(!(UCSR1A & (1<<UDRE)))

;

// WAIT FOR EMPTY TX BUFEFER

 UDR1 = DATA_TX;

//PUT DATA IN REGISTER

 PORTC = (PORTC | 0x01);

}

One problem I have had with RF is that it must send data for about 30ms before the other end can begin receiving without errors. One solution to this problem is to send about 30ms of garbage at the beginning of every transmission. This significantly decreases the data rate, but as that is not my priority I think that this is a sufficient solution.

Conclusion

Using all of the sensors I have presented in this paper my robots will be able to avoid running into walls, search for and align themselves with various objects, know when they are holding an object, and communicate with each other. The remaining task is to integrate all of the robots abilities together into behaviors. By building on the programs I already have written, this goal can be easily accomplished.

Sources for Parts

Abacom Technologies

www.abacom-tech.com
AM-RTD-315 Transceiver modules

Mark III Robot Store

MarkIII@junjun.org
Sharp GP2D12 Infrared Sensors

3 pin JST cables

Acroname

www.acroname.com
Devantech SRF04 Ultrasonic Sensors

Hobby Shack

www.shopatron.com
Hitec HS-422 Standard Deluxe Servos

Servo City

www.servocity.com

Hitec HS-81MG Servo
PAGE
12

