
 

 

 

University of Florida 

Department of Electrical and Computer Engineering 

EEL5666 

Intelligent Machine Design Laboratory 

 

 

 

Sensor Report 

 

 

 

 

Aaron Tucker 

March 17, 2005 



Sensor Suite 

Dusty uses a variety of sensors which it uses to gather information about its environment.  

Since an overly shy robot will be constrained to repeatedly cleaning the same areas – 

those most wide open –the design of this robot calls for an aggressive interaction with the 

environment.  Dusty must be able to get up close and personal to clean the objects around 

it – but without causing environmental or self-inflicted damage. 

 

Dusty must know if it has bumped objects in its environment.  Bump sensors placed 

strategically on the robot can sense any collisions so Dusty can react accordingly.  

Hopefully, Dusty won’t have too many collisions thanks to his forward looking sonar 

unit, which serves as a main set of eyes to detect upcoming obstacles.  But it’s not always 

moving forward – in spot cleaning mode he has to his side.  Mounted facing right toward 

its rear, Dusty has an infrared sensor to detect objects beside it (on the right).  This sensor 

is also used by Dusty to find walls to follow.  Additionally Dusty has a ground sensing 

CDS cell to ensure that if he encounters the edge of the world, he won’t fall off. A 

vacuum robot’s environment is complex, and statically mounted sensors can only get 

Dusty so far.  Sitting atop the unit is the eyes-behind-my-head unit, a rotating sensor 

array that lets Dusty look around the room.  Mounted on the EBMHU are an additional 

sonar unit and infrared unit – redundant units that will help with complex decision 

making tasks. 

 

 

 



Bump Sensors 

Dusty’s bump sensors are constructed using small momentary push switches connected to 

pull-up resistors.  The final placement is to be determined after further research into 

Dusty’s behaviors.  It is expected that areas prone to collisions will be the extremities of 

the vacuum nozzle and the rear of the unit.  Collision to the side of the unit are not 

expected based on the robot’s behavior, however this remains to be proven.  Triggering 

of these sensors is a medium-priority event: sometimes a bump might be a good thing for 

Dusty.  It may mean a wall is in front of him, and he loves following walls. 

 

Dusty is designed to be an aggressive robot, and is not shy from tight places.  The range-

finding sensors (SONAR and IR units) are focused at unit level purposefully – the 

environment above the robot is of little importance.  Dusty as a special bump sensor used 

to detect height.  To ensure clearance under low structures, Dusty uses an antenna 

connected to a pair of bump sensors.  Mounted near the front, the antenna allows Dusty to 

peak his nozzle under things without getting himself stuck.  Triggering of the antenna 

sensor is a high-priority event because it threatens Dusty’s safety.  If the antenna is 

pressed forward or backward, Dusty knows it must change direction. 

 

CDS Cells – Ground Detection 

Dusty is a fearless robot but he must keep his wheels on the ground.  Two downward 

facing CDS cells mounted at wheel height sense the amount of light under the robot.  

Light shielding is placed around the cell so that, at ground level, very little light is 

detected.  When he is reset Dusty must be placed on level ground so a baseline 



calibration measurement is taken.  If the ground should disappear from beneath him, 

perhaps at the edge of a stairwell, light enters from the bottom of the robot.  When the 

level deviates more than a specified tolerance from the baseline measurement Dusty is 

programmed to turn around for safer ground.  Triggering of the CDS cells is a high-level 

event since it threatens Dusty’s safety. 

 

Sonar 

Dusty has two Devantech SRF04 Ultrasonic Range Finder units.  One forward facing unit 

serves as Dusty’s permanent forward vision.  The second unit is mounted to the eyes-

behind-my-head unit which rotates to extend Dusty’s field of vision.  The SRF04 is 

advertised to measure accurately from 3 cm to 3 meters, and may be purchased from 

Acroname. 

 

Operation of the SRF04 is based on sonic principles.  After sending out an ultrasonic 

pulse, the unit outputs a pulse when a return echo is detected.  Timing the delay between 

the sending of the pulse and the receiving of the echo allows distance to be measured to 

the nearest object large enough to produce an echo.  According to the SRF04 

documentation the pulse travels at a rate of .9 ft/msec.   

 

The SRF04 is interfaced with the Atmega128 using a timer.  Timing begins when the 

pulse is sent.  The controller polls the output echo lead until a signal is detected, upon 

which the timer is stopped.  The elapsed time is a direct measurement of the distance to 



the nearest measurable object.  Although a 16-bit timer would allow Dusty to see farther, 

he is only concerned with his nearest surroundings, so an 8-bit timer can be used. 

 

While converting this timer count value to common units of length measurement is useful 

to humans, it is meaningless to Dusty who is an expert at vacuuming but knows nothing 

of the metric system.  Timer measurements (raw data) ranging from 0 (extremely close) 

to 255 (no object detected) are used by the robot for all its calculations.  This is consistent 

with all other robot systems.   

 

Initial testing of the sonar unit showed its output was reasonably steady for large, static 

objects.  Variations occurred in output, and violent swings were observed from time to 

time.  In dynamic, multi-object environments the sonar output quality was diminished.  In 

these situations multiple echoes are detected.  After the first sonar pulse, an echo is 

detected from the nearest object.  The sonar pings again expecting another echo from this 

second ping.  On the contrary, the echo it hears is from the first pulse, echoing from a 

distant feature.  This situation is remedied by increasing the delay between subsequent 

sonar reads, allowing all the echoes to dissipate before restarting the process.   

 

To test the sonar, a short program was written to take sonar readings in 250ms intervals, 

writing them to the LCD screen.  A white card placed in front of the sonar was used to 

simulate an object.  The distance from the card to the sonar was measured with a tape 

measure and compared to the output value.  The results which can be seen in Appendix A 



suggest a strong linear trend (with approximate slope of 3/8) for distances over 3 ft, 

which is the maximum range Dusty needs. 

 

Two levels of filtering have been developed to minimize the effects of outlier data.  The 

first filter level is a low-pass filter which in effect takes an average of a specified number 

of n measurements.  The measurements are stored in an array and then averaged, and the 

average is reported. 

 

To concentrate on only the nearest objects, and remove outlying measurements, the 

second level of filtering compares each of the n individual measurements to the 

calculated average.  If a measurement deviates from the average by more than a specified 

value it is identified as an outlier.  Outliers are replaced with the average, effectively 

removing it from the data set.  At the conclusion of the process a new average is 

calculated and reported.  A large deviation tolerance has yielded acceptable results 

(difference < 50) while smaller tolerances have limited the resolution to unacceptable 

levels.  Appendix B has an example of filtering in effect. 

 

Dusty is designed to use the SRF04 as its primary method of sensing its environment due 

to its reliability in different environments.  Its performance is not affected by outside 

noise or light levels.  It is not sensitive to the color of objects or their luminosity.  Testing 

with a variety of materials indicates low absorption by all common living-room materials. 

 

Infrared Sensors 



Dusty has been given two Sharp GP2D120 Infrared Sensors.  One unit is placed on the 

right, rear side of the robot.  This position is an auxiliary view for wall following and spot 

cleaning.  Wall following is always performed with the wall on the right side of the robot.  

In spot cleaning mode the robot moves forward and backwards while inching rightward 

across a room, mimicking human vacuuming motions.  The auxiliary view will be 

valuable for these behaviors.  An identical sensor is mounted to the eyes-behind-my-head 

unit.   

 

The GP2D120 outputs a single analog signal with a range from 0 to 2.5V.  The unit is 

operational once connected to a power supply.  The D120 is unique for its special lenses 

which focus detection within a closer radius than other models.  Dusty is only concerned 

with its immediate surroundings and therefore does not need a long vision range.   

 

The output to the GP2D120 is connected to the analog-to-digital converter on Dusty’s 

controller.  Measurements a reported on a scale from 0 to 255, however the range of 

actual values is 48 (no object detected) to 192 (extremely close).  Like the Sonar unit, 

Dusty makes no attempt to convert these values to common length measurements.  

Instead reported values are compared to the range of values, in this case 48-192, to get a 

sense of how close an object is. 

 

Testing showed output that was more stable, less vulnerable to fluctuation, than the sonar 

unit.  On the downside, the IR unit is sensitive to color – darker objects absorb more light 

and are measured slightly farther than white objects.  This effect is minimized at short 



distances, which is ideal since Dusty’s aggressive programming only takes his immediate 

surroundings into account. 

 

To test the IR, a short program was written to take IR readings in 250ms intervals, 

writing them to the LCD screen.  A black cloth placed in front of the IR was used to 

simulate an object.  The color and texture of this material was expected to be the most 

absorbent type of environmental object Dusty might encounter.  The distance from the 

shirt to the IR canon was measured with a tape measure and compared to the output 

value.  The results which can be seen in Appendix A suggest useful output from 0 inches 

to 15 inches.  In this region a linear trend can safely be approximated.  

 

Two levels of filtering have been developed to minimize the effects of outlier data.  The 

first filter level is a low-pass filter which in effect takes an average of a specified number 

of n measurements.  The measurements are stored in an array and then averaged, and the 

average is reported. 

 

To concentrate on only the nearest objects, and remove outlying measurements, the 

second level of filtering compares each of the n individual measurements to the 

calculated average.  If a measurement deviates from the average by more than a specified 

value it is identified as an outlier.  Outliers are replaced with the average, effectively 

removing it from the data set.  At the conclusion of the process a new average is 

calculated and reported.  A large deviation tolerance has yielded acceptable results 



(difference < 50) while smaller tolerances have limited the resolution to unacceptable 

levels.  Appendix B has an example of filtering in effect. 



 
Appendix A: 

Experimental Results 
 

 
 

Measured 
Distance IR 

 
Sonar 

0 193 5 
3 176 18 
6 123 21 
9 96 31 

12 79 40 
15 63 45 
18 62 53 
21 61 57 
24 60 67 
27 58 79 
30 55 82 
33 48 87 
36 48 92 
39 48 100 

 
 

 

Raw Data Measurements

0

50

100

150

200

250

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Measured Distance (in.)

Ra
w

 O
ut

pu
t

IR
Sonar



0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Appendix B: 
Filtered Output Examples 

 
 
 

Raw 
Data 
46 
108 
130 
108 
130 
46 
108 
46 
108 
130 

 
 
 
 
 
Filtered 

Data 
96 

108 
130 
108 
130 
96 

108 
96 

108 
130 

 0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10



Appendix C: 
Sample Source Code 

 
void ir_test0() 
{       
        lcd_clear(); 
        lcd_putsf("Analog Testing Program");   
        delay_ms(3000);    
  
        while(1) 
        {         
                lcd_clear(); 
                lcd_int_write(ADCW); 
                delay_ms(250); 
        }; 
} 
 
int sonar_test() 
{  
        //Requires Two Pins!  PortB(0:1) 
        //PORTB0        Pulse Enable (DDR Output) 
        //PORTB1        Echo         (DDR Input) 
        
        unsigned int Count=0x00;          //Keeps track of overflows 
        unsigned int Result=0x00;         //Final Timer Value 
         
        TCCR0=0x00;         //Stop Timer 
        TCNT0=0x00;         //Clear Timer 
        PORTB|=0x01;        //Set Pulse Enable High 
        delay_us(12);       //12 uSec Delay 
        PORTB&=0xfe;        //Set Pulse Low       
        TCCR0=0x07;         //Start Timer 
 
        while (PINB.1==0)   //Poll Echo For Rising Edge 
        {        
                if (TCNT0==255)         //Check for Overflow 
                {       Count+=256;     //Increment overflow counter 
                        TIFR|=0x01;     //Clear Overflow Flag 
                }; 
        };     
   
        while (PINB.1==1)   //Poll Echo For Falling Edge 
        {        
                if (TCNT0==255)       //Check for Overflow 
                {       Count+=256;        //Increment overflow counter 
                        TIFR|=0x01;     //Clear Overflow Flag 
                }; 
        };         
         
        TCCR0=0x00;         //Stop Timer 
        Result=TCNT0;       //Save Result 
        delay_ms(10);       //Manditory Delay  
   
        return (Count+Result); 
 }    
int sonar_filter() 



{ 
        int test; 
        int answer;       
        int fanswer=0; 
 
        test=0;    
        answer=0; 
        while(test<SONAR_NUMSAMPLES) 
        { 
                SonarValues[test]=sonar_test(); 
                answer+=SonarValues[test]; 
                test++; 
        };              
          
        answer = answer>>4; 
         
        test=0;   
 
        while(test<SONAR_NUMSAMPLES) 
        { 
                if ((SonarValues[test]-answer>Sonar_Smooth)||(answer-   
SonarValues[test]>Sonar_Smooth)) 
                SonarValues[test]=answer; 
                 
                fanswer+=SonarValues[test]; 
                test++; 
        };   
         
       return fanswer; 
} 
 
int ir_filter() 
{ 
        int test=0; 
        int answer=0;       
        int fanswer=0; 
 
        while(test<IR_NUMSAMPLES) 
        { 
                IRValues[test]=ir_test0(); 
                answer+=SonarValues[test]; 
                test++; 
        };              
          
        answer = answer>>4; 
        test=0;   
 
        while(test<SONAR_NUMSAMPLES) 
        { 
                if ((IRValues[test]-answer>IR_Smooth)||(answer-   
IRValues[test]>IR_Smooth)) 
                IRValues[test]=answer; 
                 
                fanswer+=IRValues[test]; 
                test++; 
        };   



         
       return fanswer; 
} 

 
void sonar_motor_test() 
{       
 
 //Combines object avoidance with speed control 
      //Uses sonar to drive up to an object without hitting it 
      //Uses a throttle to set a desired speed 
 //Actual speed is controlled to avoid rapid changes 
 
       int val1;  
       Motor_Throttle_L = sonar_test();    //Set throttle to distance 
 
       Motor_Throttle_L = Motor_Throttle_L * 2; 
        

//Software Control of Viewing Range 
       if (Motor_Throttle_L < Motor_Shyness) Motor_Throttle_L = 2; 
       if (Motor_Throttle_L > Motor_Aggressiveness)  

      Motor_Throttle_L = 255; 
         
       val1 = OCR2; 
 
       //Set speed 
       val1=(int) val1*Motor_Smooth+Motor_Throttle_L)/(Motor_Smooth+1);  
  
       OCR2 = val1; 
 
       lcd_gotoxy(0,0); 
       lcd_putsf("Throttle: "); 
       if (Motor_Throttle_L < 0x64) 
         lcd_putsf(" "); 
              
       lcd_int_write((int) Motor_Throttle_L); 
       lcd_gotoxy(0,1); 
       lcd_putsf("Speed: "); 
       if (OCR2 < 0x64) 
         lcd_putsf(" "); 
        
       lcd_int_write((int) val1);         
       delay_ms(10); 
} 
 

 


