Luis Alejandro Vega Salamanca

TA: Adam Barnett, Julio Suárez
Professors:

Dr. A. A. Arroyo

Dr. Eric M. Schwartz

ROBO – CANECA

FINAL REPORT

April 23, 2007
EEL5666C: Intelligent Machines Design Lab

Department of Electrical and Computer Engineering

University of Florida
Introduction

One of the most usual needs for a clean house especially of a college student is to remember to take the garbage out and restrain from overflow it. However, when this goes to oblivion, the kitchen becomes very smelly and then we try to fit more and more stuff into the trash can while becoming smellier, people tend to overflow the garbage can in order not to change it making the kitchen and therefore the entire house a dirty place. When it is finally full it happens very often that we take the garbage bag out of the can and place next to it to take it to the garbage lot at a later time.

This bag can stay there for a couple of days or in worst cases even a week. This ignites a lack of hygiene around the kitchen and constant bad odor around the house. This robot aims to eliminate this scenarios by making the robot autonomously decide when it is time to remove the garbage bag, when this time is detected the robot will go away of the kitchen and will look for the front door and stay in there until somebody removes the garbage. Moreover consider the following scenario.

Imagine a party, meeting or reunion where a lot of people come to a common place to have a good time, chances are everybody will be littering around the place of the event leaving it in deplorable conditions. Once again Robo-Caneca will solve this issue by making the trash to walk around the house and collect garbage from people avoiding littering around the house.

Robo-Caneca, allows this problems to become part of the past, a past, where no robots aided us in our pursue of happiness. Robo-Caneca will serve the owner and will always make sure that the trashcan is not full and making the house smells bad.

This is a prototype. This robot could be commercialized in such a case better algorithms will be designed and a more resistant platform to hold different sizes of trashcans. The idea of Robo-Caneca is very simple but it solves a human task. And that is what robots should do. Autonomous Agents should be built with the purpose of aiding the human race in accomplish those simple tasks of the daily life that keep us busy.

The current platform of Robo-Caneca is a basically a box, in where has space enough to allocate different size of trashcans. All the electronics of the robots are located in the front. However, during normal operation all the electronics are covered by a very fancy slid able cover that allow covering or uncovering the electronics as needed. This technique is great because it allows easy debugging when needed as well it makes the robot look pretty while operating.
SYSTEM

Overview

The robot is operated mainly from a Mavric II-B microprocessor this device is in charge of generating all the behaviors that the robot implements. The most important behavior that this robot implements are mainly, Controls 3 IR sensors for detecting upcoming obstacles and the fullness of the trashcan. It will generate the appropriate signal for the servos to run and be synchronized in such a way that we can go forward, backwards, turn left and right. Also the board provides the communication platform with the CMU Cam device that behaves as my special sensor to implement vision on the robot and perform color distinction procedures.
[image: image1.emf]LCD

IR 2

CPLD

IR 1

SERVO1

SERVO2

MavricIIB

IR 3

CMUCAM

LEFT BUMP

SWITCH

RIGHT BUMP

SWITCH

8 PACKS OF

BATTERIES

In addition to these main features the board will also generate a wave signal to a CPLD that will in its way generate LED animations that resembles the years of night raider. As well as communication with the LCD where we display all the results and we basically explain what is happening at run time. This is what we in software know as our debug screen. Figure 1 shows a graphical representation of the system and its parts.

Some components communicate back to the board such as the CMUCAM and IR SENSORS and the others may announce the board that they are being used but then this is happen by detecting voltages changes to the board but actually on the CMUCAM and the IR sensor communicate back to the board to return their results, the IR sensor gives a numerical representation of how close is the a target from where they are.

The CMUCAM is powerful device that return all the data queried in the array and then this array will be available globally for future needs.

CMUCam (Carnegie Mellon University Camera)

Description And Functionality

The CMUcam is used by the robot for color detection it represents the direction controller for the robot. The way it works is as follows, when the robots hits a wall it will look for a clue of where to go next. On the wall there will exist an arrow of an specific color red green or blue, the main idea is that the being very close at the wall will read the value and by finding the arrow it will read the color and depending on the color found it will take an action.

The main idea is to put as many arrows as walls are found from the base station of the robot to the exit. The purpose of this is to simulate what a human will do in an unknown building where all you have to do is following the exit signs located around the walls and blindly trust them that they will get you somewhere. A special color is selected so that when the camera finds the stop sign (red color) it will know that it has arrived to its destination. If the camera finds a green arrow then it will turn 90 degrees left if instead the camera reads a blue value then it will turn right 90 degrees, when the camera finds a red stop octagon then it will know that this base and it should remain in there until further notice. for the way back to the base the robot will track the colors on the corners of the image representing the walls it will look for either blue or green when found it will center it self on it then it will turn 180 Degrees And Keep Going This Way Returning To Its Home Base Where It Will Remain Until Further Notice.
SERVOS

If I had a chance to repeat this project I will have chosen motors over the servos or rather stronger servos, the fact that my servos are very slow it makes the robot move not a in a straight line which is a big problem because one troubles in putting the arrow in a correct position in order for the robot to detect the wall.

With stronger therefore faster servos or in its default stronger motor the robot will go faster and therefore will be able to achieve greater distances with less deviation which will be the ideal for its use inside a House. On the other side the servos are very simple to use since it only needs a signal pulse from 1ms to 2ms and depending on this signal the servo will react accordingly. 1ms will make rotate counterclockwise 1.5 ms will make the servos stop and 2ms will make the servo rotate clockwise.

Another reason for using stronger devices for the movement is that it will allow stronger weights and therefore act more like an useful trashcan that can hold anything.
IR SENSORS

The IR sensors are great devices, very easy to interface them and their analog value is very useful in detecting the proximity of the objects. One warning is that the number that an IR sensor provides need not to be at all the same number another device produces for the same distance , therefore it is crucial to test the IR’s to calibrate the distances and produce a function that corresponds to the distance measured and the returned value. Other than that this devices are very useful and provide an excellent way for the robot to interact to with obstacles and in its way implement obstacle avoidance.

I definitely encourage future students to use at least one IR sensor in its projects not only because of the usefulness of it but rather because it also makes them integrate the analog to digital converter on the system which is a good learning technique. And in its way is extremely simple. On the appendix are the initialization routines for the IR that can be used by anybody. The A/D port in the board is located on port F, all the pins of port F work in the same manner a simple call will make the board read a port a take number of samples from that port.

BEHAVIORS

Robo-Caneca has four different and important behaviors states. The first one is when it stands in the kitchen base without moving simply because the trashcan is not full, the second one is when it detects that the trash can its full and then starts moving forward to find the front door and looking for the arrows for clues. the third one is right after finding the front door and backing up it will stay there until the trash is removed finally the last state is when it goes back home by using a path recursion recognition it looks back into what it traveled to reveal the back home path.
The first state is activated when the robots turns up, during this state the robot is simply polling for the value of the IR on top to see if there is any trash that is overflowing from the trashcan as long as there is no, then no different behavior will be detected by the robot. Finally when an over flown is detected for more than a second it will start moving and will go to find the main door.

During this state the robot will advance forward making its best to go in a straight line until it finds a wall when this happens the robot then will approach closely to the wall and the when close enough it will read the values of the wall and then distinguish the color of it to decide on its next behavior as said before, a red octagon will represent the front door. A blue arrow will represent a right turn and a green arrow a left turn. it will keep replicating this behavior until it finds the front door , every time it finds an arrow it will record that straight line path in its record in order to make on its way back, when it finally find that front door (i.e., the red octagon) it will then park there and wait and stop.
Here it enters the third stage in where it simply keeps polling for the sensor that detects the fullness of the trash can this time waiting for the sensor to be detecting to no overflowing from the trash when this happens it means that somebody has removed all the trash from the robot and then it will go the fourth and final stage.

During this stage it will read the memory and will calculate the path to go back during this path it will simply go forward for the number of seconds that it recorded from its second stage. Then it will turn and will keep advancing. When it reads all the memory it had it means that it made back to the initial position without issue and then it will return to its initial stage.
Experimental Results

IR SENSORS

The IR sensors as mentioned before had the disadvantage that the data need not to be the same number for different sensors therefore it needs calibration and what this means is that it needs to be tested by setting objects a different distances and recording the value obtains by the sensor, when the objects are close the data variance increase significantly therefore one must allow at least 10% to 15% of error in the data, because it really oscillates between the correct values. Other than that these are very reliable sensors.
CMUCam

Despite the warnings and the comments about this camera for its difficulty of recognizing the colors I found that it actually did a pretty good job. The problem is that we need to understand what the robot sees and then we as human need to analyze what is really the color it sees and how we will determine that it is green.

The testing for this device was simple. I recorded the RGB values of the camera for different colored objects and different gammas of red, green and blue, then I put this numbers down on the computer to see the color that they projected and it was extremely close to the one seen by the robot. Then I created ranges for the colors, because a color is not simply setting its value to 255 and the rest to 0.

Testing was conducted in order to recognize what each color was. After the data was gathered then the code was written and the effectiveness of the robot in detecting the colors while in action if about 95% of accuracy which is extremely good for a low cost device as this camera.
BATTERIES

Batteries are an issue that one never takes into consideration when testing the robot, now I must say that this is a big mistake. Full batteries will make the robot go faster turn harder and basically change all the calculations that one has done. accordingly when the batteries are low the rotation decreases and the speed is also diminished as well. Therefore make sure that your batteries are full powered when testing and running the robot otherwise you will run into long nights of testing without understanding what is going on.
Conclusion

In retrospection, I feel that building this robot was a great experience and gave that knowledge of tackling a big problem from scratch and basically gave that confidence that it can be done. Robo-Caneca will probably be ready to serve a small office or bathroom trash can, it will probably need to be modified if its use is intended to be in a big house.

However, the idea of the robot stays, even if it means that the platform changes. The robot is fully functional and does what it is supposed to be, however it has some bugs that need to be corrected before it can be widely used by people. One of this is simply making sure that it goes more straight than what it does now, but again this happens because of the weakness of the servos. Other than that I feel very satisfied with my robot and I am just glad I had this experience in the class and I feel satisfied of taking this class.
DOCUMENTATION AND ACKNOLEGDMENTS
- Special acknowledges to the ANT robot of spring 2006. This robots code was very helpful as a starting point to code in C.

- To Dr. E. S. and Dr A. for its support and constant motivation in the development of this project.

- To Adam and Julio for their constant support in the Lab.

- To my friends Specially Freesia Torres who helped me in the design and aesthetics of the robot

- To Agatha Lingerie for sponsoring the robot and all its parts.
APPENDIX:

And here lays the brain of my robot. All the code is in here:
#define F_CPU 16000000UL // 16 MHz

//ROBOCANECA SOFTWARE

//

#include <util/delay.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <inttypes.h>

#include <stdlib.h>

#include <stdio.h>

#include <inttypes.h>

#include <avr/pgmspace.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

volatile uint16_t ms_count;

volatile uint16_t us_48_count;

/*CMUCam & UART*/

volatile int MAX_MSG_SIZE = 30;

volatile unsigned char CMUResponseBuffer[15];

/*

** LCD CONECTIONS (HELP FROM ANT ROBOT SPRING 06)

** PORTA BITS

**

** 7
6
5
4 3 2 1 0

** +5V E R/W RS DB7 DB6 DB5 DB4

**

*/

#define DDRLCD DDRA

#define PORTLCD PORTA

#define ENABLE 0x40

#define RS 0x10

#define RW 0x20

//SERVOS

#define SERVO1 OCR3A

#define SERVO2 OCR3B

#define L_WHEEL SERVO1

#define R_WHEEL SERVO2

#define WHEEL_MID 3000

#define FORWARD 32512 // 0x7F00 // means Clockwise

#define MIDDLE 25088 // 0x637F // MIDDLE REALLY MEANS STOP!

#define BACKWARD 26000 // 0x637F // back means Counterclockwise //27904

//#define MIDDLE 28576 // 0x6FA0

/*A-to-D*/

#define DDRAD DDRF

#define PORTAD PORTF

int direction = MIDDLE;

int toggle = 0;

/*

 * ms_sleep() - delay for specified number of milliseconds

 */

void ms_sleep(uint16_t ms)

{

 TCNT0 = 0;

 ms_count = 0;

 while (ms_count != ms);

}

/*

 * millisecond counter interrupt vector

 */

SIGNAL(SIG_OUTPUT_COMPARE0)

{

 ms_count++;

}

/* SIG_OVERFLOW3 - this interrupt handler starts the pulse for servos

* the timer 3 output compare function automatically ends

** the pulse precisely as specified by the OCR3x register which

** represents the servo position

*/

SIGNAL(SIG_OVERFLOW3)

{

TCNT3 = 0x63BF;

/*

** Configure to set outputs on compare match so we can turn on

the

** pulse in the next statement

*/

TCCR3A |= (_BV(COM3A1)|_BV(COM3A0)|_BV(COM3B1)|_BV(COM3B0));

/*Force compare match to set outputs*/

TCCR3C |= _BV(FOC3A)|_BV(FOC3B);

/*

** Configure to clear outputs on compare match so that the output

** compare function ends the pulse

*/

TCCR3A &= ~(_BV(COM3A0)|_BV(COM3B0));

}

void servo_init(void)

{

/*

** Configure OC3A for mode 0: normal, top=0xffff prescale=8

(f~=30):

**

** WGM33=0, WGM23=0, WGM13=0, WGM03=0, CS32=0, CS31=1, CS30=0

*/

DDRE |= _BV(PORTE3) | _BV(PORTE4);

TCCR3A = 0x50;

TCCR3A &= ~(_BV(WGM31) | _BV(WGM30)); // setting for normal operation.

TCCR3B = 0x02;

TCNT3 = 0;

OCR3A = MIDDLE;

OCR3B = 0x9C40;

TCCR3C |= _BV(FOC3A) | _BV(FOC3B);

ETIMSK |= _BV(TOIE3);

}

/*Declarations*/

int L_new_speed = 0, R_new_speed = 0, L_old_speed = 0, R_old_speed = 0;

int increment = 1;

/*Wheels functions*/

void stop()

{

L_WHEEL = MIDDLE;

R_WHEEL = MIDDLE;

ms_sleep(250); // Wait for servos to come to complete Stop!

}

void backwards()

{

R_WHEEL = BACKWARD;

L_WHEEL = FORWARD;

}

void forward()

{

L_WHEEL = BACKWARD;

R_WHEEL = FORWARD;

}

void R_turn()

{

R_WHEEL = BACKWARD;

L_WHEEL = BACKWARD;

}

void L_turn()

{

R_WHEEL = FORWARD;

L_WHEEL = FORWARD;

}

//

// initialize timer 0 to generate an interrupt every millisecond.

void timer_init(void)

{

/*

** Initiali
ze timer0 to generate an output compare interrupt, and

** set the output compare register so that we get that interrupt

** every 48 microseconds.

*/

TIFR |= _BV(OCF0);

TCCR0 = _BV(WGM01)|_BV(CS02)|_BV(CS00); // CTC, prescale = 128

TCNT0 = 0;

TIMSK |= _BV(OCIE0); // Enable output compare interrupt

OCR0 = 125;

}

void knightRaider()

{

 ms_sleep(8);

 PORTB ^= 0x01; // by using exclusive or it will toggle the bit0 of PORTB.

}

int Count_lcd; //Global variables for putChar routine

int Row2count;

void us48_delays(uint8_t us)

{

 uint8_t i = 0;

 while(i < us)

 {

 _delay_us(45);

 i = i + 1;

 }

}

void latch(void)

{

PORTLCD |= ENABLE;

PORTLCD &= ~ENABLE; // Latch data (strobe)

}

void lcd_command_nibble(uint8_t nibble)

{

PORTLCD = nibble;

latch(); // Send

}

void lcd_command(uint8_t byte)

{

 uint8_t temp = byte; // Save command

 temp &= 0xF0; // Peel off the four MSBs (Also, to make RS = 0)

temp >>= 4; // Shift the four MSBs up to the LSBs (Or, sending
position)

 PORTLCD = temp;

latch();

ms_sleep(5); // Wait for LCD data to go

temp = byte;

temp &= 0x0F;

PORTLCD = temp; // Load LSBs

latch();

_delay_us(40);

}

void lcd_clear_screen(void)

{

/*Clear screen; cursor home*/

ms_sleep(1);

lcd_command(0x01);

ms_sleep(2);

}

void lcd_out_char(uint8_t byte)

{

uint8_t temp = byte; // Save command

temp &= 0xF0; // Peel off the four MSBs

temp >>= 4; // Shift the four MSBs up to the LSBs (Or, sending
position)

PORTLCD = (temp | RS); // Signal a write to DDRAM for display

latch();

ms_sleep(5); // Wait for LCD data to go

temp = byte;

temp &= 0x0F;

PORTLCD = (temp | RS); // Load LSBs

latch();

_delay_us(47);

}

/*

** This will not word wrap.

** Put in if-elses if you want word wrap.

*/

void lcd_out_string(char *s)

{

while (*s) lcd_out_char(*s++);

}

void lcd_init(void)

{

DDRLCD = 0xFF;

PORTLCD = 0;

ms_sleep(20); // For more than 15000 us = 15 ms

/*Normal lcd initializations (For 4-bit mode)*/

lcd_command_nibble(0x03);

ms_sleep(5);

lcd_command_nibble(0x03);

us48_delays(4);

lcd_command_nibble(0x03);

ms_sleep(5);

lcd_command_nibble(0x02);

_delay_us(45);

/*Two lines*/

//lcd_command_nibble(0x02);

//ms_sleep(3);

//lcd_command_nibble(0x08);

lcd_command(0x28);

us48_delays(1);

/*Cursor blink, Curson on*/

//lcd_command_nibble(0x00);

//ms_sleep(5);

//lcd_command_nibble(0x0E);

lcd_command(0x0F);

us48_delays(1);

/*Clear screen; cursor home*/

lcd_clear_screen();

}

/*

 ** Function: writeIntegerToLCD (lcd_out_int)

 ** Parameters: integer - the integer that will be written to

the LCD

** Purpose: Coverts a standard 16-bit int into the ASCII

** representation of the number and writes

that number

** to the LCD.

** *** Note: The maximum value that can be

written is

** 9999. This is because

there is no

** ten thousands place

supp
ort.

** Returns <none>

*/

void lcd_out_int(uint16_t integer)

{

/*

** Break down the original number into the thousands, hundreds,

tens,

** and ones places and then immediately write that value to the

LCD

*/

uint8_t thousands = integer / 1000;

lcd_out_char(thousands + 0x30); // 0x30 = zero in hexidecimal
format = 0b00110000 (in binary format)

uint8_t hundreds = (integer - thousands*1000) / 100;

lcd_out_char(hundreds + 0x30);

uint8_t tens = (integer - thousands*1000 - hundreds*100) / 10;

lcd_out_char(tens + 0x30);

uint8_t ones = (integer - thousands*1000 - hundreds*100 -
tens*10);

lcd_out_char(ones + 0x30);

}

/*A-to-D functions*/

void ad_init(void)

{

DDRAD &= 0x0; // Set AD data direction register (DDRF) for input

PORTAD |= 0x0;

ADMUX = _BV(REFS0); // Select AVCC (internal) for AD voltage source, Only 8 bit A to D accuracy, and channel 0 (PORTF0) only

ms_sleep(16); // Wait for power up

ADCSRA = ~(_BV(ADIE)); // Set AD: Enable, Start a dummy conversion, Set AD to run freely, No AD interrupt, Clear Flag, Divide

//clock by 128 (16 MHz / 128 = 125 kHz)

}

uint16_t ad_read(void)

{

return ADC;

}

void ad_chsel(uint8_t channel)

{

/*Select channel*/

ADMUX = (ADMUX & 0xe0) | (channel & 0x07);

}

/*

** ad_readn() - A/D Converter, read multiple times and average

**

** Read the specified A/D channel 'n' times and return the average of

** the samples

*/

uint16_t ad_readn(uint8_t channel, uint8_t n)

{

uint16_t t;

uint8_t i;

ad_chsel(channel);

t = ad_read(); // Dummy read

/*Sample selected channel n times, take the average*/

t = 0;

for (i=0; i<n; i++)

{

ms_sleep(1);

t += ad_read();

}

/*Return the average of n samples*/

return t / n;

}

/*UART functions (For CMUCam)*/

/*Initialize UART0 to 115.2k baud*/

void uart0_init(void)

{

UBRR0H = 0x00;

UBRR0L = 16; //16 is for 115.2k if U2X=1, 0x33 = 51 for 38.4k baud

UCSR0A = 0x02;

UCSR0B = 0x18; //Bit 4 is Rx enable, Bit 3 is Tx enable

UCSR0B |= (1<<RXEN)|(1<<TXEN);

UCSR0C = 0x06; //Bit 6 = Mode (0=Ascync, 1=Sync),

}

/*Transmit a message over UART0 in the form of a character array*/

void UART0_TX(char message[MAX_MSG_SIZE])

{

int t = 0;

while ((t < (MAX_MSG_SIZE + 1)) & (message[t] != 0x00))

{

/*Wait for an empty transmit buffer*/

while (!(UCSR0A & (1<<UDRE0)));

UDR0 = message[t];

t++;

}

}

/*Receive a message*/

unsigned char UART0_RX(void)

{

while(!(UCSR0A & (1<<RXC0)));

return UDR0;

}

/*CMUCam functions*/

void cmu_init(void)

{

/*Reset*/

UART0_TX("RS\r");

ms_sleep(20);

/*Poll Mode*/

UART0_TX("PM 1\r");

ms_sleep(20);

/*Raw Output*/

UART0_TX("RM 3\r");

ms_sleep(20);

/*Middle Mass On*/

UART0_TX("MM 1\r");

ms_sleep(20);

/*Track with the full window*/

UART0_TX("SW 1 1 80 143 \r");

ms_sleep(20);

}

/*

** Get the mean (average) values of red, green, and blue (R, G, B)

** and store them in the global "CMUResponseBuffer"

*/

void CMU_GM(void)

{

//lcd_clear_screen();

//lcd_out_string("1*");

int i = 0;

char tempChar;

UART0_TX("GM\r");

//lcd_out_string("2*");

/*Read and discard the first 255 framing byte*/

tempChar = UART0_RX(); /// 0058

//tempChar = UART0_RX(); /// 0058

//lcd_out_string("3*");

/*Read 7 byte long "type S" packet*/

for(i=0;i<7;i++)

{

CMUResponseBuffer[i] = UART0_RX();

}

//lcd_out_string("4*");

/*Trash the last 255 framing byte*/

while(tempChar != ':')

{

tempChar = UART0_RX();

}

//lcd_out_string("5*");

CMUResponseBuffer[i] = '\0';

//lcd_out_string("6*");

}

/*Tracks a color*/

void CMU_TC(int Rmin, int Rmax, int Gmin, int Gmax, int Bmin, int Bmax)

{

int i = 0;

char tempChar, tempMessage[30];

sprintf(tempMessage,"TC %i %i %i %i %i %i\r", Rmin, Rmax, Gmin, Gmax, Bmin, Bmax);

UART0_TX(tempMessage);

tempChar = UART0_RX();

/*Return a 9 byte long "type M" packet*/

for(i=0;i<9;i++)

{

CMUResponseBuffer[i] = UART0_RX();

}

while(tempChar!= ':')

{

tempChar = UART0_RX();

}

CMUResponseBuffer[i] = '\0';

}

/*Convert raw CMUCam data into an integer*/

int binary2int(unsigned char binary_num)

{

int result = 0;

if(binary_num & 1)

result +=1;

if(binary_num & 2)

result +=2;

if(binary_num & 4)

result +=4;

if(binary_num & 8)

result +=8;

if(binary_num & 16)

result +=16;

if(binary_num & 32)

result +=32;

if(binary_num & 64)

result +=64;

if(binary_num & 128)

result +=128;

return result;

}

int testing = 0;

int found = 0;

uint16_t path[10];

uint16_t turns[10];

size_t lines = 0;

void readWallDirection()

{

 lcd_clear_screen();

lcd_out_string("Reading wall ");

CMU_GM(); // Dummy read

ms_sleep(1024); // Wait for transients to die out (Very important)

CMU_GM(); // Get means (15 min, 240 max)

lcd_clear_screen();

lcd_out_string("READING COMPLETE!");

int RED = CMUResponseBuffer[1]; // Red mean

int GREEN = CMUResponseBuffer[2]; // Green mean

int BLUE = CMUResponseBuffer[3]; // Blue mean

lcd_clear_screen(); lcd_out_int(RED); lcd_out_string(",");

lcd_out_int(GREEN); lcd_out_string(","); lcd_out_int(BLUE);

//ms_sleep(2000); /////just for testing

if(GREEN > BLUE && GREEN > RED && GREEN > 100)

{

lcd_clear_screen();

lcd_out_string("GREEN FOUND");

stop();

backwards();

ms_sleep(1000);

stop();

L_turn();

ms_sleep(2100);

do{

ms_sleep(250);

} while(ad_readn(2,4) > 180 && ad_readn(1,4) > 180);

stop();

turns[lines] = 1;

}

else if(RED > BLUE && RED > GREEN && GREEN < 80 && BLUE < 80)

{

lcd_clear_screen();

lcd_out_string("RED, BASE FOUND");

found = 1;

backwards();

ms_sleep(1000);

R_turn();

ms_sleep(4700);

stop();

backwards();

ms_sleep(1000);

stop();

turns[lines] = 3;

return;

}

else if(BLUE > 100 && BLUE > GREEN && RED > 80) // still need to test the blue with and without lighting

{

 lcd_clear_screen();

lcd_out_string("BLUE TURN RIGHT!");

stop();

backwards();

ms_sleep(1000);

stop();

R_turn();

ms_sleep(1900);

do{

ms_sleep(250);

} while(ad_readn(2,4) > 180 && ad_readn(1,4) > 180);

stop();

turns[lines] = 2;

}

else

{

if(testing == 0)

{

backwards();

ms_sleep(800);

stop();

L_turn();

ms_sleep(500);

stop();

testing = 1;

readWallDirection();

}

else if(testing == 1)

{

R_turn();

ms_sleep(1000);

stop();

testing = 2;

readWallDirection();

}

else

{

L_turn();

ms_sleep(2500);

do{

}

while(ad_readn(2,4) > 180 && ad_readn(1,4) > 180);

ms_sleep(250);

stop();

testing = 0;

}

}

}

int far = 0;

int med = 0;

int close = 0;

void locomotion()

{

knightRaider();

if((PINC & 0b00001000) == 0b00001000)

{

lcd_clear_screen();

lcd_out_string("Bumped on the LEFT detected");

far = 0;

stop();

backwards();

ms_sleep(1200);

stop();

int degree = 0;

do

{

R_turn();

ms_sleep(750);

++degree;

}while((PINC & 0b00001000) == 0b00001000);

stop();

forward();

ms_sleep(1400);

stop();

L_turn();

ms_sleep(degree*750);

stop();

}

if((PINC & 0b10000000) == 0b10000000)

{

lcd_clear_screen();

lcd_out_string("Bumped on the RIGHT detected");

far = 0;

stop();

backwards();

ms_sleep(1200);

stop();

int degree = 0;

do

{

L_turn();

ms_sleep(750);

++degree;

}while((PINC & 0b10000000) == 0b10000000);

stop();

forward();

ms_sleep(1400);

stop();

R_turn();

ms_sleep(degree*750);

stop();

}

if(ad_readn(2,4) < 180 && ad_readn(1,4) < 180)

{

path[lines] = path[lines] + 1;

if(far == 0)

{

lcd_clear_screen();

lcd_out_string("Move ");

lcd_out_int(ad_readn(2,4));

lcd_out_string(" , ");

lcd_out_int(ad_readn(1,4));

far = 1;

med = 0;

close = 0;

forward();

}

}

if(ad_readn(2,4) > 240 || ad_readn(1,4) > 240)

{

stop();

ms_sleep(500);

if(ad_readn(2,4) > 240 || ad_readn(1,4) > 240)

{

if(med == 0)

{

lcd_clear_screen();

lcd_out_string("Wall! ");

lcd_out_int(ad_readn(1,4));

lcd_out_string(" , ");

lcd_out_int(ad_readn(2,4));

med = 1;

far = 0;

close = 0;

}

++lines;

readWallDirection();

}

else

{

forward();

}

}

if((ad_readn(1,4) > 280 && ad_readn(2,4) < 100) || (ad_readn(1,4) < 100 && ad_readn(2,4) > 350))

{

if(close == 0)

{

lcd_clear_screen();

lcd_out_string("An obstacle!");

med = 0;

far = 0;

close = 1;

if(ad_readn(1,4) > 280 && ad_readn(2,4) < 100)

{

 stop();

backwards();

ms_sleep(1200);

stop();

int degree = 0;

do

{

R_turn();

ms_sleep(750);

++degree;

}while((PINC & 0b00001000) == 0b00001000);

stop();

forward();

ms_sleep(1400);

stop();

L_turn();

ms_sleep(degree*750);

stop();

}

else if((ad_readn(1,4) < 100 && ad_readn(2,4) > 350))

{

far = 0;

stop();

backwards();

ms_sleep(1200);

stop();

int degree = 0;

do

{

L_turn();

ms_sleep(750);

++degree;

}while((PINC & 0b10000000) == 0b10000000);

stop();

forward();

ms_sleep(1400);

stop();

R_turn();

ms_sleep(degree*750);

stop();

}

}

}

if((ad_readn(1,4) > 400 || ad_readn(2,4) > 400))

{

stop();

backwards();

ms_sleep(2000);

stop();

L_turn();

ms_sleep(500);

forward();

}

}

void backHome()

{

size_t v = lines;

lcd_clear_screen();

lcd_out_string("Back Home Mode...");

 while(v > 0)

{

forward();

ms_sleep((path[v - 1]*60)); // multiplies delays times the distance

stop();

// will stop around and arrow!

if(v == 1)

{

backwards();

ms_sleep(500);

stop();

L_turn();

ms_sleep(4500);

stop();

backwards();

ms_sleep(500);

stop();

found = 1;

return;

}

else

{

if(turns[v - 1] == 2)

{

lcd_clear_screen();

lcd_out_string("OLD BLUE RIGHT");

L_turn();

ms_sleep(2400);

do{

ms_sleep(250);

} while(ad_readn(2,4) > 200 && ad_readn(1,4) > 200);

stop();

backwards();

ms_sleep(1000);

stop();

}

else if(turns[v - 1] == 1)

{

lcd_clear_screen();

lcd_out_string("OLD GREEN LEFT");

R_turn();

ms_sleep(1900);

do{

ms_sleep(250);

} while(ad_readn(2,4) > 200 && ad_readn(1,4) > 200);

stop();

backwards();

ms_sleep(1000);

stop();

}

}

--v;

}

}

int main(void)

{

DDRB |= 0x01; /* enable PORTB 1 as an output */

DDRC |= 0x66; // this sets the BUMBER SWITCHES FOR READING.

DDRC &= 0x77; // this sets the BUMBER SWITCHES FOR READING.

PORTC |= 0x44;

DDRE |= 0b00000110;

PORTE &= 0b11111011;

timer_init();

sei();

lcd_init();

ad_init();

servo_init();

uart0_init();

cmu_init();

stop();

path[0] = path[1] = path[2] = path[3] = path[4] = path[5] = path[6] = path[7] = path[8] = path[9] = 0;

turns[0] = turns[1] = turns[2] = turns[3] = turns[4] = turns[5] = turns[6] = turns[7] = turns[8] = turns[9] = 0;

lcd_out_string("ROBOCANECA ");

lcd_out_int(5666);

while (1)

 {

knightRaider();

//JUST FOR TESTING

lcd_clear_screen();

lcd_out_string("Throw Trash");

///END OF TESTING

if(ad_readn(3,4) > 210)

{

ms_sleep(500);

if(ad_readn(3,4) > 210)

{

while(found == 0)

{

 locomotion();

}

while(ad_readn(3,4) > 210)

{

ms_sleep(1000);

} // stay there until somebody picks up the garbage

//WE GO BACK IN HERE

found = 0;

while(found == 0)

{

backHome();

}

found == 0;

path[0] = path[1] = path[2] = path[3] = path[4] = path[5] = path[6] = path[7] = path[8] = path[9] = 0;

turns[0] = turns[1] = turns[2] = turns[3] = turns[4] = turns[5] = turns[6] = turns[7] = turns[8] = turns[9] = 0;

}

else

{

 lcd_clear_screen();

lcd_out_string("Thanks For The Trash!");

}

}

 }

return 0;

}
� EMBED Visio.Drawing.11 ���

[image: image2.emf]LCD

IR 2

CPLD

IR 1

SERVO1

SERVO2

MavricIIB

IR 3

CMUCAM

LEFT BUMP

SWITCH

RIGHT BUMP

SWITCH

8 PACKS OF

BATTERIES

_1238862748.vsd
LCD

IR 2

CPLD

IR 1

SERVO1

SERVO2

MavricIIB

IR 3

CMUCAM

LEFT BUMP SWITCH

RIGHT BUMP SWITCH

8 PACKS OF BATTERIES

