R2-D3:

Final Written Report
[image: image28.jpg]
April 16th, 2007

Pedro Machin

TA: Adam Barnet, Julio Suarez

Instructors: A. A. Arroyo, Eric M. Schwartz

Table of Contents:

 Opening

I. Abstract………………………………………………………………………3

II. Introduction…………………………………………………………………..3
Main Body

III. Integrated System…………………………………………………………….4
IV. Mobile Platform……………………………………………………………...5
V. Actuation……………………………………………………………………. 7
VI. Sensors……………………………………………………………………….9
VII. Text-to-Speech………….…………………………………………………..13
VIII. Behaviors…………………………………………………………………...14
IX. Experimental Layout and Results…………………………………………..16
Closing

X. Conclusion…………………………………………………………….........18
XI. References…………………………………………………………….........19
XII. Appendices/ Program Code…………………..………………………….....19
Abstract:
R2-D3 is an autonomous human-following command-enabled robot. Like an obedient pet, it responds to visual signal commands, follows a human at approximately walking speed, detects other humans in the vicinity, and performs random obstacle avoidance; all the while responding to your commands in an understandable voice.
Introduction:

There are two things that lonely EE students everywhere seem to always be in dire need of: some form of mobile information retrieval (i.e. PDA, laptop) and a girlfriend. Since we cannot as yet provide the latter, I will settle by merging the consoling qualities of a pet with the information richness of a computer that will interface with a human through visual signal command and a text-to-speech system.

R2-D3 like the its previous version in George Lucas’ “Star Wars”, is designed to follow people ad-nauseum. Unlike its antiquated cousin it has the added advantage of a human-like voice instead of whirs and whistles. R2-D3 follows a given person by storing a (preferably) unique color and following such a color with its CMU cam. If that color moves out of range of the camera, it will default to following any movement that it can sense through its pyroelectric sensor. If the color ever re-enters the CMU cam’s visual range, R2-D3 will resume following such a color. If its target color is out of range and it detects no movement, it will stop following and search the room randomly until it detects either its target color (preferably) or some movement.

If R2-D3’s current owner (as designated by a fluorescent colored leg-band) wishes to give the robot a command, he will simple show the robot the “command color” and at any time during the execution of the program the robot stops what it is doing and awaits a visual command from the owner. While the robot sees this color, it stays in “command mode” awaiting any further user command.
Integrated System:
The controller board chosen for this project was the BOT40-ASY from oricomtech. This board comes installed with a Microchip 16F877 microcontroller chip, which comes programmed with the OTFLoader, a modified version of the Lunt freeware bootloader. Instead of using the bootloader I opted to buy a hardware chip programmer in order to use Microchip’s newer PIC18F4550. The controller board has 4 available set of registers that can be used for I/O (A, E – which can also be used for analog input, B, which included two external interrupts, and C which includes a PWM signal). The board also has two onboard H-bridges that can be hooked up to allow both unidirectional as well as bidirectional operation of 8 and 4 motors respectively. In terms of memory the board includes a 64Kbit (8192 x 8 bit) EEPROM. Additionally the PIC has a program memory of 32Kbytes, and a data memory of 2048bytes in SRAM and 256bytes in EEPROM. Since the programmer bought had a RJ-35 (phone cable) connector, I had to make a connector as shown in fig1.

[image: image2.jpg]
Fig. 1: BOT40-ASY board with PIC18F4550
Mobile Platform:
The robot’s platform was cut out of a 1-1/2’ by 6’’ aluminum sheet with metal pliers and bent into place with the tools shown in fig.1 as well as a hammer and vice.
[image: image1.jpg]
Fig. 2: Aluminum sheet, cutter and pliers for molding

[image: image18.jpg]The motor was mounted on the underside of the chassis with two 4/40 screws on both sides of the gearbox. Two slots with mudguards were then cut and bent for the wheels. Originally a caster was mounted in the back of the robot to complete the base (fig. 3). The caster was then glued in place to face forward (the robot does not accelerate quickly enough to align the caster to point straight and therefore was making the robot move in circles) (fig. 4).
Fig. 3-4: Underside chassis with motor and original caster assembled (left) and chassis with mounted board (right)
 This actually helped the robot a lot in maintaining a straight line when going forward, which as it turns out is not a trivial matter. The only down side to the glued-in-place caster was that turning in place was only possible in very sleek surfaces; maxing out the motors otherwise since the rotation was perpendicular to the surface of the caster.

However, since I was made known that the robot was to perform in the NEB, which has a very smooth surface, I resorted to using a pair of metal ball-casters (fig. 5-6). These casters allow R2-D3 to turn omni-directionally without obstruction. Additionally, they provide a more stable base by having four points of contact with the floor instead of three. Unfortunately, these compromise the straightness provided by the other casters (this is not too important since the robot is never expected to move very long without polling its sensors) and makes travelling in carpet or rough impossible.

[image: image3][image: image4.jpg]
Fig 5-6: replaced ball-bearing casters
Actuation:

There are two types of actuation built into R2-D3: 2 motors and 1 servo. The two motors are inserted into a left/right independent 4-speed double gearbox from Pololu.com. I originally assembled the gearbox for the drive train to a 38.2:1 ratio, allowing 278 gf*cm of torque and 345rpms; this comes to an equivalent of 2.27 mi/hr, just in the average range of human walking speed (2.24-3.35 mi/hr). However, as the weight of the platform increased, the robot barely could pull its own weight. To increase traction further, I changed the gearbox ratio from 38.1:1 to 114.7:1, allowing R2-D3 to be able to function even in rougher surfaces (such as carpet). Having additional torque also made the length of movements much less dependent on the surface type.

 The tires are part of the Tamiya 70111 sports tire set kit also from Pololu.com, and the metal caster with plastic wheel was bought from Ace Hardware.

Although I did buy low-voltage dual serial motor controller, it turned out to be unnecessary due to the two onboard H-bridges of the BOT40-ASY board. The serial 8-servo controller is used to power a rotating bracket that holds the PING)) sonar as well as the CMU cam (fig. 7).

[image: image19.jpg][image: image5.jpg]
Fig 7: PING)) sonar and CMUcam

Fig 8: Servo controller (left),

mounted on servo-powered T-bracket
motor controller (right)

[image: image20.jpg]
[image: image21.jpg]
Fig. 9: Circuit diagram for on-board H-bridges Fig. 10: Sample motor hookup for

bidirectional motor noise-dampening

The circuit for the general motor power hookup as well as the noise dampening circuit for bidirectional motors is shown in fig. 9, fig. 10.
Sensors:

[image: image6]
There are three four types of sensors that are used by R2-D3: bump, pyroelectric, sonar and a CMU cam. The sonar and bump sensors will work in unison to avoid obstacles; the sonar being the primary sensor and the bump sensors acting as a backup if a small or thin object (such as a table leg) is missed by the sonar. The sonar and CMUcam and pyroelectric sensors have been mounted on a servo-powered revolving bracket as shown in fig. 7.

As explained in the introduction the CMU cam and the pyroelectric sensor work in unison hierarchically to follow a target person (owner). The state machine for such a sensor is shown in detail above.
Bump Sensors:

The bump sensors are mounted on the front of R2-D2 (one above and another below the chassis to avoid collision). A thin plastic tubing is sheathed on the sensor triggers to lengthen the triggering range to about 2 inches to the front and to the sides of the robot (fig. 11). In the unlikely case that both sensors are triggered simultaneously, we know that the obstacle is exactly in the intersection of the whiskers, allowing us to take special action (fig. 12).

[image: image22.jpg]
[image: image7.jpg]
Fig. 11: Whisker sensors

 Fig. 12: Intersection of whisker sensors

Sonar Sensors:

I used two sets of Parallax PING))) sonars in R2-D3 that use a single I/O pin (fig. 13). These sensors provide very precise measurements from the range of about 2 cm to 3 meters. Previously I used the longer range Acroname RF-02 sensor. Both sensors work by transmitting an ultrasonic burst and providing an output pulse that corresponds to the time required for the burst to return to the sensor. By measuring the echo pulse width, the distance to the target is calculated (fig. 14). However, this sensor is slightly faster due to the fact that the ping and the echo do not have to share an I/O pin, allowing the ping to reach farther in the same amount of time. However, due to the fact that I was running out of ports, I saved myself two ports by switching to the PING))) sonar.
[image: image8.png]
Fig. 13: Ping Sonar (single line I/O) (from parallax.com)

A “distance” sonar that is used in conjunction with the bump sensors to perform obstacle avoidance, and a “ground” sensor used to detect and avoid sharp fall-outs or edges. The first is mounted on the robot “head” shown in fig. 4. The second is mounted below the servo that moves the head, pointing downwards at slightly less than 45 degrees (this is necessary since for angles larger than about 45 degrees, not enough of the sonar echo comes back to be detected).
[image: image9.jpg]
Fig. 14: Sonar operation theory (from parallax.com)
Pyroelectric Sensors:
In my robot a set of two PIR sensors (fig. 15) are used to detect a human once the CMUcam has lost the tracking color and all attempts to regain the color have failed. Although it is very unlikely that the tracking color is not regained in the tracking phase if the color is temporarily lost (the robot rotates a full turn searching for the tracking color and then waits for five seconds until it gives up searching), even if the human is actively avoiding the robot, the human will still be detected once R2-D3 enters motion detection mode and there is someone present in the room, color tracking will resume.
[image: image10.png]
Fig. 15: PIR sonar (from parallax.com)

The PIR parallax sonar is digital, avoiding the hassle of assigning analog ports and reallocating all of the assigned ports depending on the position that the analog ports have in hardware. However, the sensor is has proven to be fairly unreliable if one depends on just the value of a single polling of the sensor. Instead a lot of input has to be collected from both sensors and then compared to determine where if a human is in front or behind the robot.
[image: image11.jpg]
Fig. 14: From some unscientific testing, it was determined that two back-to-back sensors allow me to sense about 240 out of 360 degrees, or about 2/3 of the environment at a time.
Text-to-Speech:
R2-D3 accomplishes human speech through the integration of an Emic TTS male-voice module (fig. 16). This module is a fully integrated module that converts a stream of digital text into a high-quality English-speaking voice. It provides a simple way to speech-enable my robot requiring only a simple one-wire serial interface and two optional I/O lines for status notification. The module is controlled through a simple set of commands and off-loads most of the computational overhead required for TTS from the host controller. I found the command set for the Emic to be highly intuitive, requiring only the user to reset the board and then use the simple command “say=hello world;” to be passed to the input stream of the module.
[image: image12.png]
Fig. 16: Emic TTS module (from parallax.com)

Although the manual said that the minimum number of connections for the Emic was five (VCC, GND, SIN, SOUT, and AOUT), I found that SOUT and AOUT are really unnecessary for my application since my program does use a serial response of the module. However, I did need to use a busy line to avoid collision among the commands that I sent to the TTS. For example, if I send a “say” and don’t delay a sufficient amount of time for module to output the speech, another “say” command may interrupt the first. To avoid this, I only allowed a “say” command to occur if the busy line was not active.

It is worth noting for future users, that if you have a problem with the Emic not outputting speech consistently, the problems may be one of the following: The processor and the module might not be properly synched if you are using only a software-generated serial communication port. The busy or reset lines lines are designed for a USB connection or some other standard that requires more or less than the standard voltage for a signal to be positive. This sort of thing might not allow the TTS to reset properly and consequently only a small percentage of the sent messages will be spoken.
 During the course of this project I tried various different speakers that more or less satisfy the 8 ohm requirement of the Emic TTS module (fig. 17).
[image: image13.jpg]
Fig. 17: Speakers used: ~25 ohms, 4 ohms, 8ohms

It actually turned out that the 4 ohm speaker shown in the middle above worked much better (was much louder and clearer) than the one in the recommended range (right above). Another 4 ohm speaker could have been easily hooked up in parallel to double the volume and increase the resistance to the required amount, but unfortunately the teddy bear that I pulled this speaker from in Wal-Mart was never to be found again (fig. 18). The speaker on the right was pulled from a now completely mutilated Easter bunny (fig. 19).

[image: image14]
Fig. 18: Teddy bear that head the much sought after 4 ohm speaker

[image: image15]
Fig. 19: Tragic worthless slaughter of an Easter bunny
Behaviors:

There are five behaviors or modes that the robot is in at any given time: command-mode, color-tracking mode, motion-detection mode, and obstacle avoidance mode.
The program starts in command mode and returns to command mode at any time that it detects the “command color” (fig. 20). Once the command color is detected, it polls the user to give his command. If the robot recognizes the users command, it performs the action. The commands recognized by R2-D3 are as follows: about-me (left-to-right), master detection (right-to-left), go-to motion detection mode (up-down), go-to obstacle avoidance mode (down-up).
[image: image16.jpg]
Fig. 20: Command gloves with command color (green)

If no command color is detected, R2-D3 goes into color-tracking mode. In this mode it starts following the tracking color, worn by the user as a fluorescent orange leg-band (fig. 21). The robot then tracks this color with its head for five seconds. If the color is still available after five seconds and the object is moving, R2-D3 chases after the color, moving forward as long as the color stays within its camera range. If the color leaves the camera range, the robot turns to the side (left/right) were the last coordinates were obtained. The robot turns 360 in the same direction until the tracking color is found. If the color is still not found, the robot waits a “buffer” time of five seconds until it truly loses track of the color and moves on to the next mode.
[image: image17.jpg]
Fig. 21: Tracking leg-band along with precious versions used as tracking colors

If the tracking color is not detected in color-tracking mode for a sufficient amount of time, R2-D3 moves on to human-detection mode. This mode simply polls its forward and aft motion (pyroelectric) sensors over 100 times for movement and decides if a person is present within its immediate vicinity by choosing the sensor which triggered the most times.
Experimental Layout and Results

Most of the experimentation and measurements that was performed was definitely devoted to the CMUcam. The first problem encountered was choosing an effective tracking and command color. My first idea was using fluorescent leg bands such as that worn by bikers or joggers at night. The color of this material, however, was not particularly unique in the environment when not directly illuminated. I then checked construction orange, and certain shades were in fact very effective in maintaining the Red value in their RGB constant under different lighting conditions, allowing for good tracking under different lighting (the Green and Blue values could be made pretty general since the Red component is so constant). Next, in order allow the user to be able to give the robot a command at any time during the execution of the program, I needed another color that when triggered would ask the user for a hand signal command. This could only be done efficiently with another color since if we used the same color to track for the command, we would not be able to interrupt the flow of normal execution to get a user command. I thought of blue or green since they are the farthest away in the spectrum from orange so as not to be confused it. However, it was said in class that the CMUcam does not track blue very well, so I tried fluorescent green instead. This command color tracks relatively well, but is much more sensitive to the color and intensity of the illuminating light. Since a command color, however, could be given very close to the camera, this proved not to be a big problem, so I used the shown shade of green.

Another variable that needed testing was the tracking-color polling frequency during chasing. The lower the value the less the robot moves before it gets new tracking color coordinates; this is useful if the owner is submitting the robot to many turns and frequent polling of the camera is necessary to keep up with the change in direction. In the other hand, if the owner is moving in a mostly straight path, the time between polling could be less, allowing the robot to move effectively faster.
There is also a tradeoff in the division of the CMUcam range into segments. As more segments are created, the camera has more resolution of were the object is located, but this creates excessive moving of the servo if we try to follow the object for every set of coordinates received and, depending upon the delay set after a servo movement and the speed of the movement to be tracked, the servo may not move at all, or be stuck at a given angle due to overlapping commands being sent before the servo has a chance to execute them.
Conclusion:
R2-D3 was a great learning experience in the field of sensors and actuators. I have
learned a great deal about servos, motors, sensors, and robotic intelligence. R2-D3 was a successful project that has met its objective. Some of the lessons learned in the process of building the robot are summarized below:

1) Adding more sensors, requires more power, so plan out the exact number of devices that you will be using before committing yourself to a given power supply.

2) More batteries makes a robot heavier. Sometimes the solution is not to add more power, but to remove weight from the chassis or increase the motor ratio.

3) Adding more sensors complicates the design and makes the robot run slower (for a single threaded application). Do not make assumptions about the time it takes to get a reading unless you can enforce such assumptions.

4) Slower sensor readings leads to missed sensor readings such as collision or edge-of-world detection

5) Test each sensor or part individually before you perform any kind of integration.

6) Having set functions for each sensor makes the integration process much easier

7) Low battery caused the robot to behave in an unexpected manner
Finally, I would like to say that this project has been one of the most rewarding experiences in my collegiate career. It has given me as a computer scientist an opportunity to be able to, for once, work with my hands and delve much deeper into digital circuits than any other class in the CISE department provides. The experience of setting your own design parameters and working with whatever resources are available to complete the tasks, mirrors much more closely the real world than the vast majority of classes; allowing the IMDL graduate to be uniquely prepared for a career in an Embedded Systems related field.
References:
Fig.6 and Fig.7 were scanned from the Oricom Technologies BOT40-ASY datasheet.

Fig. 10 was downloaded from parallax.com

Appendices/ Program Code:

/**

R2-D2 Main

**/

#include <18F4550.h>

#device adc=8

#include "functions/fuses.h"

#include "functions/globalDefines.h"

#include "functions/stopWatch.h"

#include "functions/trackColor.h"

#include "functions/getColorCoordinates.h"

#include "functions/getSonar.h"

#include "functions/movement.h"

#include "functions/bestPath.h"

#include "functions/ttsSetup.h"

#include "functions/colorTracking.h"

#include "functions/motionDetection.h"

#include "functions/getPattern.h"

#include "functions/getCommand.h"

#include "functions/initialSetup.h"

/*

Go into command mode by green trigger

If no green trigger go into track color mode

If no color trigger go into track motion mode

If no motion go into obstacle avoidance mode

In every function, always check if the higher level functions are available

Each function loops in its state until an external action forces it out of the state

*/

void main()

{

 initialSetup();

 while(1)

 {

 getCommand();

 if(!colorTracking())

 {

 if(!motionDetection())

 {

 bestPath();

 }

 }

 }

}
/***

fuses.h

set of fuses used

***/

#FUSES NOWDT
//No Watch Dog Timer

//#FUSES WDT128
//Watch Dog Timer uses 1:128 Postscale

#FUSES HS
//High speed Osc (> 4mhz)

#FUSES NOPROTECT
//Code not protected from reading

//#FUSES BROWNOUT_NOSL
//Brownout enabled during operation, disabled during SLEEP

#FUSES NOBROWNOUT
//No brownout reset

//#FUSES BORV20
//Brownout reset at 2.0V

#FUSES NOPUT
//No Power Up Timer

#FUSES NOCPD
//No EE protection

#FUSES STVREN
//Stack full/underflow will cause reset

#FUSES NODEBUG
//No Debug mode for ICD

//#FUSES LVP
//Low Voltage Programming on B3(PIC16) or B5(PIC18)

#FUSES NOWRT
//Program memory not write protected

#FUSES NOWRTD
//Data EEPROM not write protected

#FUSES IESO
//Internal External Switch Over mode enabled

#FUSES FCMEN
//Fail-safe clock monitor enabled

//#FUSES PBADEN //PORTB pins are configured as analog input channels on RESET

#FUSES NOWRTC
//configuration not registers write protected

#FUSES NOWRTB
//Boot block not write protected

#FUSES NOEBTR
//Memory not protected from table reads

#FUSES NOEBTRB
//Boot block not protected from table reads

#FUSES NOCPB
//No Boot Block code protection

#FUSES MCLR
//Master Clear pin enabled

#FUSES LPT1OSC
//Timer1 configured for low-power operation

#FUSES NOXINST
//Extended set extension and Indexed Addressing mode disabled (Legacy mode)

#FUSES PLL1
//No PLL PreScaler

#FUSES NOVREGEN
 //USB voltage regulator disabled

//#FUSES EC_IO

 //External clock

#FUSES NOLVP

 //No low voltage prgming, B3(PIC16) or B5(PIC18) used for I/O

#FUSES NOPBADEN
 //PORTB pins are configured as digital I/O on RESET

#FUSES CPUDIV1

 //No System Clock Postscaler

//#fuses XT, PUT, NOLVP, NOWRT
/***

globalDefines.h

set of global definitions and variables used among functions

***/

#use delay(clock=20000000)

#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8, stream=cmu_cam)

#use rs232(baud=2400,parity=N,xmit=PIN_E2,rcv=PIN_C7,bits=8, stream=servo_control)

#use rs232(baud=2400,parity=N,xmit=PIN_C0,rcv=PIN_C7,bits=8, stream=tts)

//#use rs232(baud=2400,parity=N,xmit=PIN_B0,rcv=PIN_C7,bits=8, stream=tts_out)

#include <LCD.C>

#include <math.h>

//Bump Switches

#define left_bump !input(PIN_E0) //input bump switch left

#define right_bump !input(PIN_E1) //input bump switch right

// Motors

#define left_motor 1

#define right_motor 2

#define forward 1

#define backward -1

#define clockwise 1

#define counter_clockwise -1

#define ttsBusy PIN_A0

#define ttsReset PIN_B0

#define pyro1 PIN_A4

#define pyro2 PIN_A5

#define left_forward output_low(PIN_D1); output_high(PIN_D0);

#define left_backward output_high(PIN_D1); output_low(PIN_D0);

#define left_stop output_low(PIN_D1); output_low(PIN_D0);

#define left_brake output_high(PIN_D1); output_high(PIN_D0);

#define right_forward output_high(PIN_D5); output_low(PIN_D4);

#define right_backward output_low(PIN_D5); output_high(PIN_D4);

#define right_stop output_low(PIN_D5); output_low(PIN_D4);

#define right_brake output_high(PIN_D5); output_high(PIN_D4);

#define normal_mode 0

#define obstacle_mode 1

// pixel information

int mx,my,x1,y1,x2,y2,pixels,confidence;

/**

initialSetup()

initialize all start-up commands

**/

void initialSetup()

{

 /* Initial set-up's*/

 setup_adc_ports(NO_ANALOGS|VSS_VDD); //no analog ports needed yet

 setup_adc(ADC_OFF); // analog to digital, ADC is off for now

 setup_psp(PSP_DISABLED);//no PSP communication needed

 setup_spi(FALSE);// no SPI communication needed

 setup_wdt(WDT_OFF); //watchdog timer disabled for now

 setup_comparator(NC_NC_NC_NC);// comparator is off

 setup_vref(FALSE);//no voltage reference

 setup_low_volt_detect(FALSE); // low voltage program off

 setup_oscillator(False);//internal PLL off

 /* setup timers */

 setup_timer_0(RTCC_INTERNAL); // not yet used

 setup_timer_1(T1_INTERNAL|T1_DIV_BY_4); //for ping))) timer

 setup_timer_2(T2_DIV_BY_16,255,1); // setup the PWM period

 setup_timer_3(T3_DISABLED|T3_DIV_BY_1); // not yet used

 /* Do PWM setup */

 setup_ccp1(CCP_PWM);// need to look in datasheets for more details

 setup_ccp2(CCP_PWM); //configure as a PWM

 /* Initialize LCD */

 lcd_init();// initialize LCD

 delay_ms(500); //wait for LCD to init

 printf(LCD_PUTC,"\f"); //clear LCD

 /* Initialize servo commands */

 start_byte = 0x80;

 device = 0x01;

 command = 0x03;

 servo = 0x00;

 /**** Note: Reset line not connected. Controller does not function with reset line connected ****/

 /* Reset servo controller */

 //output_low(pin_A0);//reset servo controller

 //delay_ms(200);

 //output_high(pin_A0);//enable controller

 // setup global stopwatch

 int_count=INTS_PER_SECOND;

 set_timer0(0);

 setup_counters(RTCC_INTERNAL, RTCC_DIV_256 | RTCC_8_BIT);

 enable_interrupts(INT_RTCC);

 enable_interrupts(GLOBAL);

 delay_ms(1); // for some reason this is necessary after setting interrupts

 // set_motor was passing variables incorrectly without this

 // initializing EMIC

 ttsSetup(7,1);

 // set servo head to the middle

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,127); //90

 delay_ms(500);

}

/**

getCommand()

poll user for visual-signal input command

**/

#separate

short getCommand()

{

 printf(LCD_PUTC,"\r ");

 printf(LCD_PUTC,"\fCOMMAND MODE");

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nset command color");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=command mode;");

 delay_ms(1500);

 }

 trackColor(3);

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nget command color");

 getColorCoordinates();

 // while green is detected, try to do command

 // if no green, default to color tracking

 while(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0)

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\ngive command");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=give command;");

 delay_ms(1500);

 }

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nget pattern");

 getPattern();

 getColorCoordinates();

 }

 return true;

}
/**
getPattern()

descripher the pattern sent by the user and execute it

**/

#separate

short getPattern()

{

 int packetNum;

 int packet[100][2];

 int horizontal_lr = 0;

 int horizontal_rl = 0;

 int vertical_ud = 0;

 int vertical_du = 0;

 int oldValue_x=0;

 int oldValue_y=0;

 start = seconds;

 for(packetNum = 0; packetNum<10; packetNum=packetNum+1)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\niteration: %d", packetNum);

 fprintf(cmu_cam,"TC\r"); //track color

 while(getc()!='M');

 mx =getc();

 packet[packetNum][0] = mx;

 my =getc();

 packet[packetNum][1] = my;

 x1 =getc();

 y1 =getc();

 x2 =getc();

 y2 =getc();

 pixels =getc();

 confidence =getc();

 delay_ms(150);

 }

 // populate horizontal and vertical variables

 for(packetNum=0; packetNum<10; packetNum=packetNum+1)

 {

 if(packet[packetNum][0] > oldValue_x)

 {

 horizontal_lr++;

 }

 if(packet[packetNum][0] < oldValue_x)

 {

 horizontal_rl++;

 }

 if(packet[packetNum][1] > oldValue_y)

 {

 vertical_ud++;

 }

 if(packet[packetNum][1] < oldValue_y)

 {

 vertical_du++;

 }

 oldValue_x = packet[packetNum][0];

 oldValue_y = packet[packetNum][1];

 }

 // check the pattern

 // robot information

 if(horizontal_lr >=8)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nabout me");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=about me;");

 delay_ms(1000);

 // give robot information

 fprintf(tts,"say=My name is r2d3, an autonomous human serving robot. Your wish is my command;");

 delay_ms(3000);

 }

 }

 // say if tracking is possible

 else if(horizontal_rl >= 8)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nmaster presence");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=master presence;");

 delay_ms(1500);

 }

 // track following color

 trackColor(1);

 getColorCoordinates();

 // give tracking status

 if(mx == 0 && my==0 && x1==0 && y1==0 && x2==0 && y2==0 && pixels==0 && confidence==0)

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=my master is not here, I serve no purpose;");

 delay_ms(3000);

 }

 }else

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=my master is here, my life has meaning;");

 delay_ms(3000);

 }

 }

 // go back to tracking green (command color)

 trackColor(3);

 }

 // go to motion sensing mode

 else if(vertical_ud >= 8)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nmotion detection");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=motion detection mode;");

 delay_ms(1500);

 }

 motionDetection();

 }

 // go to obstacle avoidance mode

 else if(vertical_du >= 8)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nobstacle avoidance");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=obstacle avoidance mode;");

 delay_ms(2500);

 }

 bestPath();

 }

 horizontal_lr = 0;

 horizontal_rl = 0;

 vertical_ud = 0;

 vertical_du = 0;

 return true;

}

/**

colorTracking()

go into COLOR TRACKING mode

**/

#separate

short colorTracking()

{

 int mx_old;

 int my_old;

 int x1_old;

 int y1_old;

 int x2_old;

 int y2_old;

 int y;

 int turns;

 // global position of head

 y = 127;

 turns = 8;

 printf(LCD_PUTC,"\r ");

 printf(LCD_PUTC,"\fCOLOR TRACKING MODE");

 delay_ms(100);

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=color tracking mode;");

 delay_ms(2000);

 }

 trackColor(1);

 head_tracking:

 getColorCoordinates();

 start = seconds;

 // keep tracking for five seconds even if color is lost

 while(abs(seconds-start)<=5)

 {

 while(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0)

 {

 // guarantee break in five seconds even if color is not lost

 if(abs(seconds-start)>5){break;}

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\n%u,%u,%u,%u,%u,%u,%u,%u",mx,my,x1,y1,x2,y2,pixels,confidence);

 //delay_ms(500);

 if (mx>28 && mx<53)

 {

 // maintain the servo in the current position

 }

 // left quadrant

 else if (mx>=0 && mx<=27)

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nturn left");

 y=y+20;

 if(y<=127)

 {

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,y); // left half

 delay_ms(100);

 }else if(y>=128 && y<=255)

 {

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,1,y%128); // right half

 delay_ms(100);

 }else

 {y=y-20;}

 }

 // right quadrant

 else if(mx>=53 && mx<=80)

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nturn right");

 y=y-20;

 if(y<=127)

 {

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,y); // left half

 delay_ms(200);

 }else if(y>=128 && y<=255)

 {

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,1,y%128); // right half

 delay_ms(200);

 }else

 {y=y+20;}

 }

 getColorCoordinates();

 }

 getColorCoordinates();

 }

 keep_following:

 // save old coordinates

 mx_old = mx;

 my_old = my;

 x1_old = x1;

 y1_old = y1;

 x2_old = x2;

 y2_old = y2;

 // if color coordinates move, start following them; otherwise continue head tracking

 getColorCoordinates();

 if((mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0) &&

 ((((mx-mx_old) <= 3) && ((my-my_old) <= 3)) || (((mx_old-mx) <= 3) && ((my_old-my) <= 3))))

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=master not moving;");

 delay_ms(2000);

 }

 goto head_tracking;

 }

 else if(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0) // move after color

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=following;");

 delay_ms(1000);

 }

 // 0 degrees

 if(y>=0 && y<=31)

 {

 turn(counter_clockwise, 90.0);

 }else if(y>=32 && y<=95)

 {

 turn(counter_clockwise, 45.0);

 }else if(y>=96 && y<=159)

 {

 // maintain body in place

 }else if(y>=160 && y<=223)

 {

 turn(clockwise, 45.0);

 }else if(y>=224 && y<=255)

 {

 turn(clockwise, 90.0);

 }

 // reset head to middle

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,127);

 // while the color is available and moving, keep following

 while((mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0) &&

 ((mx - mx_old > 3 && my-my_old > 3) || (mx_old - mx > 3 && my_old-my > 3)))

 {

 move:

 mx_old = mx;

 my_old = my;

 x1_old = x1;

 y1_old = y1;

 x2_old = x2;

 y2_old = y2;

 move(forward, 500, 0);

 getColorCoordinates();

 }

 // if within range but not moving

 if((mx - mx_old <= 3 && my-my_old <= 3) || (mx_old - mx <= 3 && my_old-my <= 3))

 {

 goto head_tracking;

 }

 // if not seen turn towards the last known coordinate until its seen or 360 degrees without seeing

 while(mx == 0 && my==0 && x1==0 && y1==0 && x2==0 && y2==0 && pixels==0)

 {

 if(mx_old <= 40) // turn left 45 degrees

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=clockwise;");

 delay_ms(1000);

 }

 turn(clockwise, 45.0);

 }else if(mx_old >40) // turn right 45 degrees

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=counter clockwise;");

 delay_ms(1500);

 }

 turn(counter_clockwise, 45.0);

 }

 getColorCoordinates();

 turns--;

 if(turns == 0)

 {

 turns = 8;

 goto color_lost;

 }

 }

 // color regained

 goto move;

 }else // color momentarily lost

 {

 color_lost:

 // five seconds until color is really lost

 start = seconds;

 while(abs(seconds-start) <= 5)

 {

 getColorCoordinates();

 if(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0)

 {

 goto keep_following;

 }

 }

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=color lost;");

 delay_ms(1000);

 }

 }

 // check if command color is available

 trackColor(3);

 getColorCoordinates();

 if(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0)

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\ncommand color seen");

 return true;

 }

 return false;

}

/***

trackColor

set the color constant to perform color tracking on

***/

#separate

short trackColor(int color)

{

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\f before poll mode");

 fprintf(cmu_cam,"PM 1\r"); //poll mode active

 start=seconds;

 while(fgetc(cmu_cam)!=':')

 {

 if((seconds-start)%2 ==0)

 {

 start = seconds;

 fprintf(cmu_cam,"PM 1\r"); //poll mode active

 }

 }

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\f before MM mode");

 fprintf(cmu_cam,"MM 1\r"); //middle mass mode

 start=seconds;

 while(fgetc(cmu_cam)!=':')

 {

 if((seconds-start)%2 ==0)

 {

 start = seconds;

 fprintf(cmu_cam,"MM 1\r"); //middle mass mode

 }

 }

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\f modes set");

 switch (color)

 {

 case 0:

 fprintf(cmu_cam,"TC 150 240 45 175 16 70\r"); // Orange general

 while(fgetc(cmu_cam)!=':');

 break;

 case 1:

 fprintf(cmu_cam,"TC 150 240 45 70 16 16\r"); // Orange specific

 while(fgetc(cmu_cam)!=':');

 break;

 case 2:

 fprintf(cmu_cam,"TC 150 240 35 85 16 20\r"); //Orange old

 while(fgetc(cmu_cam)!=':');

 break;

 case 3:

 fprintf(cmu_cam,"TC 45 120 200 240 45 90\r"); // Green general

 while(fgetc(cmu_cam)!=':');

 break;

 case 4: fprintf(cmu_cam,"TC 45 80 220 240 45 70\r"); // Green specific

 while(fgetc(cmu_cam)!=':');

 break;

 case 5:

 fprintf(cmu_cam,"TC 30 45 30 40 25 35\r"); //Black old

 while(fgetc(cmu_cam)!=':');

 break;

 case 6:

 fprintf(cmu_cam,"TC 200 240 25 60 16 16\r"); //Red Specific

 while(fgetc(cmu_cam)!=':');

 break;

 case 7:

 fprintf(cmu_cam,"TC 150 240 16 100 16 50\r"); //Red General

 while(fgetc(cmu_cam)!=':');

 break;

 case 8:

 fprintf(cmu_cam,"TC 120 170 100 130 15 30\r"); //Yellow

 while(fgetc(cmu_cam)!=':');

 break;

 default:return false;

 break;

 }

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\f before raw mode");

 fprintf(cmu_cam,"RM 3\r"); //raw mode active

 start = seconds;

 while(fgetc(cmu_cam)!=':')

 {

 if((seconds-start)%2 ==0)

 {

 start = seconds;

 fprintf(cmu_cam,"RM 3\r"); //raw mode active

 }

 }

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\f trackColor finished");

 return true;

}

/***

getColorCoordinates()

obtain the coordinates of the center of mass of the tracking object

***/

#separate

short getColorCoordinates()

{

 delay_ms(100);

 fprintf(cmu_cam,"TC\r"); //track color

 while(getc()!='M');

 mx =getc();

 my =getc();

 x1 =getc();

 y1 =getc();

 x2 =getc();

 y2 =getc();

 pixels =getc();

 confidence =getc();

 return true;

}

/***

motionDetection()

go into MOTION DETECTION mode

***/

#separate

short motionDetection()

{

 int pyroCounter;

 int pyro1Count;

 int pyro2Count;

 pyroCounter = 0;

 pyro1Count = 0;

 pyro2Count = 0;

 printf(LCD_PUTC,"\r ");

 printf(LCD_PUTC,"\fMOTION DETECTION MODE");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=motion detection mode;");

 delay_ms(2000);

 }

 for(pyroCounter=0; pyroCounter<100; pyroCounter++)

 {

 if(input(pyro1) == 1)

 {

 pyro1Count++;

 }else if(input(pyro2) == 1)

 {

 pyro2Count++;

 }

 }

 while(pyro1Count!=0 || pyro2Count!=0) // motion is detected

 {

 // check if command color is available

 trackColor(3);

 getColorCoordinates();

 if(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0)

 {

 printf(LCD_PUTC,"\n");

 printf(LCD_PUTC,"\ncommand mode seen");

 return true;

 }

 if((pyro1Count >= pyro2Count) && (input(ttsBusy) == 0))

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC, "\nHuman in front of me");

 fprintf(tts,"say=human in front of me;");

 delay_ms(1500);

 move(forward, 100, 0);

 }else if((pyro2Count > pyro1Count) && (input(ttsBusy) == 0))

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC, "\nHuman behind me");

 fprintf(tts,"say=human behind me;");

 delay_ms(1500);

 turn(clockwise, 130); // 180 hacked

 move(forward, 100, 0);

 }

 // get ready for next iteration

 pyro1Count = 0;

 pyro2Count = 0;

 pyroCounter = 0;

 for(pyroCounter=0; pyroCounter<100; pyroCounter++)

 {

 if(input(pyro1) == 1)

 {

 pyro1Count++;

 }else if(input(pyro2) == 1)

 {

 pyro2Count++;

 }

 }

 } // end while

 // if no motion is detected, go into obstacle detection mode

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC, "\nno human detected");

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=no human detected;");

 delay_ms(2000);

 }

 return false;

}
/**

bestPath()

go into OBSTACLE AVOIDANCE MODE

**/

// sampled distances

float distance_float;

float distance, distance1, distance2, distance3, distance4, distance5;

float distance_sum;

//0->2147..-2147->-1136

float min_distance = 0.0;

float max_distance = 2147.0;

float infinite_distance = -2200.0;

//angle to turn

float angle = 0.0;

int angle_int = 0;

// loop counter

int i;

// servo command variables

int start_byte, device, command, servo, data1, data2;

///* Check 4 potential different directions and choose the most open path */

short bestPath()

{

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=obstacle avoidance mode;");

 delay_ms(1500);

 }

 while(1)

 {

 printf(LCD_PUTC,"\r ");

 printf(LCD_PUTC,"\fOBSTACLE AVOIDANCE MODE");

 // check if command color is available

 //printf(LCD_PUTC,"\fbefore track color");

 trackColor(3);

 //printf(LCD_PUTC,"\fafter track color");

 getColorCoordinates();

 printf(LCD_PUTC,"\fafter color coordinates");

 if(mx != 0 || my!=0 || x1!=0 || y1!=0 || x2!=0 || y2!=0 || pixels!=0 || confidence!=0)

 {

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\ncommand color seen");

 return false;

 }

 //printf("%c%c%c%c%c%c", start_byte, device, command, servo, data1, data2);

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,0); //0

 delay_ms(500);

 distance_sum = 0.0;

 for(i=0; i<3; i++)

 {

 distance_sum += getSonar(distanceSonar);

 }

 distance1 = distance_sum/3.0;

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nDistance1: %g", distance1);

 delay_ms(500);

 if(distance1 < 0.0 && distance1 > infinite_distance)

 {

 infinite_distance = distance1;

 angle = 0.0;

 }else if(distance1 > min_distance)

 {

 min_distance = distance1;

 angle = 0.0;

 }

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,64); //45

 delay_ms(300);

 distance_sum = 0.0;

 for(i=0; i<3; i++)

 {

 distance_sum += getSonar(distanceSonar);

 }

 distance2 = distance_sum/3.0;

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nDistance2: %g", distance2);

 delay_ms(500);

 if(distance2 < 0.0 && distance2 > infinite_distance)

 {

 infinite_distance = distance2;

 angle = 45.0;

 }else if(distance2 > min_distance)

 {

 min_distance = distance2;

 angle = 45.0;

 }

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,127); //90

 delay_ms(300);

 distance_sum = 0.0;

 for(i=0; i<3; i++)

 {

 distance_sum += getSonar(distanceSonar);

 }

 distance3 = distance_sum/3.0;

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nDistance3: %g", distance3);

 delay_ms(500);

 if(distance3 < 0.0 && distance3 > infinite_distance)

 {

 infinite_distance = distance3;

 angle = 90.0;

 }else if(distance3 > min_distance)

 { min_distance = distance3;

 angle = 90.0;

 }

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,1,64); //135

 delay_ms(300);

 distance_sum = 0.0;

 for(i=0; i<3; i++)

 {

 distance_sum += getSonar(distanceSonar);

 }

 distance4 = distance_sum/3.0;

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nDistance4: %g", distance4);

 delay_ms(500);

 if(distance4 < 0.0 && distance4 > infinite_distance)

 {

 infinite_distance = distance4;

 angle = 135.0;

 }else if(distance4 > min_distance)

 { min_distance = distance4;

 angle = 135.0;

 }

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,1,127); //180

 delay_ms(300);

 distance_sum = 0.0;

 for(i=0; i<3; i++)

 {

 distance_sum += getSonar(distanceSonar);

 }

 distance5 = distance_sum/3.0;

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nDistance5: %g", distance1);

 delay_ms(500);

 if(distance5 < 0.0 && distance5 > infinite_distance)

 {

 infinite_distance = distance5;

 angle = 180.0;

 }else if(distance5 > min_distance)

 {

 min_distance = distance5;

 angle = 180.0;

 }

 delay_ms(500);

 printf(LCD_PUTC,"\n ");

 printf(LCD_PUTC,"\nAngle: %g", angle);

 delay_ms(1000);

 if(infinite_distance != -1120.0)

 {

 angle_int = angle;

 switch(angle_int)

 {

 case 0: turn(counter_clockwise, 90.0); break;

 case 45: turn(counter_clockwise, 45.0); break;

 case 90: break;

 case 135: turn(clockwise, 45.0); break;

 case 180: turn(clockwise, 90.0); break;

 default: break;

 }

 delay_ms(100);

 //printf(LCD_PUTC,"\nDistance: %g", abs(infinite_distance/2.0));

 //delay_ms(2000);

 // Reset head to middle

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,127); //90

 move(forward, abs(infinite_distance/2), 1);

 }else

 {

 angle_int = angle;

 switch(angle_int)

 {

 case 0: turn(counter_clockwise, 90.0); break;

 case 45: turn(counter_clockwise, 45.0); break;

 case 90: break;

 case 135: turn(clockwise, 45.0); break;

 case 180: turn(clockwise, 90.0); break;

 default: break;

 }

 //delay_ms(100);

 //printf(LCD_PUTC,"\nDistance: %g", min_distance/2.0);

 //delay_ms(2000);

 // Reset head to middle

 fprintf(servo_control,"%c%c%c%c%c%c",start_byte,device,command,servo,0,127); //90

 move(forward, min_distance/2.0, 1);

 }

 // reset distances and angle

 min_distance = 0.000;

 infinite_distance = -2200.0;

 angle = 0.0;

 } // end while

}

/***

movement.h

the whole set of movement-related functions

***/

void set_duty(int x, int pwm_number)

{

 long duty;

 duty = (.000833 * (x/100.0)) / (16.0 * (1.0/20000000.0));

 if(pwm_number == 1)

 {

 set_pwm1_duty(x);

 }else if(pwm_number == 2)

 {

 set_pwm2_duty(x);

 }else

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nError: Incorrect direction value");

 }

}

void set_motor(int motor, int direction, float x)

{

 long duty;

 duty = (.000833 * (x/100.0)) / (16.0 * (1.0/20000000.0));

 if(motor == 1)

 {

 set_pwm1_duty(duty);

 if(direction == 1)

 {

 left_stop

 delay_ms(1);

 left_forward

 }else if(direction == -1)

 {

 left_stop

 delay_ms(1);

 left_backward

 }else

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nError: Incorrect direction value");

 delay_ms(5000);

 }

 }else if(motor == 2)

 {

 set_pwm2_duty(duty);

 if(direction == 1)

 {

 right_stop

 delay_ms(1);

 right_forward

 }else if(direction == -1)

 {

 right_stop

 delay_ms(1);

 right_backward

 }else

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nError: Incorrect direction value");

 delay_ms(5000);

 }

 }else

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nError: Incorrect motor value");

 delay_ms(5000);

 }

}

void stop_motors(int time)

{

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nstop_motors");

 ////delay_ms(1000);

 // stop the motors "time" seconds for safety

 start = seconds;

 while(abs(seconds-start) <= time)

 {

 left_stop

 right_stop

 }

}

void ramp_up(int direction, float speed)

{

 float counter_float;

 //printf(LCD_PUTC, "\nramp_up");

 ////delay_ms(1000);

 ////printf(LCD_PUTC, "\ndirection: %d", direction);

 for(counter_float=0.0; counter_float<=speed; counter_float = counter_float+1.0)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nIn ramp up");

 if(direction == 1)

 {

 set_motor(1, 1, counter_float);

 set_motor(2, 1, counter_float);

 delay_ms(1);

 }else if(direction == -1)

 {

 set_motor(1, -1, counter_float);

 set_motor(2, -1, counter_float);

 delay_ms(1);

 }

 }

 //delay_ms(1000);

}

void check_bumpers()

{

 ////printf(LCD_PUTC, "\ncheck_bumpers");

 ////delay_ms(1000);

 if(left_bump == 1)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nLeft bumper=1");

 ////delay_ms(1000);

 // stop the motors 1s for safety

 stop_motors(1);

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 60);

 set_motor(right_motor, backward, 60);

 }

 stop_motors(1);

 // turn right for 1s

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, forward, 98);

 set_motor(right_motor, backward, 98);

 }

 stop_motors(1);

 }else if(right_bump == 1)

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nRight bumper=1");

 ////delay_ms(1000);

 stop_motors(1);

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 60);

 set_motor(right_motor, backward, 60);

 }

 stop_motors(1);

 // turn left for 1s

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 98);

 set_motor(right_motor, forward, 98);

 }

 stop_motors(1);

 }else

 {

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nBumpers not triggered");

 }

}

void checkDistanceSonar()

{

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\ncheckDistanceSonar");

 ////delay_ms(1000);

 if(getSonar(distanceSonar) < 200.0) // found immediate obstacle

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=distance sonar triggered;");

 }

 stop_motors(1);

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 60);

 set_motor(right_motor, backward, 60);

 }

 stop_motors(1);

 // turn left for 1s

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 98);

 set_motor(right_motor, forward, 98);

 }

 stop_motors(1);

 }

}

void checkGroundSonar()

{

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\ncheckGroundSonar");

 delay_ms(1000);

 if(getSonar(groundSonar) > 100.0) // found ledge

 {

 if(input(ttsBusy) == 0)

 {

 fprintf(tts,"say=edge of world detected;");

 }

 stop_motors(1);

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 60);

 set_motor(right_motor, backward, 60);

 }

 stop_motors(1);

 // turn left for 1s

 start2 = seconds;

 while(abs(seconds-start2) <= 1)

 {

 set_motor(left_motor, backward, 98);

 set_motor(right_motor, forward, 98);

 }

 stop_motors(1);

 }

}

void move(int direction, float distance, int mode)

{

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nmove: %d", direction);

 ////delay_ms(1000);

 ramp_up(direction, 80.0); ////ramp_up(direction, 75.0); // 0.82 m/sec

 //start = seconds;

 fseconds_start = fseconds;

 while(abs(fseconds-fseconds_start) <= (distance*0.09309268292668))//0.001219512195122))

 {

 if(mode == obstacle_mode)

 {

 check_bumpers();

 checkDistanceSonar();

 checkGroundSonar();

 }

 }

 left_stop

 right_stop

}

void turn(int direction, float degree)

{

 printf(LCD_PUTC, "\n ");

 printf(LCD_PUTC, "\nturn: %d", direction);

 if(direction == -1)

 {

 set_motor(1, -1, 98.0);

 set_motor(2, 1, 98.0);

 delay_ms(1);

 }else if(direction == 1)

 {

 set_motor(1, 1, 98.0);

 set_motor(2, -1, 98.0);

 delay_ms(1);

 }

 //start = seconds;

 fseconds_start = fseconds;

 while(abs(fseconds-fseconds_start) <=degree*0.636133333)//<= degree*0.008333333333333)

 {

 }

 left_stop

 right_stop

 ////printf(LCD_PUTC, "\nturn complete");

 ////delay_ms(1000);

}

/**

getSonar()

trigger sonar and obtain distance info

**/

// Sonar Defines

#define isHigh 1

#define isLow 0

#define ping1 PIN_A1

#define ping2 PIN_A2

#define groundSonar 1

#define distanceSonar 2

float getSonar(int sonarNum)

{

 // sonarNum == 1 -> ground sonar

 if(sonarNum == 1)

 {

 set_timer1(0);

 output_low (ping1); // set current state

 output_high(ping1); // bring high

 delay_us(20); // wait 5 uS

 output_low(ping1); // bring low

 // wait to go high

 while (!input(ping1));

 set_timer1(0); // Start ticking

 // wait to go low

 while(input(ping1));

 }else if(sonarNum == 2)

 {

 set_timer1(0);

 output_low (ping2); // set current state

 output_high(ping2); // bring high

 delay_us(20); // wait 5 uS

 output_low(ping2); // bring low

 // wait to go high

 while (!input(ping2));

 set_timer1(0); // Start ticking

 // wait to go low

 while(input(ping2));

 }

 return get_timer1()/7.5; // 0.2752mm/.8usec = 3.6295 ticks per mm

 // .0344424mm/.1usec (resolution) = 29.034 ticks per mm

 // since we get twice the number of ticks for a given distance we must divide this by 2 = 14.517 ticks

}

/***

clock_isr()

global stopWatch that gives current time to program

***/

// Timer Defines

#define INTS_PER_SECOND 76 // (20000000/(4*256*256))

BYTE seconds; // A running seconds counter

float fseconds = 0; // updates 76.336 times per second

float fseconds_start;

BYTE int_count; // Number of interrupts left before a second has elapsed

BYTE start = 0;

BYTE start2;

#int_rtcc // This function is called every time

void clock_isr() { // the RTCC (timer0) overflows (255->0).

 // For this program this is apx 76 times

 if(--int_count==0) { // per second.

 ++seconds;

 int_count=INTS_PER_SECOND;

 }else

 fseconds = fseconds+1.0; // the fract_sec overflows once every 862 seconds

}

/***

ttsSetup()

initialize EMIC TTS Module

***/

// initialize EMIC module & set volume + pitch

void ttsSetup(int vol, int pitch)

{

 output_low(ttsReset); // hard reset the EMIC module

 delay_ms(200); // wait a minimum of 100uS

 output_high(ttsReset); // float reset output to release

 delay_ms(1000); // wait for EMIC OK response before proceeding

 fprintf(tts,"volume=%d;",vol); // send volume setting

 delay_ms(1000); // wait for EMIC OK response before proceeding

 fprintf(tts,"pitch=%d;",pitch);

 delay_ms(1000);

}

1

0

0

1

1

Color

Range

Follow movement

Follow color (within range)

0

0

1

Movement

Color

Search for color/movement through random movement

Set color for CMU to detect

PAGE
18

[image: image23.jpg][image: image24.jpg][image: image25.jpg][image: image26.jpg][image: image27.jpg]