
TA : Mike Pridgen

Adam Barnett

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

Intelligent Machines Design Lab EEL-5666

SkyRiser
Final Written Report

Jeffery Lettman
4/22/2008

Page | 2

Table of Contents

Abstract ... 2

Introduction... 3

Integrated System ... 3

Mobile Platform .. 3

Actuation ... 5

Sensors .. 6

Behaviors ... 9

Conclusion ... 10

References ... 12

Appendix ... 13

Abstract

 The goal of this project is to bring the time and cost saving advantages of mobile

platforms to the construction site. The design called for a mobile platform capable of locating the

studs on a construction site and securing the sheetrock using anchor screws. To accomplish this

task, the platform will need to be capable of: tracking along walls, raising itself to a number of

vertical heights, and drilling into the wall. For ease of control, the motion will be achieved using

two motors mounted along a central axis. The wheels will be housed inside the platform to make

wall following behaviors easier. The vertical lift will be accomplished using rack and pinion

travel to accomplish forklift type motion. Linear motion required apply pressure to the drill and

drive the drill forward will be accomplished through the use of a screw driven linear actuator.

The robot will use a capacitance stud sensor to detect density differentials in the wall. Sonar

rangefinders will be employed towards the end of achieving wall following behaviors. The value

of a robot capable of meeting the goals laid out in this report would be substantial, allowing

onsite construction projects, like the forty-eight currently in progress on campus, to be completed

at considerable savings to cost and time.

Page | 3

Figure 2.1 : SolidWorks Design Concept

Introduction

 Computer numerically controlled (CNC) machining and stationary robotic arms have

rapidly become staples of the construction and manufacturing industry. However autonomous

tools have yet to become prevalent in this field limiting the ability of robotic agents to assist in

on site assembly. The idea I have for my robotic platform is an autonomous construction stage.

The specific goal of the design is to support building construction crews by anchoring wall

paneling in place. The robot would be able to locate a stud and raise itself to sequentially drill a

number of support screws into the wall.

Integrated System

 The core processing power of my robot is the Atmel AVR MAVRIC-IIB, assembled and

tested, Pin Headers, at a speed of 14.7456 MHz. The microcontroller will control all of the

behaviors that my robot will emulate. The robot also has an LCD screen to display important

status updates, and operational warnings.

Mobile Platform

 The mechanical design needs to allow for easy navigation throughout the environment

and provide the capability to follow walls along the perimeter of rooms. For this reason I believe

that a two wheel platform would be the

best choice. The wheels could be

tucked inside the robot’s frame in order

to provide better wall following

characteristics. The issue with this

design will be the support and pressure

needed to get the screw into the wall.

To resolve this problem the wheels will

be placed perpendicular to the motion

of the screw and brackets will be

angled in place to prevent tipping. Most

importantly, the design will need a

mechanical means of lifting itself to

provide a vertical line of support screws

in the wall. My original plan as illustrated in Figure 2.1 was to use a scissor lift to accomplish

this vertical motion. Unfortunately in testing a build of the lift itself I discovered two design

flaws. The scissor lift assembly, when made out of either metal or plastic, added significant

weight to the lift mechanism. This of course resulted in a much higher torque requirement from

the motor. In addition, using a horizontal drive system to generate the lift meant that for the first

inch of vertical travel the horizontal motor assembly would be pushing directly into the lift, as

illustrated below in Figure 2.2. With one side of the scissor lift necessarily fixed, almost all of

the initial applied force went in to compressing the pin and reaction forces in the fixed point.

Page | 4

Figure 2.2 : Force Diagram

Figure 2.3: Forklift Diagram

While neither of these problems were necessarily deal breakers in and of themselves, in

combination they created serious obstacles. In further researching scissor lifts in an attempt to

overcome these hurdles, I learned that in addition to a horizontal pushing force, many scissor lift

assemblies use pneumatic pistons to overcome this initial stalemate of forces. This solution is

impractical for this small scale robot, so I decided to scrap this lift mechanism and design

another.

The lift mechanism I ended up designing in small scale tests worked like a fork lift. The

rack gears were vertically aligned and the pinions were fixed perpendicular and powered be the

worm gear assembly so that the lift would not slip under heavy loading, nor would the motor be

required to stay on in order to provide breaking power to the assembly. This setup is illustrated in

Figure 2.3.

Success of these small scale tests in generating high torque and

resisting slipping under loading were encouraging enough to

proceed forward with this as the main lift mechanism. I was forced

to scrap the previously t-teched parts of my design at this point to

proceed forward with new materials. This new design was optimal in

that it utilized the same gears I previously ordered for use in the

scissor lift. Rather than balsa wood, this design was built out of

Plexiglas. The robot has 3 levels to provide space for all of the

necessary components. The third level is 10 inches above the base

and serves as a support platform for the worm gear and pinion

assembly as well as a support for the upper end of the forklift

mechanisms travel.

Force Applied

Page | 5

Figure 3.1 : Screw Mechanism

Figure 2.4: Front View Figure 2.5: Top View

Actuation

 In addition to the vertical motion of the mobile platform, the design also requires linear

and rotational motion to drive the anchor screws into the sheetrock. Initially I planned to

accomplish this with two motors for the two types of requisite motion. However, in the redesign

of my platform, space, weight and wire management became more noticeable concerns. For

these reasons I designed a mechanism which, when using self drilling drywall screws, will only

need one motor to provide both these motions. The design as shown in Figure 3.1, uses a moving

lead screw and fixed bolts to combine the motions. The motor is attached to a slide with guide

wheels allowing it to only move in the x-direction along with the progress of the lead screw. The

other end of the screw is fitted with a Philips head bit to drive the anchor screws. This whole

assembly raises and lowers with the forklift. To cut down on the weight that needs to be lifted,

the screws themselves are held in place at the pre-established levels. This feed mechanism is

therefore supported by the frame of the robot and counterbalanced by the lead screw motor. This

is not a particularly fast method, but it is only required that it move through an inch and a half of

travel.

Page | 6

Figure 4.2 : Sonar Layout

Sensors

 One of the first tasks for

this robot upon being introduced

into an environment will be to

find a wall so it can begin

tracking and looking for studs.

 The placement of the

sonar units and the stud sensor on

the robot can be seen in the image

of the robot, Figure 4.1. I am

using the SRF 05 sonar units

which came highly recommended

in class for ease of use. The sonar

units require only four of the pins

for its operation, two for power

one to provide the trigger signal

and one to send the echo data to

the Mavric IIB Board.

These SRF 05 sonar units

are used to provide the mobile

platform with a wall following

behavior. Because of the unique

design of my robot, it will only

need to follow the wall along one

side. The sonar units along this side are arranged as indicated in Figure 4.2. Data returned from

the sensors in this array will allow for the determination of the robots orientation relative to the

wall. If the distance is greater on the front end the far wheel should be activated. The opposite

case is also true.

Bump sensors are used to set the top of the vertical lifts path

of motion as a place to pause and calibrate the readings on the CDS

cells. They are also be used to determine the horizontal progress of

the lead screw. Bump sensors are wired as a normally closed loop

so if either one is depressed it is know that the screw driver

assembly has reached its end of travel. A bump sensor is also used

to extend the stud sensors power switch from the side of the sensor

to the base of the forklifts travel. The bump sensor is soldered onto

the stud sensor bypassing its own power button. When the lift is

returned to its bottom most position the stud sensor is turned on.

Figure 4.1 : Sonar Placement

Page | 7

Over the course of this project I went through three different stud

finders in attempting to determine which would be optimum for use in this

project. The first stud finder I purchased from Home Depot was a Zircon

OneStep StudSensor i65. This stud finder uses capacitance plates to determine

the true center of a stud. The device has Center Vision and is capable of

determining the true sensor of a stud while differentiating it from electrical

lines in the wall. However this sensor was far too sensitive and lost its

calibration easily, even when being operated by hand. Therefore the final stud

sensor used in the project was a more straightforward edge detector from

Zircon, the StudSensor™ Pro SL-AC. The specifications of the Zircon

StudSensor are as follows, as provided by the Zircon website:

Dimensions: 6.07 in. H x 2.70 in. W x 1.18 in. D

 (154mm x 68mm x 30mm)

Weight: 5.7 oz. (1163g) with battery

Battery type: 9-V alkaline (included)

Position accuracy

Wood studs: Stud Scan mode: Typically within

1/8inch (3mm) using the dual scan and mark

procedure; Deep Scan mode: typically within 3/16

inch (5mm) using the dual scan and mark

procedure

Metal studs: Typically within 1/2 inch (13mm)

using the dual scan and mark procedure.

Depth: Up to 3⁄4 inch (19mm) in Stud Scan mode; Up to 1-

1/2 inch (38mm) in Deep Scan mode

AC position accuracy: Typically 90-250 V at 50-60 Hz

within 6 inches (150 mm) of a hot unshielded wire in

drywall.

AC depth: In typical drywall with Romex™

wiring, wires can be detected up

to 2 inches (50 mm) deep

NOTE: Sensing depth and position accuracy can

vary due to moisture content of materials, wall

texture, and paint.

Operating Temperature: 20° to 120°F

Storage Temperature: -20° to 150°F

Humidity 80% RH (noncondensing)

Water Resistance: Splash and water resistant, not

waterproof

Figure 4.3 : Stud Sensor

Page | 8

When the stud is located the sensor uses an LED

light to inform the user of its presence and location.

Bypassing the actual inter calculations of the stud finder, I

use a CDS cell to determine when the LED flashes the

presence of the stud.

I also use CDS cells to determine the vertical

progress of the lift. The CDS cell is affixed to the lift and

blackout bars are affixed to the frame of the robot. By

counting the number of bars that the CDS cell passes under

the vertical progress of the lift can be tracked. The bottom of

the lifts progress, and where all lift progress starts is the base

of the robot. A bright blue LED marks this bottom position

and differentiates this point from the blackout bars above.

To calibrate the robot to different lighting environments I ran an analog CDS test, whose

results are listed in the table below. I was unable to draw any direct correlations between the

numbers in this table so I decided to have the robot calibrate the CDS values to the room each

time it starts up. This process is covered more thoroughly in the behavior section of the report.

Figure 4.4 : CDS Stud Finder Arrangement

Figure 4.5 : CDS Vertical Lift Arrangement

Page | 9

Ambient Light Conditions

Analog Cadmium Sulfide Photo-Resistor Cell Values

Vertical Encoder Status Low Light Medium Light High Light

LED On 8 9 13

Clear 13 15 29

Black Bar 36 49 116

Clear 10 12 26

Black Bar 31 42 112

Clear 10 13 26

Black Bar 36 48 110

Clear 10 13 25

Black Bar 36 48 118

Table 4.1 : CDS Cell Values

0

20

40

60

80

100

120

140

LED Light Dark Light Dark Light Dark Light Dark

Low Light

Medium Light

Bright Light

Chart 4.1 : CDS Cell Values

Page | 10

Behaviors

 In turning the SkyRiser on it begins its initial calibration phase. As mentioned in the

sensor section, changing the light in the room severely affects the accuracy of the lift CDS cell,

making this calibration phase crucial. The lift is raised until the top bump sensor is tripped which

marks a point at which the CDS cell is not covered. An average of the analog values at this

height is determined and stored as the low value. The lift is then lowered until the value is twice

as high as the low value and stops when it again returns to 35% of the low value. This ensures

that it passes under a blackout bar. The highest value along this path of motion is stored as the

high value. These values are then used as benchmarks when the lift goes through its drill pattern.

 The SkyRiser then moves into its wall following behavior, attempting to align itself

parallel to the wall. The robot moves towards the wall at an angle proportional to its distance

from the wall. It does this by driving the outside wheel faster than the wheel close to the wall by

a factor of the forward sonar value divided by the desired distance sonar value. When the robot is

parallel to the wall within a pre selected range of sonar values, the platform stops moving

forward and lowers the lift to turn on the stud sensor, it also stores the values of the forward and

rear sonar units, it performs this only once. These values are then set as the benchmark values

which the robot uses to align itself from the wall. This keeps the unit at the same distance from

the wall as it was when the stud finder was calibrated. This is crucial because if the stud finder

gets any closer to the wall it will register false positive stud findings.

When the stud sensor registers a stud, it bright LED light flashes which the CDS cell

registers as a low value and relays to the Mavric IIB board. The platform then continues to wall

follow until the light again turns off, so that the screw holding palette is aligned with the stud.

SkyRiser then stops and begins its drill pattern.

The lift has two lift patterns which it alternates between. The first pattern drills in the first

and third screws, while the second pattern affixes the second and forth. The lift reaches these

heights by counting the number of blackout bars that the CDS cell passes beneath. When the lift

is at the right height the drill runs until the bump switch is depressed, then backs up until the rear

bump switch is depressed. When the drill pattern is complete, the lift is lowered until the CDS

cell detects the blue LED, the stud sensor is once again turned on, and the values of the forward

and rear sonar pings are once more stored as a reference for wall following. The SkyRiser can

now resume its wall following behavior.

Conclusion

 I believe that the real value of this robotic platform could be truly substantial. The

platform could be set up to run at a site with little or no supervision so that workers could be set

to other tasks, cutting down construction time and eliminating a repetitive and unskilled job.

Onsite construction projects, like the forty-eight currently in progress on campus, could be

completed at considerable savings to cost and time.

Page | 11

Improvements

 While I believe that this robotic platform was a success, given more time on this project I would

make the following improvements.

 A ratchet fixed at the end of the drill so that even if the screw is not countersunk, the screw

will not be pulled back out of the wall.

 A self feeding screw system allowing many more screws to be used and allowing the

platform to run longer.

 The incorporation of an IR module to detect the corner of a wall so that the wall following

pattern could be extended all around the perimeter of a room.

 The inclusion of a motion detector to determine when a person is nearby to improve the

safety of the machine at a construction sight.

 Replacing the gears of the ¼ scale servo motor with metal gears for better strength.

 Smoother wall following behavior through the addition of a better wall following algorithm.

Page | 12

References

In assembling my code, included in the appendix below, I used the sonar and LCD code as

developed by Professor Arroyo and I owe a huge thanks to Adam Barnett for his help with my

servo code.

[1] R. Berendsohn, 7 New Stud Finders Let You See Through Walls, Popular Mechanics,

July 2004.

[2] How Stud Finders Work, www.howstuffworks.com, 2006.

[3] May, Andrew, Final Report: Ant. Intelligent Machine and Design Lab, April 25, 2006.

[4] Ammons, Wiley, Final Report: Zircon. Intelligent Machine and Design Lab, December

4
th
, 2001.

Page | 13

 Appendix

#include <avr/io.h>

#include <avr/interrupt.h>

#include <stdlib.h>

#include <stdio.h>

#include <inttypes.h>

#include <avr/pgmspace.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#define MOTOR_Lift OCR1A //pin5 port B

#define MOTOR_Drill OCR1B //pin6 port B

#define MOTOR_L OCR3A //pin3 port E

#define MOTOR_R OCR3B //pin4 port E

void init_timer();

void motor_move(uint16_t, uint16_t);

void ad_init(void);

void config_adc(void);

int analog(int);

// Bump

#define BUMP PORTG // Bump switches will bo on PORTG

#define BUMP_DDR DDRG

#define BUMP_PIN PING

#define DIR_L PORTE2

#define DIR_R PORTE5

#define MOTOR_L OCR3A //pin3 port E

#define MOTOR_R OCR3B //pin4 port E

/*A-to-D*/

#define DDRAD DDRF

#define PORTAD PORTF

/*Global variables*/

/*Timer*/

volatile uint16_t us_48_count;

volatile uint16_t ms_count;

/*Sonar rangers*/

#define DDRSRF DDRD

#define PORTSRF PORTA

#define PINSRF PINA

#define L_TRIGGER 0x02

#define L_ECHO 0x01

#define R_TRIGGER 0x10

#define R_ECHO 0x08

/*LCD Panel*/

void lcd_delay(); // short delay (50000 clocks)

void lcd_init(); // sets lcd in 4 bit mode, 2-line mode, with cursor on and set to blink

void lcd_cmd(); // use to send commands to lcd

void lcd_disp(); // use to display text on lcd

void lcd_clear(); // use to clear LCD and return cursor to home position

void lcd_row(int row); // use to put the LCD at the desired row

Page | 14

/*Delay functions*/

void us_48_sleep(uint16_t us_48)

{

TCNT0 = 0;

us_48_count = 0;

while (us_48_count != us_48) // Each loop takes 48 us NOT 1 us,

 //based on the 128 divisor I set in prescalers in function declared

 //timer_init()

;

}

void ms_sleep(uint16_t ms)

{

TCNT0 = 0;

ms_count = 0;

while (ms_count != ms*21) // Each while loop takes 48 us, but

;

}

/*A-to-D functions*/

void config_adc(void)

{

 DDRF = 0b00000000; // set port F to all input

 // Note: when JTAGEN fuse is set, F4 - F7 don't work

 PORTF = 0x00; // make sure pull up resistor is not enabled

 ADMUX = 0b01000000; // 5V reference, select channel0 (pin F0)

 ADCSRA |= 0b10000111; // turn on ADC, don't start conversions

 // free funning

 // divide clock by 128

}

int analog(int analogch)

{

 int anval;

 ADMUX = 0b01000000|analogch;

 // Start AD conversion.

 ADCSRA |= (1 << ADSC);

 // Wait for ADC conversion to complete.

 while (ADCSRA & (1 << ADSC));

 anval = ADCL | (ADCH << 8); //place ACD value into one variable

 return anval;

}

uint16_t ad_readn(uint8_t channel, uint8_t n)

{

uint16_t t;

uint8_t i;

t = analog(channel); // Dummy read

/*Sample selected channel n times, take the average*/

t = 0;

for (i=0; i<n; i++)

{

lcd_delay();

t += analog(channel);

Page | 15

}

/*Return the average of n samples*/

return t / n;

}

// initialize PWM timer

void init_timer()

{

 //initializes motors, enable OC3A, B, and C

 DDRE = 0xFF ; //PORT E out

 //DDR_OC3A = 0b1;

 //DDR_OC3B = 0b1;

 TCCR3A = 0xA8; //10101000 clear OCA,B,C on campare match- non-inv PWM

 TCCR3B = 0x12; //00010010 mode 8 - PWM phase/freq correct, clk(io)/8

 ICR3 = 18432; //PWM = 50hz. 1/(14.7456 MHz/8)*2*18432 = 1/50

 TCNT3 = 0x00; //

 MOTOR_L = 0; //not moving

 MOTOR_R = 0;

 MOTOR_Lift=0;

 //PORTE = 0x0;

 DDRB = 0xFF ; //PORT B out

 //DDR_OC3A = 0b1;

 //DDR_OC3B = 0b1;

 TCCR1A = 0xA8; //10101000 clear OCA,B,C on campare match- non-inv PWM

 TCCR1B = 0x12; //00010010 mode 8 - PWM phase/freq correct, clk(io)/8

 ICR1 = 18432; //PWM = 50hz. 1/(14.7456 MHz/8)*2*18432 = 1/50

 TCNT1 = 0x00; //

 MOTOR_Lift = 0; //not moving

 MOTOR_Drill = 0;

}

void motor_move(uint16_t speed_R, uint16_t speed_L)

{

 int increment_L = 0;

 int increment_R = 0;

 if(MOTOR_L > speed_L)

 {

 increment_L = -1;

 }

 else if (MOTOR_L < speed_L)

 {

 increment_L = 1;

 }

 else

 {

 increment_L = 0;

 }

Page | 16

 if(MOTOR_R > speed_R)

 {

 increment_R = -1;

 }

 else if (MOTOR_R < speed_R)

 {

 increment_R = 1;

 }

 else

 {

 increment_R = 0;

 }

 while (MOTOR_L != speed_L || MOTOR_R != speed_R) // if either motor does not equal speed, run this loop

 {

 if (MOTOR_L != speed_L)

 {

 MOTOR_L = MOTOR_L + increment_L;

 }

 if (MOTOR_R != speed_R)

 {

 MOTOR_R =MOTOR_R + increment_R;

 }

 //lcd_cmd(0x01); // clrscn rtn home

 //lcd_int(MOTOR_L);

 }

}

void special_motor_move(uint16_t speed_Lift, uint16_t speed_Drill)

{

 int increment_Lift = 0;

 int increment_Drill = 0;

 if(MOTOR_Lift > speed_Lift)

 {

 increment_Lift = -1;

 }

 else if (MOTOR_Lift < speed_Lift)

 {

 increment_Lift = 1;

 }

 else

 {

 increment_Lift = 0;

 }

 if(MOTOR_Drill > speed_Drill)

 {

 increment_Drill = -1;

 }

 else if (MOTOR_Drill < speed_Drill)

 {

 increment_Drill = 1;

 }

 else

 {

Page | 17

 increment_Drill = 0;

 }

 while (MOTOR_Lift != speed_Lift || MOTOR_Drill != speed_Drill) // if either motor does not equal speed, run this

loop

 {

 if (MOTOR_Lift != speed_Lift)

 {

 MOTOR_Lift = MOTOR_Lift + increment_Lift;

 }

 if (MOTOR_Drill != speed_Drill)

 {

 MOTOR_Drill =MOTOR_Drill + increment_Drill;

 }

 //lcd_cmd(0x01); // clrscn rtn home

 //lcd_int(MOTOR_L);

 }

}

void stop(void)

{

motor_move(1398,1398);

}

void forward(int speed)

{

motor_move(1400+speed, 1400-(speed*1.23)); // Servos have to correct drift

 //(Hence, the "...*0.91")

}

void R_turn(int speed)

{

motor_move(1400-speed, 1400-(speed*1.23));

}

void L_turn(int speed)

{

motor_move(1400+speed, 1400+(speed*1.23));

}

void reverse(int speed)

{

motor_move(1400-speed, 1400+(speed*1.23));

}

void softR_turn(int speed)

{

motor_move(1400+(speed*1.7), 1400-(speed*1.23));

}

void softL_turn(int speed)

{

motor_move(1400+speed, 1400-(speed*1.5*1.23));

}

void slightR_turn(int speed)

{

Page | 18

motor_move(1400+(speed*1.5), 1400-(speed*1.23));

}

void slightL_turn(int speed)

{

motor_move(1400+(speed*1.2), 1400-(speed*1.23));

}

void variableR_turn(int speed, double ratio)

{

motor_move(1400+(speed*ratio), 1400-(1.1*speed));

}

void lift_up(int speed)

{

special_motor_move(1435+speed,1400);

}

void lift_down(int speed)

{

special_motor_move(1435-speed,1400);

}

void drill_in(int speed)

{

special_motor_move(1435, 1400+speed);

}

void drill_out(int speed)

{

special_motor_move(1435, 1400-speed);

}

void stop_special()

{

special_motor_move(1435, 1400);

}

void lcd_delay() // delay for 10000 clock cycles

{

 long int ms_count = 0;

 while (ms_count < 500)

 {

 ms_count = ms_count + 1;

 }

}

void lcd_cmd(unsigned int myData)

{

 unsigned int temp_data = 0;

 temp_data = (myData | 0b00000100);

 temp_data = (temp_data & 0b11110100);

 PORTC = temp_data;

 lcd_delay();

 PORTC = (temp_data & 0b11110000);

Page | 19

 temp_data = (myData << 4);

 temp_data = (temp_data & 0b11110100); // temp_data now contains the original

 temp_data = (temp_data | 0b00000100); // lower nibble plus high clock signal

 PORTC = temp_data; // write the data to PortC

 lcd_delay();

 PORTC = (temp_data & 0b11110000); // re-write the data to PortC with the clock signal low (thus creating the falling edge)

 lcd_delay();

}

void lcd_disp(unsigned int disp)

{

 unsigned int temp_data = 0;

 temp_data = (disp & 0b11110000);

 temp_data = (temp_data | 0b00000101);

 PORTC = temp_data;

 lcd_delay();

 PORTC = (temp_data & 0b11110001);

 lcd_delay(); // upper nibble

 temp_data = (disp << 4);

 temp_data = (temp_data & 0b11110000);

 temp_data = (temp_data | 0b00000101);

 PORTC = temp_data;

 lcd_delay();

 PORTC = (temp_data & 0b11110001);

 lcd_delay(); // lower nibble

}

void lcd_init()

{

 lcd_cmd(0x33); // writing 0x33 followed by

 lcd_cmd(0x32); // 0x32 puts the LCD in 4-bit mode

 lcd_cmd(0x28); // writing 0x28 puts the LCD in 2-line mode

 lcd_cmd(0x0F); // writing 0x0F turns the display on, curson on, and puts the cursor in blink mode

 lcd_cmd(0x01); // writing 0x01 clears the LCD and sets the cursor to the home (top left) position

 //LCD is on... ready to write

}

void lcd_string(char *a)

{

 while (*a != 0)

 {

 lcd_disp((unsigned int) *a); // display the character that our pointer (a) is pointing to

 a++; // increment a

Page | 20

 }

 return;

}

void lcd_int(int value)

{

 int temp_val;

 int x = 10000; // since integers only go up to 32768, we only need to worry about

 // numbers containing at most a ten-thousands place

 while (value / x == 0) // the purpose of this loop is to find out the largest position (in decimal)

 { // that our integer contains. As soon as we get a non-zero value, we know

 x/=10; // how many positions there are int the int and x will be properly initialized to the largest

 } // power of 10 that will return a non-zero value when our integer is divided by x.

 if (value==0) lcd_disp(0x30);

 else while (x >= 1) // this loop is where the printing to the LCD takes place. First, we divide

 { // our integer by x (properly initialized by the last loop) and store it in

 temp_val = value / x; // a temporary variable so our original value is preserved.Next we subtract the

 value -= temp_val * x; // temp. variable times x from our original value. This will "pull" off the most

 lcd_disp(temp_val+ 0x30); // significant digit from our original integer but leave all the remaining digits alone.

 // After this, we add a hex 30 to our temp. variable because ASCII values for integers

 x /= 10; // 0 through 9 correspond to hex numbers 30 through 39. We then send this value to the

 } // LCD (which understands ASCII). Finally, we divide x by 10 and repeat the process

 // until we get a zero value (note: since our value is an integer, any decimal value

 return; // less than 1 will be truncated to a 0)

}

void lcd_clear() // this function clears the LCD and sets the cursor to the home (upper left) position

{

 lcd_cmd(0x01);

 return;

}

void lcd_row(int row) // this function moves the cursor to the beginning of the specified row without changing

{ // any of the current text on the LCD.

 switch(row)

 {

 case 0: lcd_cmd(0x02);

 case 1: lcd_cmd(0xC0);

 }

 return;

}

int get_lSonar()

{

 int n = 0;

 PORTA = (PINA & 0x7F); // these two lines create a rising edge

Page | 21

 PORTA = (PINA | 0x80); // on PortA pin 7

 //lcd_clear();

 //lcd_string("rising edge done");

 while (n < 1)

 {

 //waste enough clock cycles for at least 10us to pass

 n += 1;

 n++;

 lcd_clear();

 lcd_int(n);

 }

 PORTA = (PINA & 0x7F); // force PortA pin 7 low to create a falling edge

 // this sends out the trigger

 while (!(PINA & 0x01))

 {

 // do nothing as long as echo line is low

 }

 n = 0; //re-use our dummy variable for counting

 while (PINA & 0x01)

 {

 n += 1; // add 1 to n as long as PortA pin 0 is high

 }

 //when we get here, the falling edge has occured

 return n;

}

int get_rSonar()

{

 int n = 0;

 PORTD = (PIND & 0x7F); // these two lines create a rising edge

 PORTD = (PIND | 0x80); // on PortA pin 7

 //lcd_clear();

 //lcd_string("rising edge done");

 while (n < 1)

 {

 //waste enough clock cycles for at least 10us to pass

 n += 1;

 n++;

 lcd_clear();

 lcd_int(n);

 }

 PORTD = (PIND & 0x7F); // force PortA pin 7 low to create a falling edge

 // this sends out the trigger

 while (!(PIND & 0x01))

 {

 // do nothing as long as echo line is low

 }

Page | 22

 n = 0; //re-use our dummy variable for counting

 while (PIND & 0x01)

 {

 n += 1; // add 1 to n as long as PortA pin 0 is high

 }

 //when we get here, the falling edge has occured

 return n;

}

int main (void)

{

 int anval=177, anch=0;

 int analogLow = 0;

 int analogHigh = 1023;

 int anRval=1023;

 int counter= 0;

 int zircon_cds = 0;

 int lift_cds = 0;

 int lift_counter = 0;

 int pattern = 1;

 int lift_light=0;

 int lift_dark=0;

 int temp;

 BUMP_DDR= 0x00; // Set bump switches to inputs

 BUMP = 0xFF; // Enables internal pull up resistors of port

 config_adc(); // setup ADC converter

 anval=analog(anch);

 analogLow = ADCL; // read ACD low register

 analogHigh = ADCH; // read ACD high register

 anRval = analogLow | (analogHigh << 8); //place

 DDRC = 0xFF; // set portC to output (could also use DDRC = 0b11111111)

 lcd_init(); // set lcd in 4 bit mode, 2-line mode, with cursor on and set to blink

 temp = PINB; // read portB, store value to temp

 PORTB = !(temp);

 long l_SonarVal = 0; long r_SonarVal = 0; long i = 0; double ratio=0;

 lcd_string("SkyRiser"); // if your LCD is wired up correctly, you will see this text

 // on it when you power up your Micro-controller board.

 for (i = 0; i < 1000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 lcd_clear();

 lcd_string("Mobile Construction");

Page | 23

 for (i = 0; i < 1000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 init_timer();

 anval=analog(anch);

 analogLow = ADCL; // read ACD low register

 analogHigh = ADCH; // read ACD high register

 anRval = analogLow | (analogHigh << 8); //place ACD value into one variable

 while((BUMP_PIN & 0x01) == 1)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_in(300);

 }

 while((BUMP_PIN & 0x01) == 0)

 {

 drill_out(100);

 }

 drill_out(300);

 for (i = 0; i < 500; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 stop_special();

 temp = PINB; // read portB, store value to temp

 PORTB = !(temp);

 int timer=0;

 while(timer <1)

 {

 if((BUMP_PIN & 0x01) == 0 || (BUMP_PIN & 0x02) == 0 || (BUMP_PIN & 0x04) == 0)

 {

 timer=1;

 }

 lift_up(400);

 }

 stop_special();

 lcd_clear();

 lcd_string("Calibrating Sequence"); // Initial Calibration Sequence

 lift_light = ad_readn(1,50);

 for (i = 0; i < 200; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 lcd_clear();

 lcd_string("Open Light= ");

 lcd_int(lift_light);

 for (i = 0; i < 1000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 lift_cds=ad_readn(1,15);

Page | 24

 int darkest = 0;

 while(lift_cds<(lift_light*2))

 {

 lift_down(400);

 if(darkest<lift_cds)

 {

 darkest = lift_cds;

 }

 lift_cds=ad_readn(1,15);

 }

 while(lift_cds>(lift_light*1.35))

 {

 lift_down(400);

 if(darkest<lift_cds)

 {

 darkest = lift_cds;

 }

 lift_cds=ad_readn(1,15);

 }

 lift_dark=darkest;

 stop_special();

 lcd_clear();

 lcd_string("Calibrating Dark");

 for (i = 0; i < 1000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 lcd_clear();

 lcd_string("Closed = ");

 lcd_int(lift_dark);

 for (i = 0; i < 1000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 lift_cds = ad_readn(1,10);

 while (lift_cds < 15)

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 int r_sonarset=185;

 int l_sonarset=190;

 while(1)

 {

 anval=analog(0);

 analogLow = ADCL; // read ACD low register

 analogHigh = ADCH; // read ACD high register

 anRval = analogLow | (analogHigh << 8); //place ACD value into one variable

Page | 25

 zircon_cds = ad_readn(0,15);

 lift_cds = ad_readn(1,15);

 l_SonarVal = get_lSonar();

 r_SonarVal = get_rSonar();

 ratio = l_SonarVal/200;

 if(zircon_cds < 20) // Stud is located

 {

 stop_special();

 stop();

 lcd_clear();

 lcd_string("Stopping");

 while (zircon_cds < 20) // Moves past the stud

 {

 l_SonarVal = get_lSonar();

 forward(20);

 for (i = 0; i < 1; i++)

 {

 lcd_delay();

 }

 if(l_SonarVal < (l_sonarset+5))

 {

 softL_turn(20);

 for (i = 0; i < 1; i++)

 {

 lcd_delay();

 }

 }

 zircon_cds = ad_readn(0,25);

 }

 forward(30);

 for (i = 0; i < 750; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 stop();

 lift_cds = 0;

 if(pattern ==2) //Begins drill pattern cycle

 {

 lift_counter = 0;

 while(lift_counter < 2)

 {

 while(lift_cds < (lift_dark/1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 while(lift_cds > (lift_light*1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

Page | 26

 while(lift_cds < (lift_dark/1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 while((BUMP_PIN & 0x01) == 1)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_out(300);

 }

 while((BUMP_PIN & 0x01) == 0)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_in(300);

 }

 drill_in(300);

 for (i = 0; i < 500; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 stop_special();

 while((BUMP_PIN & 0x01) == 1)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_in(300);

 }

 while((BUMP_PIN & 0x01) == 0)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_out(300);

 }

 drill_out(300);

 for (i = 0; i < 500; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 if (lift_counter == 0)

 {

 while(lift_cds > (lift_light*1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 }

 lift_counter++;

 }

 pattern = 1;

 }

 else if(pattern ==1)

 {

 lift_counter = 0;

 while(lift_counter < 2)

 {

 while(lift_cds < (lift_dark/1.41))

Page | 27

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 while((BUMP_PIN & 0x01) == 1)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_out(300);

 }

 while((BUMP_PIN & 0x01) == 0)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_in(300);

 }

 drill_in(300);

 for (i = 0; i < 500; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 stop_special();

 while((BUMP_PIN & 0x01) == 1)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_in(300);

 }

 while((BUMP_PIN & 0x01) == 0)

 {

 lcd_clear();

 lcd_string("Drilling");

 drill_out(300);

 }

 drill_out(300);

 for (i = 0; i < 500; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 if (lift_counter == 0)

 {

 while(lift_cds > (lift_light*1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 while(lift_cds < (lift_dark/1.41))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 while(lift_cds > (lift_light*1.2))

 {

 lift_up(400);

 lift_cds = ad_readn(1,15);

 }

 }

 lift_counter++;

 }

 pattern = 2;

Page | 28

 }

 lcd_clear();

 lcd_string("Resetting");

 while(lift_cds>11)

 {

 lift_down(400);

 lift_cds = ad_readn(1,15);

 }

 stop_special();

 lcd_clear();

 lcd_string("Calibrating...");

 r_sonarset= get_rSonar();

 l_sonarset=get_lSonar();

 for (i = 0; i < 2000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

 else //wall following behavior

 {

 stop_special();

 ratio = l_SonarVal/(l_sonarset);

 if(counter == 0)

 {

 if(l_SonarVal >= 185 && r_SonarVal >=185 && l_SonarVal < 210 && r_SonarVal <210) //one time

calibration

 {

 stop();

 lift_cds = ad_readn(1,9);

 lcd_clear();

 lcd_string("Lowering");

 lift_cds = ad_readn(1,15);

 while (lift_cds > 11)

 {

 lift_down(400);

 lift_cds = ad_readn(1,15);

 }

 stop_special();

 lcd_clear();

 r_sonarset=r_SonarVal;

 l_sonarset=l_SonarVal;

 lcd_string("Calibrating...");

 for (i = 0; i < 2000; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 counter++;

 }

 }

 if (l_SonarVal == (l_sonarset) && r_SonarVal == (r_sonarset))

 {

 forward(35);

Page | 29

 lcd_clear();

 lcd_string("perfect");

 for (i = 0; i < 1; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

else if(l_SonarVal <= 700 && r_SonarVal <= 700 && l_SonarVal >= (l_sonarset+2) && r_SonarVal >=

(r_sonarset+2))

 {

 variableR_turn(15,ratio/2);

 lcd_clear();

 lcd_string("Clear");

 for (i = 0; i < 1; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

 else if(l_SonarVal < (l_sonarset))

 {

 softL_turn(10);

 lcd_clear();

 lcd_string("Wall here");

 for (i = 0; i < 1; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

 else if (l_SonarVal >=l_sonarset && r_SonarVal <=r_sonarset)

 {

 softR_turn(15);

 for (i = 0; i < 1; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

 else

 {

 forward(10);

 for (i = 0; i < 1; i++)

 {

 lcd_delay(); //delay to read LCD (humans reading)

 }

 }

 }

 }

}

