uBot

Written Report

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Instructors: Dr. A. Antonio Arroyo
Dr. Eric Schwartz

TAs: Mike Pridgen
Adam Barnett
Sara Keen

Orlando Misas
4/22/08
UFID:8219-3161

pBot 1 Misas

Table of Contents

LI 10 (o) O] 41 (=] SRS PSR 2
(IS A0 T U =SSP 3
LISE OF TADIES ..ottt 3
N oL = Tod TSRS 4
EXECULIVE SUMMAIY ...ttt bbbttt bbbt 4
o100 [0 od 1o} o OSSPSR S 5
L@ o =101 1SS 5

B I =T Y2 OSSR RPSURSP 5
(000 01 (=] | SO PR T PP URTUPP PSPPI 5
INTEGIATEA SYSTEIM.....oiiitiiiieiei et bbbttt n e 6
MODIIE PLALTOIM ...ttt 7
ACTUBLION ...t b e bbbttt e et bbbt et e neen et e b e b e 8
SBINISONS ..ttt ettt ettt ekttt ekttt ekt e oAb e e R e e R b £ e R Rt oAb e e R Rt e RE e e eRE e e AR e e ebe e e b e e nhreenreeannean 8
TR SISO ...ttt ettt ettt bt ekttt e shb e b e e bb e et e nre e e beenree s 8

N ol0] oL PP RPPRRPPPR 8
ODJECLIVE ...ttt te et et e et e e te e e reenreaneenreans 9
REMAIKS. ...ttt r e e 9
AST0] T | TSRO PRTRTOPRURPRY 10

S od0] o[PSP R UPPTOUPRRPPPRRPPN 10

(@ 0T =To1 11 SRS 10
REMAIKS. ... ettt bbb e nreas 10
SPECIAI SENSOT ...ttt bbb 11

S ol0] oL PSP P R UPPTOPPRRPPPRRPPN 11

(@ 0T =To1 11 SRS 11
REMAIKS. ...ttt bbb e nreas 12

22 (Y7 o] £ USRS 12
ODStACIE AVOIJANCE.......cueiiieiiiie ettt 12
Wl FOIHOWING ...t te e este e e 12
Experimental Layout and RESUILSccveiiiiiiieieee e 12
MICIOPNONE DALAceeiviiiiiiieiieie e bbbt 12

pBot 2 Misas

CONCIUSTION <. 15

Appendix and DOCUMENTALIONciiiiiiiieie et 16
Microphone UNit’s BIOCKScccuoiieiiiiiiicc e 16
POWET SUPPIY ..ottt re e re e sae e teeneenreas 16
LOW PSS FIITET ...t ae e 16
AMPIITIEE <. b et 17
IMHCTOCONTIOIIEY ...t 17
RETEIEBNCES ...ttt ettt e e be e 17
L0000 [PPSR 18
(0] 10 | B o PSSR SRR 18

A Tot 0] o] 0T] 1= N o USSR 32

List of Figures

Figure 1: MICrophone UNit........ccveiioiiic et 6
Figure 2: Block Diagram for RODOL............cccovviiiiiii e 6
Figure 3: Front and Top views of platform............ccooiiiiniii 7
Figure 4: Block Diagram for Microphone Unit...........ccoceieiininineninineee e 7
Lo U oo T g U o TN | SR 1
Figure 6: Analog Output VVoltage vs. Distance to Reflective Object.........c.cccccecvvvveinenenne. 9
Figure 7: Ultrasonic RaNge FINGEr.........c.oiiiiiiiiiie e 1
Figure 8: Beam Angle vs. Sensitivity of SONar SENSOT..........ccocviiviiieiieieiencse e 10
FIgUre 9: MICTOPNONE ..ot enes 1
Figure 10: EXamMPle OF FFT ..o 11
Figure 11: Histogram of Frequency ANAlYSIS........ccooiiiiiieiiiieiiee e 13
Figure 12: Circuit Diagram of POWEr SUPPIYcoviiiiiiiiiiiciee s 16
Figure 13: Circuit Diagram for LOw Pass Filter..........ccccovviieiiiii i 16
Figure 14: Circuit Diagram for Two-Stage AmMpPlifier.........cccoooooveiiiiiici e 17

List of Tables

Table 1: Table of Results for Frequency ANAlySIS...........ccoieiiiieiieeiiiie e 14
Table 2: Frequency Analysis Results for RUnNNiNg SUMc.ccvviviiiiienienn e 15

pBot 3 Misas

Abstract

The purpose of this project is to create an autonomous robot that is able to
follow verbal commands from humans. The command alternatives will be stored
in the robot and then compared against an input. The person controlling the robot
will speak into a separate unit that will decode and translate the instruction. The
unit will then send a short signal to the robot which will follow the command as
long it is within "logic.” For example the robot will ignore any instruction that goes
against its sensor readings, in order to avoid foreseeable damages.

The microphone unit will use fast Fourier transform to translate voice input
into frequency domain. The prevalent frequencies will then be compared to
stored quantities to decode the instruction. Instead of sending large data packets,
small instructions can be sent, which will reduce the time the robot has to
sacrifice to interpret the command. The possible instructions will be consist of
only one word and they will allow the user to cycle through the robot’s behaviors.
The robot will have two main behaviors, wall-following and obstacle avoidance,
as well as an auxiliary behavior. The third mode will allow the user to give simple
instructions to the robot, and the robot will respond if the environment permit’s
the command.

Executive Summary

The pBot is an autonomous agent that is able to respond to verbal
commands from the user. The commands are used strictly to switch between
behaviors not to command the robot step by step. The robot is able to perform
obstacle avoidance, wall following and some basic behaviors to show
functionality. The extra commands include moving forward , rotating right,
rotating left and stopping; the first three of these is performed for a random
amount of time between one and six seconds.

The system itself is separated into two independent blocks, the
microphone unit and the platform. The microphone unit is responsible for
acquiring and decoding of the audio signal. It also performs a Fourier transform
on the audio data in order to match the analyzed signal with saved values. The
unit then sends a simple command to the platform specifying which behavior to
use.

The platform is a simple design with two wheels and a caster. Movement
is achieved with two low voltage DC motors, which is controlled with a motor
controller that is rated to provide the power required by the motors. The platform
carries multiple IR and Sonar sensors to assist it with its different behaviors.
There is also a LCD screen mounted on the platform to allow the debugging of
the unit. The platform has two power supplies in order to provide low, 2.4 Volts of
power to the motors and a considerably higher 5 Volts to the digital circuits.

Communication between the two units is done by sending a fifty percent
duty cycle square wave from the microphone unit to the platform and depending
on its period or frequency the platform identifies the command and changes the

pBot 4 Misas

behavior of the platform. Behaviors are programmed to work for the duration of
one time step, not considering past values this allows easy switching between
behaviors. The main program of the platform includes an infinite loop that checks
the communication line and depending on a global value initiates one step of the
desired behaviors.

Introduction
Objective

The objective of this project is to create an autonomous robot capable of
following different behaviors of moderate difficulty. The robot must have the
ability of accepting verbal commands and follow previously programmed
instructions. The commands must be used to illustrate both complex and simple
functions from changing behavior to changing the primary direction of movement.
In order to provide autonomous functions the robot will be equipped with various
sensors such as sonar and IR. The robot will also have to be able to override
instructions depending on sensor readings. The greatest challenge will be
successfully implementing the algorithm to distinguish different verbal
commands.

Theory

The principal idea behind differentiating the commands is the Fourier
transform. As Lathi describes it, the Fourier analysis is the frequency domain
representation of a signal in the time domain. Furthermore FFT (fast Fourier
transform) will be used to carry out the conversion in a reasonable time. The FFT
is a variation of DFT (discrete Fourier transform) developed by J.W. Cooley and
John Tukey in 1965. Just as the DFT, it allows the calculation of a frequency
domain representation of a signal from a discrete time domain form but it does so
using less computations. In the worst case the DFT performs N? computations, or
O(N?), whereas the FFT will perform the task in N log N computations or O(N log
N). FFT breaks down a DFT using recursion and uses the divide-and-conquer
algorithm to solve the problem.

Content

The paper will present the system design of the platform and the
microphone unit. It will discuss the physical design of the platform, at this point
the actuation will be explained in detail. Next are the sensor description and its
particular uses. The “Sensors” section also includes a detailed view of how the
microphone unit works. The paper then discusses the programmed behaviors.
The experimental data is explained after the behaviors. And finally the paper
presents the conclusions and appendices.

pBot 5 Misas

Integrated System

The robot will have two components the microphone unit which will serve
to decode verbal instructions and the platform which will serve as an autonomous
robot. Each unit has a microcontroller and they are connected via RF link. Two
way communication through the RF link is not essential because | will assume
that the user is in range to see visual signals coming from the platform.

The microphone unit is composed of a microphone, a filter, an amplifier,
the microcontroller and a transmitter. The microphone receives voice input and
converts it into an electrical wave which then goes through a band pass filter
which filters frequencies below 300 Hz and above 3 kHz which is approximately
the range of human voice. The signal is amplified after leaving the filter in order
to produce a more reliable set of A/D conversions. The microcontroller then
samples and processes the incoming signal and transmits an instruction via the
RF transmitter.

Figure 1: Microphone Unit

The following is a block diagram of the platform.

Sensors »> » Displays

RF MCU

Receiver i * H-Bridge [* Battery
IMotors

Figure 2: Block Diagram for Robot

uBot 6 Misas

The platform is composed of a receiver, multiple sensors, displays, a
motor controller, a motor and a microcontroller. The robot itself will be controlled
through the microcontroller which will send signals to the motor controller in order
to control the motors. The microcontroller will respond the sensor readings to
follow set behaviors. The microcontroller will also use a LCD along with an array
of LED’s to warn the user about its current mode of operation, errors, and
direction. The robot will also be connected to a receiver which will allow the user
to switch between behaviors or between primary directions if the robot is in the
correct mode of operation.

Figure 3: Front and Top views of platform

The following is the block diagram of the microphone unit. For a detailed
explanation of each component refer to the “Appendix, Microphone Unit's Blocks”
section. For overall description of the microphone unit refer to the “Experimental
Layout and Results” section.

LT

h
h
L 4
h

LPF RF

Transmitter

Microphone Amplifier

Figure 4: Block Diagram for Microphone Unit

Mobile Platform

In order to adhere to the objectives and a dual-motor setup using only two
wheels and a ball caster the platform is circular with the motors and wheels on
the bottom of the unit and all the electronics on the top portion of the robot. The
motor controller is the Pololu Low-Voltage Dual Serial Motor Controller which is
rated to work at low voltages as the name implies and it is also able to provide

pBot 7 Misas

the high current necessary to operate the DC motors. On paper this seemed as
the ideal part, my experiences with this motor controller were less than pleasant.
Although, the part is said to provide 5 Amperes of power to each motor, in reality
the motor controller overheated at 15% of that and shut down until it cooled
down. After installing various heat sinks the performance was increased to 25%. |
recommend advising future students to not use low voltage DC motors because
the controllers for them are scarce. If it is unavoidable | recommend building a
custom motor controller rather than using the Pololu product.

Actuation

Two low-voltage DC motors are used to drive the two wheels of the robot. A ball
caster is used to provide stability, while a motor controller is used to interface the
motors to the microcontroller. Due to the high current requirements of DC motors
the microcontroller cannot be connected directly to the motors. A low-voltage
dual motor controller is used to avoid this problem.

Sensors

Sensors were chosen to permit the robot to be autonomous. Different
sensors are implemented to allow detection of objects at various ranges. Sonar
allows detection of objects up to 254 inches away but objects that are less than 6
inches away are not easy to detect. The IR sensors on the other hand do a little
better at closer ranges, minimum of about 4 inches. Another advantage of the IR
is that it takes measurements slightly faster than the sonar. The third alternative
is a bump switch, which allows detection of objects at close ranges. In addition
the microphone is considered as a special sensor. The microphone detects audio
and outputs a wave, the wave’s magnitude corresponds to the volume of the
audio while its frequency and period matches that of the audio.

IR Sensor

Vendor: www.sparkfun.com (Sparkfun Electronics)
Part Number: SEN-00242 Figure 5: Sharp IR
Model: Infrared Proximity Sensor - Sharp GP2Y0A21YK

Scope

Uses light to detect objects at a distance. This sensor provides an analog
output from Vcc-0.3V to 0.4V depending on the distance of the object. The

pBot 8 Misas

sensor detects said distance by timing how long it takes the emitted pulse to
bounce back into the receiver. The Sharp IR has an effective range of 10 to 80
cm.

GP2Y0A21YK

e W hite paper
(Reflective ratio:90%%)

== mmn Gray paper
(Reflective ratio:18%)

T

(]
"

Analog output voltage Vg (V)
o I
= -

] N\
]

0.5 4 e ——

0

0 10 20 30 40 50 60 70 RO
Distance to reflective object L {cm)

Figure 6: Analog Output Voltage vs. Distance to Reflective Object

Objective

The Sharp IR sensor provides a cheap alternative to detecting objects with
a decent range. This sensor is also more resilient to ambient light which is
usually a great concern with IR sensors. In the puBot | use IR sensors for obstacle
avoidance and wall following.

Remarks

The Sharp IR sensor does not provide the best range. It also has a very
small cone of detection which renders it useless when a small object has to be
detected. On the other hand the small size of the robot compensates for the thin
cone and the price of the sensor makes the lack in range more than bearable.

pBot 9 Misas

Sonar

. Figure 7: Ultrasonic Range Finder
Vendor: www.sparkfun.com (Sparkfun Electronics) J J

Part Number: SEN-00639
Model: Infrared Ultrasonic Range Finder - Maxbotix LV-EZ1

Scope

The Ultrasonic Rangefinder use high frequency sound waves to detect objects at
a distance. This sensor provides a multiple array of outputs but for the purposes
of this project | will use the analog output which ranges from Vcc to ~0V
depending on the distance of the object. The sensor detects said distance by
timing how long it takes the emitted pulse to bounce back into the receiver. The
Ultrasonic Rangefinder has an effective range of 6 to 254 inches.

Beam Angle (degrees)
40 -20 0 20 40 O
®
0 >
@
[
02
12 <
Qo
-18 O

Figure 8: Beam Angle vs. Sensitivity of Sonar Sensor

Objective

The Ultrasonic Rangefinder is the perfect solution for finding objects at
any range applicable to this project. In addition this sensor has a considerable
detection cone thus making it a viable alternative for detection of obstacles in
non-critical directions. The power consumption of this sensor is also
considerably less than that of an IR sensor. In the pBot | will use Ultrasonic
Rangefinder sensors to detect obstacles when moving left or reversing.

Remarks

The Ultrasonic Rangefinder sensor would be the perfect sensor for the
pBot but considering its price tag (twice as much as the Sharp IR) only a limited
number of them will be used in this project.

pBot 10 Misas

®9

Special Sensor ’
v @

Figure 9: Microphone
Scope

The special sensor is an audio sensor composed of a microphone, an
amplifier, a digital signal processing microcontroller and a transmitter. The
purpose of this sensor is to provide a command for the robot which may be a
simple command such as turn right, left, go straight, stop or the command can
set behaviors such as obstacle avoidance, wall following.

Objective

The microphone used is an Omnidirectional Electret Condenser
Microphone with operation voltage of 4.5V DC (Model Number: CZ034A Series).
The signal produced by the microphone is then routed through a passive low
pass filter to an amplifier which provides a gain of 1000. The amplified signal is
routed to the microcontroller which performs a FFT operation. The
microcontroller calculates a value and compares the result to a number of stored
constants, if it falls within the desired limits it becomes the command. The
following table shows a typical result for each word and at what frequencies the
peaks occurred.

Figure 10: Example of FFT

pBot 11 Misas

Remarks

The microphone needs a great deal of amplification. For this project | used
an amplifier with a gain of 1000, which produced remarkable results since |
accidentally overshot the required peak to peak voltage it greatly increased the
range of the unit. It practically became about six feet with no yelling required. As
a consequence the results became less reliable at a close range which led me to
change the comparison algorithm to distinguish peaks instead of magnitudes.

Behaviors

Obstacle Avoidance

The robot uses two IR sensors in front of the robot to determine which
side to steer to. If one sensor is tripped the robot steers to the opposite direction.
When both sensors in the front are blocked the back sensor (Sonar) is checked
to determine if the robot can back up. If front and back sensors are blocked robot
spins to the left for a random amount of time.

Wall Following

The robot uses two IR sensors on the right side of the robot in order to
detect walls as well as the front sensors described in “Obstacle Avoidance”. If a
wall is detected the robot checks front sensors to distinguish corners, the robot
then positions itself to either face the wall or turn the corner. If only one IR
senses the wall the robot adjusts so both sensors can sense the wall. If no wall is
detected the robot moves forward until there is an object in front of it, the robot
then turns to have side IR’s face obstacle.

Experimental Layout and Results

Microphone Data

The histogram below shows the distribution of where peaks occurred while
the commands were repeated. Although this method does not take into account
the order of the peaks it can be observed that almost all of the words follow a set
pattern but with noticeable differences that would have allowed the distinction of
the words. This method did yield a higher accuracy in the sense that words were
identified more often (at about 60%-70%). But due to the nature of the data and
the close proximity of the patterns words would also be misidentified more often,
as opposed to finding no match.

pBot 12 Misas

14

12

10

W of occurences (follow)
W #of occurences (avoid)

B of occurences (stop)

% of occurences (right)
#of occurences (left)

 #of occurences (straight)

L. 1

0 100 200 300 400 500 600 700 800 900 1000110012001300 140015001600 17001800120020002100220023002400 250026002700 2800 2800300031003200

Figure 11: Histogram of Frequency Analysis

uBot

13

Misas

Freq (Hz) follow avoid stop right left straight
0 4 4 4 4 4 4
100 0 0 0 0 0 0
200 7.333333333 3 0 1.666666667 0.333333333 10.66666667
300 5.333333333 1.666666667 5.333333333 0 1 1.333333333
400 2.333333333 1.666666667 0.333333333 1.666666667 0.666666667 7
500 10.66666667 1.333333333 2.666666667 1.333333333 0.666666667 3.666666667
600 4 2.666666667 4.666666667 4.666666667 0.333333333 9.666666667
700 9.333333333 12 2.333333333 5.333333333 5.666666667 12
800 6 10.33333333 2.666666667 5.333333333 3.333333333 8.666666667
900 5.666666667 11.66666667 2.666666667 6.333333333 4 6.333333333
1000 9.333333333 11.33333333 3 5.666666667 2.333333333 11.33333333
1100 7.333333333 7.666666667 1.333333333 7 3 11.66666667
1200 9.333333333 9 2.333333333 3.666666667 5.333333333 5.666666667
1300 2 8.666666667 3.666666667 = 3.333333333 5 6
1400 3 4.333333333 1.333333333 3.666666667 4 6.666666667
1500 3 8.333333333 2.666666667 6.333333333 2 5
1600 5 8 2 2.666666667 2 2
1700 4 7.666666667 1.333333333 1.666666667 3.333333333 2
1800 4 7.666666667 1.333333333 1.666666667 2.666666667 5.666666667
1900 3 2.333333333 0.666666667 2.333333333 1.333333333 2.333333333
2000 1 2.666666667 1.333333333 2.666666667 1.333333333 1
2100 1.666666667 1.333333333 0.333333333 1 0.666666667 0.666666667
2200 0.333333333 1.333333333 0.333333333 0 0 0.333333333
2300 1 0.666666667 1 0 0.666666667 0
2400 1 0.333333333 0.333333333 0.666666667 0.333333333 1.333333333
2500 0 0.666666667 0.666666667 0 0 1
2600 0 0 0 0.333333333 0 0
2700 0.333333333 0 0 0 0 0
2800 0 0 0.333333333 0 0 0
2900 0 0 0.333333333 0 0 0
3000 0 0 0 0 0 0
3100 0 0 0 0 0 0
3200 0 0 0 0 0 0

Table 1: Table of Results for Frequency Analysis

The preceding table shows how different each one of the words are once
a frequency analysis is applied, thus proving that the words can be distinguished.
The values were obtained from the averages of three trial runs of each word
repeated rapidly in succession, for about ten seconds. These values can now be
rounded and hard-coded into the device in order to be able to match an incoming
command with the saved values.

The second method tested was to include a running sum that took into
account the distribution of the signal across the frequency spectrum and a certain
sample’s distance from the natural frequency of the user. The sum was

pBot 14 Misas

calculated by assigning a value of 1 for the natural frequency and incrementing
this value after every 100Hz up to 6.4 kHz, the value is then multiplied by the
ratio of its magnitude compared to the maximum magnitude in the set of samples
and then added to the previous values. The sum is then scaled down to fit an
integer value. The table below shows the values obtained.

Command Calculated
Sum
Follow ~43
Go ~26
Obstacle 113
avoidance
Right ~34
Left ~62
Stop moving ~77

Table 2: Frequency Analysis Results for Running Sum

Conclusion

This was a very interesting project to work on. Almost all the proposed
goals were achieved. The robot does wall following and obstacle avoidance. The
microphone unit is able to decode a command and retransmit it, by doing an FFT
operation on the incoming audio signal. The robot responds to the commands
issued by the microphone.

What was not as proposed is the RF Link, due to some problems with the
device the RF link could not be implemented on the project and instead of
wireless communication it is presented with two long wires running from the
microphone unit to the platform.

| was greatly limited by the amount of memory on the microcontroller
which determined what methods | could use. A second method (running sum)
had to be developed because it occupies one fiftieth of the memory peak
comparison method occupied. As an effect the accuracy was greatly reduced.

| was also spending a lot of time trying to make the Pololu motor controller
work which did not live up to the specs on the data sheet. In retrospect | should
have just scratch the whole system and replaced it with a completely different
one.

For future work | would definitely pick a better motor, servo option. | would
also spend more time working on the platform to make the project look more
presentable. | would also spend more time finding a wireless solution.

pBot 15 Misas

Appendix and Documentation

Microphone Unit’'s Blocks

Power Supply

The power supply provides a DC voltage of 4.5V and -4.5V to the
microphone unit from a 9V battery. It also provides a stable ground to protect the
circuit.

L4 i .1.
Rt <1 | M
| ut |
. +__V1. 3 - 5
o — V+ o
R 05 6 .
051 L
RZ < 1M ©2 L 1u T o
. T UA741

Figure 12: Circuit Diagram of Power Supply
Low Pass Filter

The purpose of the filter is to removes unwanted high frequency noise. For
this project | will use a fourth order filter with a cutoff frequency at 3 kHz.

‘plgtu

Figure 13: Circuit Diagram for Low Pass Filter

pBot 16 Misas

Amplifier

The purpose of the amplifier is to increase the magnitude of the signal. In
my case the output of the microphone has a peak to peak voltage in the order of
mV and it had to be amplified greatly, in order to produce a signal that the
microcontroller can read.

....... R2 . R
My Mp M .. .RE .| Ra . . | ..
....... 1k Cq00k - - - l_W\« A p

Figure 14: Circuit Diagram for Two-Stage Amplifier

The amplifier | made has a gain of roughly 1000. Which turned out to be
more than needed but incidentally it made the microphone function from a
greater distance (about six feet).

Microcontroller

The microcontroller employs an FFT algorithm to map the microphone’s
output signal in the frequency domain and keeps a running sum to identify which
command it corresponds to.

References

Lathi, B.P.. Linear Systems and Signals. Oxford University Press, June 18, 2004.

"Fast Fourier transform”. Wikimedia Foundation, Inc.. 29 January 2008
<http://en.wikipedia.org/wiki/Fast_fourier_transform>.

pBot 17 Misas

Code

Robot.c

unsigned rx1;

unsigned i,j,right,left,k;

unsigned long counterl,counter2,counter3;
char txt[6] = "mikro";

unsigned adcRes;

const unsigned int right_forward=0b00000001;
const unsigned int right_reverse=0b00000000;
const unsigned int left_forward=0b00000011;
const unsigned int left_reverse=0b00000010;
const unsigned int motor_delay=50;

const unsigned int IR_threshold=14;

const unsigned int IR_wall_threshold=10;
signed int right_motor,left_motor;

unsigned int behavior,last_behavior;

void motor_init()

{
[*Uartl_Write_Char(0x80);
Uartl_Wait_Tx();

Uartl Write_Char(0x02);
Uartl_Wait_Tx();
Uartl Write_Char(0);
Uartl_Wait_Tx();*/
Delay_100ms();
right_motor=0;
left_motor=0;
PORTCbits.RC14=0;
Delay_100ms();
Delay _ms(10);
LATCbits.LATC14=1,
PORTCbits.RC14=1,

}

void increase_right()

if(right_motor<-7)

{
right_motor+=7;
Uartl_Write_Char(0x80);
Uartl Wait_Tx();
Uartl_Write_Char(0x00);
Uartl Wait_Tx();

pBot 18

Misas

Uartl Write_Char(right_reverse);
Uartl Wait_Tx();
Uartl Write_Char(abs(right_motor));
Uartl Wait_Tx();
}
else if(right_motor<0)
{
right_motor=0;
Uartl _Write_Char(0x80);
Uartl Wait_Tx();
Uartl _Write_Char(0x00);
Uartl Wait_Tx();
Uartl Write_Char(right_reverse);
Uartl Wait_Tx();
Uartl Write_Char(abs(right_motor));
Uartl Wait_Tx();
}
else if(right_motor<14)
{
right_motor+=7;
Uartl _Write_Char(0x80);
Uartl Wait_Tx();
Uartl _Write_Char(0x00);
Uartl Wait_Tx();
Uartl_Write_Char(right_forward);
Uartl Wait_Tx();
Uartl_Write_Char(right_motor);
Uartl Wait_Tx();
}
else if(right_motor<21)
{
right_motor=21;
Uartl Write_Char(0x80);
Uartl Wait_Tx();
Uartl Write_Char(0x00);
Uartl Wait_Tx();
Uartl Write_Char(right_forward);
Uartl Wait_Tx();
Uartl Write_Char(right_motor);
Uartl Wait_Tx();
}
else
{
left_motor=0;
Uartl Write_Char(0x80);
Uartl Wait_Tx();

pBot 19 Misas

}
}

Uartl _Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl_Write_Char(left_motor);
Uartl Wait_Tx();

void decrease_right()

{

if(right_motor>7)

{

}

right_motor-=7,

Uartl Write_Char(0x80);
Uartl_Wait_Tx();

Uartl Write_Char(0x00);
Uartl_Wait_Tx();

Uartl Write_Char(right_forward);
Uartl_Wait_Tx();

Uartl Write_Char(right_motor);
Uartl_Wait_Tx();

else if(right_motor>0)

{

}

right_motor=0;

Uartl Write_Char(0x80);

Uartl Wait_Tx();

Uartl Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(right_forward);
Uartl Wait_Tx();

Uartl Write_Char(right_motor);
Uartl Wait_Tx();

else if(right_motor>-14)

{

pBot

right_motor-=7,

Uartl Write_Char(0x80);

Uartl Wait_Tx();

Uartl Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(right_reverse);
Uartl Wait_Tx();

Uartl Write_Char(abs(right_motor));
Uartl Wait_Tx();

20

Misas

else if(right_motor>-21)

{

}

right_motor=-21,

Uartl Write_Char(0x80);
Uartl_Wait_Tx();

Uartl Write_Char(0x00);
Uartl_Wait_Tx();

Uartl Write_Char(right_reverse);
Uartl_Wait_Tx();

Uartl Write_Char(abs(right_motor));
Uartl_Wait_Tx();

else

{

}
}

left_motor=0;

Uartl Write_Char(0x80);
Uartl_Wait_Tx();

Uartl Write_Char(0x00);
Uartl_Wait_Tx();

Uartl Write_Char(left_forward);
Uartl_Wait_Tx();

Uartl Write_Char(left_motor);
Uartl_Wait_Tx();

void increase_left()

{

if(left_motor<-7)

{

}

left_motor+=7,

Uartl Write_Char(0x80);

Uartl Wait_Tx();

Uartl Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(left_reverse);
Uartl Wait_Tx();

Uartl _Write_Char(abs(left_motor));
Uartl Wait_Tx();

else if(left_motor<0)

{

pBot

left_motor=0;

Uartl Write_Char(0x80);
Uartl Wait_Tx();

Uartl _Write_Char(0x00);

21

Misas

Uartl Wait_Tx();
Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl Write_Char(left_motor);
Uartl Wait_Tx();

}

else if(left_motor<14)

{
left_motor+=7;
Uartl Write_Char(0x80);
Uartl_Wait_Tx();
Uartl Write_Char(0x00);
Uartl_Wait_Tx();
Uartl Write_Char(left_forward);
Uartl_Wait_Tx();
Uartl Write_Char(left_motor);
Uartl_Wait_Tx();

}

else if(left_motor<21)

{
left_motor=21;
Uartl Write_Char(0x80);
Uartl_Wait_Tx();
Uartl Write_Char(0x00);
Uartl_Wait_Tx();
Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl Write_Char(left_motor);
Uartl Wait_Tx();

}

else

{
left_motor=0;
Uartl Write_Char(0x80);
Uartl Wait_Tx();
Uartl Write_Char(0x00);
Uartl Wait_Tx();
Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl Write_Char(left_motor);
Uartl Wait_Tx();

}

}
void decrease_left()

if(left_motor>7)

pBot 22

Misas

}

left_motor-=7;

Uartl _Write_Char(0x80);

Uartl Wait_Tx();

Uartl _Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl_Write_Char(abs(left_motor));
Uartl Wait_Tx();

else if(left_motor>0)

{

}

left_motor=0;

Uartl _Write_Char(0x80);

Uartl Wait_Tx();

Uartl _Write_Char(0x00);

Uartl Wait_Tx();
Uartl_Write_Char(left_forward);
Uartl Wait_Tx();

Uartl Write_Char(left_motor);
Uartl Wait_Tx();

else if(left_motor>-14)

{

}

left_motor-=7;
Uartl_Write_Char(0x80);

Uartl Wait_Tx();
Uartl_Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(left_reverse);
Uartl Wait_Tx();

Uartl Write_Char(abs(left_motor));
Uartl Wait_Tx();

else if(left_motor>-21)

{

pBot

left_motor=-21;
Uartl_Write_Char(0x80);

Uartl Wait_Tx();
Uartl_Write_Char(0x00);

Uartl Wait_Tx();

Uartl Write_Char(left_reverse);
Uartl Wait_Tx();

Uartl Write_Char(abs(left_motor));
Uartl Wait_Tx();

23

Misas

}

else

{
left_motor=0;
Uartl _Write_Char(0x80);
Uartl Wait_Tx();
Uartl _Write_Char(0x00);
Uartl Wait_Tx();
Uartl Write_Char(left_forward);
Uartl Wait_Tx();
Uartl_Write_Char(left_motor);
Uartl Wait_Tx();

}
}
void stop()
{
while(right_motor<0)
{
increase_right();
Delay_ms(motor_delay);
}
while(right_motor>0)
{

decrease_right();
Delay _ms(motor_delay);

while(left_motor<0)

{

increase_left();
Delay_ms(motor_delay);

while(left_motor>0)

{

decrease_left();
Delay_ms(motor_delay);

}

void turn_right()
while(right_motor<21)
{
increase_right();
Delay_ms(motor_delay);

while(left_motor<21)

HBot 24

Misas

increase_left();
Delay_ms(motor_delay);

}
}
void turn_left()

while(left_motor>-21)

{
decrease_|left();
Delay_ms(motor_delay);
}
while(right_motor>-21)
{
decrease_right();
Delay _ms(motor_delay);
}

}
void go_straight()

while(left_motor<21)

{
increase_left();
Delay_ms(motor_delay);
}
while(right_motor>-21)
{
decrease_right();
Delay_ms(motor_delay);
}
}
void reverse()
{
while(right_motor<21)
{
increase_right();
Delay_ms(motor_delay);
}
while(left_motor>-21)
{
decrease_left();
Delay_ms(motor_delay);
}
}

uBot

25

Misas

void print_LCD(int val,int pos)
{
[*IntToStr(val,txt);
switch(pos)
{
case 1: Lcd_Custom_Out(1,6,txt);break;
case 2: Lcd_Custom_Out(2,3,txt);break;
case 3: Lcd_Custom_Out(2,8,txt);break;
case 4: Lcd_Custom_Out(1,3,txt);break;
case 5: Lcd_Custom_Out(1,8,txt);break;
default: Lcd_Custom_Out(1,6,"ERROR");break;
s
}

int display_Sensor(unsigned int ANX,unsigned int pos)

{
if(ANX>18&&ANX<13)

{
adcRes=Adc_Read(ANX);
adcRes=((255-(adcRes/16))/10);
print_LCD(adcRes,pos);
return adcRes;

}

else if(ANX==0||ANX==1)

{
adcRes = Adc_Read(ANX);
adcRes=adcRes/8;
print_LCD(adcRes,pos);
return adcRes;

}

else{return 0;}

}

/I determines whether the path in front is clear and adjusts motors
/Il accordingly
void behavior_obstacle_avoid()
{
right = display_Sensor(12,3);
left = display_Sensor(11,2);
if(right>IR_threshold&&left>IR_threshold)
{reverse(); }
else if(right<=IR_threshold&&left<=IR_threshold)
{ go_straight(); }
else if(left<=IR_threshold)
{ turn_right(); }
else if(right<=IR_threshold)
{ turn_left(); }

pBot 26 Misas

else
{
Lcd_Custom_Out(1,6,"ERROR");
while(1);
}
Delay_ms(motor_delay);
if(left_motor<0&&right_motor<0)

if(display_Sensor(0,1)<10)

stop();

i=rand()+1,
i=1%6;
turn_left();
for(j=0;j<i;j++)

Delay_1sec();

}
stop();
Delay_1sec();
}
}
Delay_ms(500);

}

void behavior_wall_following()
{
int a= display_Sensor(6,4);
int b= display_Sensor(5,5) ;
right = display_Sensor(12,3);
left = display_Sensor(11,2);
if((@>=IR_wall_threshold&&a<=16)&&(b>=IR_wall_threshold&&b<=16))

{
if(right>=IR_threshold&&left>=IR_threshold)
{ reverse(); }
if(right<IR_threshold||left<IR_threshold)
{ turn_right(); }
Delay_ms(500);

}

else
if(a>=16&&(b>=IR_wall_threshold&&b<=16))||(b<=10&&(a>=IR_wall_threshold&
&a<=16)))

{
if(right>=IR_threshold&&left>=IR_threshold)

{ turn_left(); }
if(right<IR_threshold||left<IR_threshold)

pBot 27 Misas

{ turn_right(); }
Delay_ms(500);

else

if(b>=16&&(a>=IR_wall_threshold&&a<=16))||(a<=10&&(b>=IR_wall_threshold&

&b<=16)))

{
turn_right();
Delay_ms(500);

}

else

{

{ reverse(); }

if(right>=IR_threshold&&left>=IR_threshold)

if(right<IR_threshold||left<IR_threshold)

{ turn_right(); }
Delay_ms(500);
}

void behavior_go()

if(behavior!=last_behavior)
{
k=rand()+1;
k=k%6;
go_straight();
for(j=0;j<k;j++)
{

Delay 1sec();

}
stop();
Delay_1sec();
}
}

void behavior_right()
{

if(behavior!=last_behavior)
{
k=rand()+1;
k=k%6;
turn_right();
for(j=0;j<k;j++)
{

}

Delay 1sec();

pBot 28

Misas

stop();
Delay_1sec();

}
}

void behavior_left()

if(behavior!=last_behavior)

{
k=rand()+1;
k=k%6;
turn_left();
for(j=0;j<k;j++)
Delay_1sec();
}
stop();
Delay_1sec();
}
}
void behavior_stop()
{
if(behavior!=last_behavior)
{
stop();
Delay_1sec();
}
}
void print_behavior()
switch(behavior)
{

case 0: Lcd_Custom_Out(1,5,"avoid");break;
case 1: Lcd_Custom_Out(1,5,"follow");break;
case 2: Lcd_Custom_Out(1,5,"go");break;
case 3: Lcd_Custom_Out(1,5,"right");break;
case 4: Lcd_Custom_Out(1,5,"left");break;
case 5: Lcd_Custom_Out(1,5,"stop");break;

default: Lcd_Custom_Out(1,5,"ERROR");break;

}

[*switch(behavior)

{

case 0: Lcd_Custom_Out(2,5,"avoid");break;
case 1: Lcd_Custom_Out(2,5,"follow");break;

pBot 29

Misas

}

Y

case 2: Lcd_Custom_Out(2,5,"go");break;

case 3: Lcd_Custom_Out(2,5,"right");break;
case 4: Lcd_Custom_Out(2,5,"left");break;
case 5: Lcd_Custom_Out(2,5,"stop");break;
default: Lcd_Custom_Out(2,5,"ERROR");break;

void check_behavior()

{

pBot

//Lcd_Custom_Out(1,6,"Start");
k=0;

counter1=0;

counter2=0;

counter3=0;
if(PORTCbits.RC13==1)

{

}

while(PORTCbits.RC13==1 && counter3<320) {counter3++;}
while(PORTCbits.RC13==0 && counter1<320) {counterl++;}
while(PORTCbits.RC13==1 && counter2<320) {counter2++;}
k=(counterl+counter2) ;

else

{

while(PORTCbits.RC13==0 && counter3<320) {counter3++;}
while(PORTCbits.RC13==1 && counter2<320) {counter2++;}
while(PORTCDbits.RC13==0 && counter1<320) {counterl++;}
k=(counterl+counter2) ;

}
if(k==320){:}
else if(k==41)

}

last_behavior=behavior;
behavior=2;
Lcd_Custom_Out(2,2, "GO");

else if(k==61)

}

last_behavior=behavior;
behavior=1,;
Lcd_Custom_Out(2,2, "WF");

else if(k==81)

last_behavior=behavior;
behavior=0;

30

Misas

}

Lcd_Custom_Out(2,2, "OA");

}

else if(k==101)

{
last_behavior=behavior;
behavior=4;
Lcd_Custom_Out(2,2, "TL");

}

else if(k==121)

{
last_behavior=behavior;
behavior=3;
Lcd_Custom_Out(2,2, "TR");

}
else if(k==141)
{
last_behavior=behavior;
behavior=5;
Lcd_Custom_Out(2,2, "ST");
}
else
{ Delay_10ms(); }
IntToStr(k,txt);
Lcd_Custom_Out(2,8, txt);

void Main_Init()

{

PORTB = 0x0000;

TRISB = OXFFFF; /l set pin as input - needed for ADC to work
TRISF=0;

TRISD=0;

TRISC=0xFFFF;

last_behavior=0;

behavior=rand()%2; /[code for obstacle avoidance
Lcd_Custom_Config(&PORTF, 5,4,1,0, &PORTD, 0,2,1);
Lcd_Custom_Out(1,5,"START") ;

Uartl_Init(19200); // initialize USART module
Delay 100ms();
motor_init(); /Istops motors and initializes internal counters
Delay _ms(motor_delay); /I pause for usart lines stabilization
rx1l = Uartl_Read_Char(); /I perform dummy read to clear the register
}
void main() {
Main_Init();

pBot 31 Misas

while(1)
{
check_behavior();
if(behavior==0)
{ behavior_obstacle_avoid(); }
else if(behavior==1)
{ behavior_wall_following(); }
else if(behavior==2)
{ behavior_go(); }
else if(behavior==3)
{ behavior_right(); }
else if(behavior==4)
{ behavior_left(); }
else if(behavior==5)
{ behavior_stop(); }
else
{ Lcd_Custom_Out(2,1,"error"); }
/ILcd_Custom_Out(2,5,"Cont") ;
print_behavior();

}
}/~!

Microphone.c

#include "Glcd_Fonts.h"

unsigned Samples[256] absolute 0xOCO0O0 ; // Y data space for P30F4013-

required by FFT routine
/I See datasheet for your dsPIC to see Y data space

limits.

unsigned freq; /I Auxiliary variables

char txt[5];

unsigned Written[64];

char rx1[3];

float sumpartial,sumtotal;

unsigned maximum,a,counter,command;

int sum;

const unsigned int go=26;

const unsigned int stop=77;

const unsigned int right=35;

const unsigned int left=62;

const unsigned int avoid=113;

const unsigned int follow=43;
/I The following trap procedures are not really needed here, they

pBot 32 Misas

/I are used here just for the sake of demonstration.
void OscillatorFailTrap() org 0x06 { // if oscillator fails, the code jumps here
trisf = O;
asm{
MOV [w15-34], w13
LSR w13, #8, wl3
MOV w13, LATF
'LSR w15, #8, w13
;MOV w13, LATB

}
while(1);

}

void AddressTrap() org 0x08 { // if the addressing mode is wrong, the code
jumps here
trisd = 0O;
asm{
MOV [w15-34], w13
'LSR w13, #8, w13
MOV w13, LATd
}
while(1);
}

void StackErrorTrap() org Ox0A { // stack overflow, underflow...
trisf = O;

asm{

MOV [w15-34], w13

LSR w13, #8, wl3

MOV w13, LATF

;LSR w15, #8, w13

;MOV w13, LATB

} while(1);
}

void MathErrorTrap() org OxOC { // div by zero etc...
trisf = O;
asm{
MOV [w15-34], w13
LSR w13, #8, wl3
MOV w13, LATF
;LSR w15, #8, w13
;MOV w13, LATB

pBot 33 Misas

}
while(1);

e Initialization of AD converter
void InitAdc() {

ADPCFG = 0x00FF; // PORTB<8:15> is analogue, PORTB<O0:7> is digital
TRISB.F8 =1; // RB8 as input pin

ADCHS =8; /I Connect RBxx/ANxx as CHS8 input. RB8 is input pin

ADCSSL=0; [/l

ADCONS3 = 0x1F3F; // sample time = 31 Tad.

ADCON2=0; [/

ADCONL1 = 0x83EQ; // turn ADC ON, fractional result, internal counter ends
conversion

Vi~

e Initialize GLCD for EASYdsPIC4 board
void InitGlcd() {

Glcd_Init_EasydsPIC3();
Glcd_Set_Font(FontSystem5x8, 5, 8, 32);
Glcd_Fill(0xAA); // Show stripes on GLCD to signalize startup

Delay_ms(500); // Wait for a while
Glcd_Fill(0x00); // Clear screen
HI~

e Main Initialization
void Mainlinit() {

TRISDbits. TRISD8=0;
LATDbits.LATD8=0;
TRISCbits. TRISC14=1;
LATCbits.LATC14=0;
TRISCbits. TRISC13=1;
LATCbits.LATC13=0;
TRISAbIts. TRISA11=0;
LATADIts.LATA11=0;
InitAdc();

InitGlcd();
Twiddle_Factors_Init();

HBot 34

Misas

Vector_Set(Written, 64, OXFFFF); // Fill "Written" with $FFFF
Glcd_Write_Text(" Hz", 100, 0, 1);

command=0;

counter=0;
HI~
[[-==-==mmmmmm- Auxiliary function for converting 1.15 radix point to
I IEEE floating point variable (needed for sqrt).
float Fract2Float(int input) {

if (input < 0)

input = - input;

return (input / 32768.);
HI~
[[-==-==mmmm - Data output procedure. It draws FFT components on GLCD.
I GLCD coordinate system starts at top left corner. Therefore,
I line drawing had to be modified in order to achieve
I a viewable spectrum on screen.
I "Samples" at this moment contains DFT of the signal in the manner

Re, Im, Re, Im...
void WriteData() {

unsigned Re, Im, tmpw, j, k, [,
float Rer, Imr, tmpR;

Il =0;

j =0 /'1f you want to skip DC component then make j >= 1
k =0;

maximum =0;

freq = 0; /I Reset current max. frequency for new reading

while (k <= 63) {
Re = Samples[j++]; /I Real part of DFT sample

Im = Samples[j++]; /I Imaginary part of DFT sample

Rer = Fract2Float(Re); /I conversion to IEEE floating point
Imr = Fract2Float(Im); /I conversion to IEEE floating point

tmpR = Rer * Rer; Il Ren2
Rer =tmpR,;

tmpR = Imr * Imr; Il Im"2
Imr =tmpR,;

pBot 35 Misas

}

tmpR = sqrt(Rer + Imr); // Amplitude of current DFT sample
Rer =tmpR * 256.; /I DFT is scaled down by 1/N, we need to
/I take it back in order to have visible
/I components on GLCD
Re = Rer;
sumpartial+=Re*k;
if (Re > 63)
if(k 1= 0)
/l--- NOTE: rejecting values for k=0 removes strong DC component
Re = Written[k-1]; /I k = 0? beware of the glitch
else
Re =0;

if (Re > maximum) {
maximum = Re;

freq = k; /I This should be the center frequency of the signal
}
tmpw = Written(K];
if (tmpw != Re) { // Draw only those components that changed

| = 64 - tmpw; // 64 lines on GLCD on Y axis

while (I <=63) { /I Clear line to the bottom of the screen
Glcd_Dot(k, I, 0);

[++;
}
| = 64 - Re; /[Draw line to the bottom of the screen
while (1 <= 63) {
Glcd_Dot(k, I, 1);
[++;
}
Written[k] = Re; /I Mark that the current sample has been drawn
}
K++; /l Move current X coordinate

/I--- Write the frequency of max. amplitude sample
[*freq *= 100;
WordToStr(freq, txt);

G
Vi~

lcd_Write_Text(txt, 70, 0, 1);*/

/— Takes current sample

36

Misas

unsigned ReadAdc() {

ADCONL1.F1 =1; /I Start AD conversion
while (ADCON1.F0 == 0) // Wait for ADC to finish
asm nop;
return ADCBUFO; /I Get ADC value
HI~
[[-==nmmmmmmmeae Fills "Samples" with input samples in manner Re, Im, Re, Im... where
Im=0

void Samplelnput() {
inti=0;

while (i <= 255) {
Samples[i++] = Adc_Read(8); //Re
Samples[i++] = 0; /l'Im
Delay us(167);
}
/["Samples" now contains 128 pairs of <Re, Im> samples
HI~

void id_command(int x)

{
if(abs(x-go)<=3)

command=1;

Gled_Write_ Text("GO FORWARD",10,3,1);
}
else if(abs(x-follow)<=3)
{

command=2;

Glcd_Write_Text("W. FOLLOWING",10,3,1);
}
else if(abs(x-avoid)<=3)
{

command=3;

Glcd_Write_Text("O. AVOIDANCE",10,3,1);
}
else if(abs(x-left)<=3)
{

command=4;

Glcd_Write_Text("TURN LEFT",10,3,1);

else if(abs(x-right)<=3)

pBot 37 Misas

{

command=5;
Glcd_Write_Text("TURN RIGHT",10,3,1);
}
else if(abs(x-stop)<=3)
{
command=6;
Glcd_Write_Text("STOP",10,3,1);

}
}

void transmit_command()

{
int i=0;
PORTADbits.RA11=1;
for(i=0;i<=command;i++){ Delay_10us(); }
PORTADbits.RA11=0;
for(i=0;i<=command;i++){ Delay_10us(); }
PORTADbits.RA11=1;
for(i=0;i<=command;i++){ Delay_10us(); }
PORTADbits.RA11=0;
for(i=0;i<=command;i++){ Delay_10us(); }
PORTADbits.RA11=1;
for(i=0;i<=command;i++){ Delay_10us(); }
PORTADbits.RA11=0;
for(i=0;i<=command;i++){ Delay_10us(); }

e Main program starts here
void main() {
unsigned i;
Mainlinit(); /I Initialize all
while (1) { /I Infinite loop
if(PORTCbits.RC14==1)
{
Delay_1sec();
PORTDbits.RD8=1;
sumtotal=0.0;
for(a=0;a<50;a++)
{

sumpartial=0.0;

Samplelnput(); /I Sample input signal

I/l Perform FFT (DFT), 7 stages, 128 samples of complex pairs
/l Twiddle factors are taken from the <TwiddleFactors.dpas> unit

pBot 38

Misas

FFT(7, TwiddleCoeff_128, Samples);

/I DFT butterfly algorythm bit-reverses output samples.
/Il We have to restore them in natural order.
BitReverseComplex(7, Samples);

Glcd_Fill(0x00); // Clear screen
// Draw DFT samples on GLCD
WriteData();

if(maximum!=0)

{
sumtotal+=sumpartial/maximum;
counter++;

}

}
PORTDbits.RD8=0;

while(PORTCbits.RC13==0){;}
Glcd_Fill(0x00); // Clear screen
sum=(int)(ceil(sumtotal/counter));

WordToStr(sumtotal,rx1);
Glcd_Set_Font(System3x6, 3, 6, 0x20);
Glcd_Write_Text(rx1, 10,0, 1);
id_command(sumtotal);
transmit_command();

counter=0;

}

transmit_command();

}
Y/~!

pBot 39 Misas

