
Chas	 Hoppe	
6634-‐2793	

1	
	

Charles P. Hoppe II

Thirst Quencher

EEL5666: Intelligent Machine Design Laboratory

10 April 2009

Report #3

FINAL REPORT

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

TAs: Mike Pridgen

Thomas Vermeer

Chas	 Hoppe	
6634-‐2793	

2	
	

Table of Contents Page

Table of Contents

Abstract

Executive Summary

Introduction

Integrated System

Mobile Platform

Actuation

Sensors

Behaviors

Experimental Layout and Results

Conclusion

Documentation

Appendices

I. Data Sheets

II. Sample Code

2

3

4

5

6

8

10

12

16

17

18

19

20

20

21

Chas	 Hoppe	
6634-‐2793	

3	
	

Abstract

The Thirst Quencher is an autonomous agent that can search for the nearest soda machine and
retrieve a beverage for its user. The robot uses an array of sensors to govern a set of behaviors in
order to accomplish its task. The platform has two levels and is triangular in shape. The lower
level is a base for the motors, batteries and the circuit board while the upper level is a base for
the mechanical arms and CMU camera. Other sensors or located throughout the vehicle. One
arm is used to insert coins and select a beverage choice and the other arm retrieves the container
from the dispensing port. The motors are setup in a differential drive pattern for greater
mobility. The sensor suite includes bump sensors, IR detectors, and a CMU camera. The
sensors provide data to govern the seven behaviors of the Thirst Quencher (Search, Avoid,
Escape, Follow, Align, Select and Retrieve). The robot has been constructed and programmed to
successfully avoid obstacles by sampling the sensor suite. The special sensor (CMUcam 2) has
been implemented in the robot to search for a given color and drive towards it.

Chas	 Hoppe	
6634-‐2793	

4	
	

Executive Summary

The Thirst Quencher is a retriever type robot. Its use is to fetch a drink from the nearest soda
machine. It completes this task by using an array of sensors to control behaviors that govern its
actions. The vehicle is equipped with a CMUcam2, bump switches and IR sensors to receive
information from its environment. These sensors are mounted to a tri-level mobile platform.
The obstacle avoidance sensors (IR and bump) are mounted to the lowest level of the platform.
The first level is also host to the integrated circuit board, motor drivers, wheel assemblies and
battery. The sensors used to align the robot with the soda machine are located on the second
level, as well as the retrieval arm. Attached to the third level is the selection solenoid, CMUcam
to track a light beacon, and coin insertion device.

The Thirst Quencher searches for a beacon of light indicting the position of the soda machine
with its CMUcam. As it searches, it avoids obstacles that maybe in its path based on inputs from
the IR and bump sensors. Once it reaches the beacon, it aligns with the soda machine using the
alignment bump sensors. After it is square with the machine, the retrieval arm extends, dropping
the retrieval cup into the port of the soda machine. Once the cup is in place, the coin insertion
device is activated and the selection solenoid fires. The retrieval arm is retracted and the vehicle
backs away from the machine. The robot then returns to the user so that he or she may drink the
beverage.

Chas	 Hoppe	
6634-‐2793	

5	
	

Introduction

Have you ever been in a lab, working on a difficult task and found yourself in need of liquid
refreshment? Why walk down the hall to the soda machine and waste precious time when you
could have a robot that would retrieve a soda for you? That is what the Thirst Quencher will do.
The Thirst Quencher will search out the nearest soda machine, select your favorite type of
beverage, retrieve the soda from the machine and return it to you in your lab without you having
to take a step.

The Thirst Quencher will use its onboard array of sensors to autonomously search for the nearest
soda machine. It will insert the correct change into the coin slot, select a beverage option with its
selector solenoid, retrieve the soda from the port with its retrieval arm and return it to the user
with its sturdy and dependable mobile platform. This report lays out the specifications of the
platform, actuators, sensors and behaviors of the Thirst Quencher robot. The Thirst Quencher
can be preprogrammed to choose your favorite beverage and even pay the correct change for the
drink.

The object of the project is to integrate information from a suite of sensors to govern behaviors
that in turn accomplish a specific task determined by the programmer. The Thirst Quencher uses
bump and IR sensors combined with a CMU camera to control seven behaviors. These seven
behaviors (Search, Avoid, Escape, Follow, Align, Select and Retrieve) allow the robot to retrieve
a beverage from the nearest soda machine.

Chas	 Hoppe	
6634-‐2793	

6	
	

Integrated System

The Thirst Quencher is a beverage retrieving robot. The requirements of a retrieving robot are a
stable, mobile platform and a manipulator of some sort. The autonomous vehicle must also be
able to navigate through its environment while avoiding obstacles which would prevent it from
completing its mission. This robot has a triangular platform with differential steering. There are
two mechanical manipulators, one to insert money into the soda machine (selection arm) and a
second arm to retrieve the drink container from the machine (retrieval arm). The Thirst
Quencher is fitted with a variety of sensors to communicate with its environment. These sensors,
as well as the mechanical linkages, are controlled by an ATmega128 integrated circuit board.

The vehicle uses infrared detectors and bump sensors for collision avoidance and obstacle
detection. The robot senses potential obstacles with the IR detectors and corrects its trajectory
accordingly, but if this fails then the bump sensors will signal contact with a foreign object and
the robot will vary its path to avoid the obstacle. Bump sensors are also used to provide
environmental feedback to the Thirst Quencher’s computer. Two bump sensors are placed on an
extension of the chassis and are activated when the robot is in the correct operating position in
respect with the soda machine. When the switches are depressed in tandem, the actions of the
selection arm begin.

The CMU camera is used to find a blue LED indicator light on the soda machine. When the
camera finds the light, the robot is then instructed to follow a path towards the machine. After
the drink container is obtained, the robot reverses course and returns to its original position,
thereby retrieving a drink for its user. The next page depicts an illustration of the behavioral
hierarchy of the Thirst Quencher.

Chas	 Hoppe	
6634-‐2793	

7	
	

Bump	 Switch	 	 	 	 	 	 	 	 	 	 Arm	 2	

	 	 	 	 	 	 	 	 	 	 	 Arm	 1	

Break	 Beam	 	 Main	 	 	 	 	 	 	 	 Solenoid	

	

Bump	 Switch	 	 Escape	

	

CMUcam1	 	 Follow	 	 	 S	

	

IR	 detector	 	 Avoid	 	 	 	 S	

	

	 	 	 Search	 	 	 	 	 	 S	 	 	 	 S	 	 Motor	

Figure 1. Behavior control program for the Thirst Quencher.

Figure 1 illustrates the behaviors of the Thirst Quencher and the priority of each behavior. The
figure also defines which sensors each behavior samples. The lowest-level behavior is Search,
which causes the vehicle to roam its environment while searching for soda machine. Avoid is a
higher-level program that samples the IR detectors to sense upcoming obstacles. When an
obstacle is detected, the Avoid behavior suppresses the Search behavior and sends commands to
the motors to maneuver out of the way. The Follow behavior is initialized when the CMUcam
detects the LEDs mounted on the soda machine. It suppresses the Search and Avoid behaviors
and directs the robot to the light source. If a bump switch is triggered, the Escape behavior
causes the Thirst Quencher to back up and change direction. Because the Align, Select and
Retrieve behaviors occur one after the other, they can be grouped as the Main super-behavior.
This behavior samples bump switches and the break beam to run through the process of
retrieving the beverage container from the machine.

Chas	 Hoppe	
6634-‐2793	

8	
	

Mobile Platform

The Thirst Quencher’s platform is triangular in shape with two levels. Attached to the first,
lower, level is the vehicle’s geared motors with wheels, batteries and circuit board. The drive
wheels are set up for differential steering so they are located on the left and right corners of the
platform. The caster wheel is attached to the rear corner to provide stability. Also attached to
the lower level are the object detection and obstacle avoidance sensors. These are located on the
lower level to increase the efficiency of detecting low-lying obstacles and to prevent them from
coming in contact with the moving mechanical arms.

Top	 arch.	 CMUcam	 to	 be	

mounted	 on	 top,	 coin	 insertion	
device	 underneath.	

Lower	 level.	 IR	 and	 bump	 sensors	
mounted	 here.	

Upper	 level,	 retrieval	 arm	 mounted	

in	 center	 of	 arch.	

Solenoid	 to	 be	 attached	 here.	

Chas	 Hoppe	
6634-‐2793	

9	
	

Figure 2. Picture of Thirst Quencher, highlighting the arch for selection arm.

The second, higher level serves as a base for the two mechanical arms. The selection arm is an
arch over the platform that allows access to the coin slot and selection buttons on the soda
machine. Bump sensors on a projection from the chassis on the second level help align the robot
to the correct operating position. The retrieval arm is mounted in the center of the platform in
order to index with the dispensing port on the soda machine. The CMU camera is mounted at
the top of the arch in order to have the greatest range of vision and easily search for the blue
LED indicator lights on the soda machine. The coin insertion device is located at the rear of the
arch, behind the CMUcam. The coin slide connects the coin insertion device with the funnel
mounted on the coin slot of the soda machine. The selection solenoid is mounted on the side of
this arch.

I have learned a great deal from construction of the platform. I learned that if you do not have a
good plan for the platform before you begin fabrication, the platform will be a failure. I used
scrap wood from around my house to construct my first platform. The size of the robot was
determined more by the size of the available wood than the dimensions of the soda machine.
Therefore my first attempt was woefully small at the base and severely top heavy. I also learned
that machined hubs are more reliable than anything constructed from JB Weld, no matter what
the package says. Unfortunately, machined hubs take longer to manufacture, causing delays in
getting the robot up and running.

Chas	 Hoppe	
6634-‐2793	

10	
	

Actuation

The Thirst Quencher’s drive train is set up for differential steering. In this configuration, two
drive motors are located near the center axis of the vehicle and a third caster wheel is used to
provide stability. This design allows the robot to turn on axis and provides great mobility for the
platform. A differential drive is used on the Thirst Quencher because accurate steering is needed
to align the robot with the soda machine. The right-angle power window motors used to drive
the vehicle are 210 series motors from AM Equipment (the 210-1009 right hand and 210-1010
left hand motors). Both provide 92.1 inch pounds of stall torque, but the design calls for a total
vehicle weight no more than 30 pounds.

Figure 3. Speed/Torque Curve for 210 series motors.

Chas	 Hoppe	
6634-‐2793	

11	
	

Using the information from Figure 3, each motor provides 35.4 inch pounds of torque at a motor
speed of 60 rpm. Therefore the Thirst Quencher can move at a forward speed of around 12
inches per second using 4 inch diameter wheels. The robot could move much faster by
decreasing the vehicle weight due to the sharp decline of the speed/torque graph. The motors are
driven by a Victor 884 from IFI Robotics. Each speed controller supplies a continuous 40A
maximum current. The drivers are optically isolated from the circuit board by PC942 photo-
couplers from Sharp. There is a schematic drawing of the 210 series motors in the attached
Appendix for further review.

There are two mechanical arms on the Thirst Quencher, the selection arm and the retrieval arm.
The selection arm is not articulated but serves as a mounting platform for the coin dispenser and
the selector solenoid. Before the robot is sent out to retrieve a soda, the coin reservoir is
preloaded with the correct amount of change and the selector solenoid is placed in the desired
position based on your local soda machine. If the user knows that Mountain Dew is the third
selection on the machine and costs $1.00, the selector solenoid would be moved to the third
position and the coin reservoir would be stocked with four quarters. When the robot is correctly
aligned with the soda machine, the coin reservoir will deposit the change into the soda’s coin slot
and the selector solenoid will press the selection button on the panel. The coin insertion device
consists of a hacked servo that is fitted with a small arm. Located above the arm is the coin
reservoir, which empties into a funnel-shaped chute. The servo arm spins, knocking a coin into
the chute with each revolution. The coin then travels down the chute into the soda machines coin
slot.

The second mechanical arm is articulated and will retrieve the soda container from the
dispensing port. When the vehicle is correctly aligned with the soda machine, the arm will
deploy to index with the dispensing port. The motor on the arm turns a threaded screw, which in
turn causes the arm to move forward. There is a cup attached to the end of the arm by wires.
The arm pushes the cup into the retrieval port of the soda machine. The beverage container is
then “caught” by this cup, which also serves as the transport container when the Thirst Quencher
returns to its user. When the container is caught, it activates a break beam which signals the
robot to withdraw the retrieval arm. The arm pulls the cup out of the port by the cables when it
retreats. After the arm is withdrawn, the robot back away from the soda machine and returns to
the user.

Chas	 Hoppe	
6634-‐2793	

12	
	

Sensors

The Thirst Quencher uses sensors to communicate with its environment. The different sensors
attached to the robot are used to govern the behaviors of the vehicle. Bump sensors control the
most behaviors on the Thirst Quencher. Bump sensors located on the lower level of the platform
are used to detect obstacles and escape from danger. A bump sensor is activated when the robot
runs into a foreign object. This causes the robot to reverse direction and choose a new course to
avoid the object. A series of bump sensors is used to determine whether the vehicle is correctly
aligned with the soda machine. Two sensors are located on a projection of the vehicle chassis on
the upper level of the platform. If one sensor is activated, the robot turns in the direction of the
other sensor until both sensors are activated. When both sensors are activated, the robot is in the
correct position to select a beverage and retrieve a drink from the machine. After the robot is
aligned, the coin reservoir on the selector arm begins inserting coins into the machine, followed
by the firing of the selector solenoid to choose a drink preference. Figure 4 illustrates the bump
switch schematic.

Figure 4. Circuit schematic for bump switches

	
	

	

Reproduced	 from	 Fred	 Martin,	 The	 6.270	 Robot	 Builder's	 Guide,	
MIT,	 Cambridge,	 MA,	 1992.	

	

Chas	 Hoppe	
6634-‐2793	

13	
	

Infrared detectors are located around the lower level of the Thirst Quencher’s platform. The IR
detectors are used to avoid collisions with any obstacles in the path of the robot. If the sensor
detects the presence of an obstacle, it forces the vehicle to change its heading and move around
the object. The IR sensors detect the distance from an object by measuring the amount of
reflected light. The robot is programmed to change direction when the amount of reflected light
crosses a predetermined threshold value. The circuit schematic for the IR detectors is shown
below in Figure 5.

Figure 5. Schematic of Sharp GP2Y0A21YK and connection.

GP2Y0A21YK	 Reproduced	 from	 Fred	 Martin,	 The	 6.270	 Robot	 Builder's	
Guide,	 MIT,	 Cambridge,	 MA,	 1992.	
	

Chas	 Hoppe	
6634-‐2793	

14	
	

The sensors used on the Thirst Quencher are Sharp GP2Y0A21YKs which have a sensing band
of 10 to 80 cm. The analog voltage of the sensor increases as the reflected object moves closer
to the IR detector. The voltage is a high of just over 3V at a distance of 10 cm (~4 in) and a low
of just under 0.5V at 80 cm (~32 in); this voltage is then converted to a number between 0 and
255 by the analog to digital converter (ADC). The robot is currently programmed with a
threshold of 30, which corresponds to 40 cm away (~16 in). This value was chosen because that
is depth of the robot; if an object is sensed at that threshold, the vehicle can turn around
completely (180 degrees) without hitting the obstacle. Figure 6 presents the results of the IR
Sensor Calibration Test, where the digital reading was recorded for each sensor at preselected
distances.

Figure 6. Graph displaying ADC values for each sensor based on distance from object.

0	

20	

40	

60	

80	

100	

120	

140	

160	

3	 6	 9	 12	 15	 18	 21	 24	 27	 30	 33	

A
D
C	
Va

lu
e	

Distance	 (in)	

IR_0	 Value	

IR_1	 Value	

IR_2	 Value	

IR_3	 Value	

Chas	 Hoppe	
6634-‐2793	

15	
	

The CMU camera is used to search for a bright blue LED indicator light on the soda machine.
This camera will be attached to an oscillating servo motor to sweep its surroundings for the LED
indicator lights. After the lights are located, the camera’s ability to track colors and find the
middle mass of the color blob will be used to find the position of the blob. The robot will then
drive so that the color blob stays in the center of the camera’s frame. This will also help align
the robot for docking with the soda machine.

Figure 7. CMUcam2 Board Layout

Reproduced	 from	 CMUcam2	 User	 Guide	

	

Chas	 Hoppe	
6634-‐2793	

16	
	

Behaviors

The Thirst Quencher is initially dormant until the robot is turned on by flipping a toggle switch.
This switch also serves as the shutoff for the vehicle. Flipping the toggle initializes the most
basic behavior. This is the Search behavior, where the vehicle roams the hallway while
searching for the LEDs on the soda machine. While searching for the lights with the CMU
camera, if the IR detectors sense an obstacle in the path of the robot, the Search behavior will be
suppressed by the Avoid behavior. The Avoid behavior is characterized by adjusting the path of
the vehicle to avoid any obstacles. Once the robot successfully navigates around the obstacle,
the robot reverts back to the Search behavior.

Once the CMU camera detects the LEDs, the Follow behavior is activated. The robot will follow
a straight path to the lights located on the soda machine. The Escape behavior takes precedence
when the bump switches are activated. The vehicle will reverse direction and begin on a new
path in order to drive around the foreign object. Once around the object the robot returns to the
base Search behavior. When the vehicle reaches the soda machine, the bump sensors on the
front projection while initialize the Align behavior where the Avoid and Escape behaviors are
suppressed and the robots maneuvers into position to retrieve a soda from the soda machine.

When both bump sensors are activated, the Align behavior is suppressed by the Select behavior.
The retrieval arm extends into the dispensing port and after a given amount of time, the coin
reservoir inserts the change into the coin slot and the selector solenoid depresses the desired
button. The Retrieve behavior is activated 10 seconds after the solenoid is fired and the retrieval
arm is retracted and the robot backs up from the soda machine. The Align, Select and Retrieve
behaviors are combined into one super-behavior as illustrated in Figure 1, located in the
Integrated System subsection. Once the vehicle backs away from the soda machine, the robot
reverts back to the Search behavior. The CMU camera then searches for another colored LED to
indicate where to return the beverage. When the LED is discovered, the Follow behavior is
reactivated and the robot returns to its user.

Chas	 Hoppe	
6634-‐2793	

17	
	

Experimental Layout and Results

Table 1. IR Sensor Calibration Test data:

Distance	 IR_0	 IR_1	 IR_2	 IR_3	 Distance	

(in)	 Value	 Value	 Value	 Value	 (cm)	

3	 158	 136	 134	 131	 7.62	
6	 98	 65	 80	 81	 15.24	
9	 64	 48	 57	 57	 22.86	

12	 50	 35	 47	 46	 30.48	
15	 40	 27	 37	 38	 38.1	
18	 34	 22	 32	 32	 45.72	
21	 30	 16	 28	 28	 53.34	
24	 26	 14	 25	 25	 60.96	
27	 23	 12	 23	 23	 68.58	
30	 21	 11	 21	 21	 76.2	

33	 18	 10	 17	 18	 83.82	

Chas	 Hoppe	
6634-‐2793	

18	
	

Conclusion

The Thirst Quencher’s platform has been constructed. Attached to the platform are the motors,
drivers, IR and bump sensors, as well as the additional 12V battery and circuit board. The CMU
camera and the extra bump sensors have been installed as well as the selector and retrieval arms.
The robot has performed each behavior separately and the behaviors have been integrated
successfully. The robot will display its system of behaviors during demo day.

I believe that my robot is mechanically ambitious but therein lies the challenge and that is why I
took the course. I wanted to test my mechanical ability while learning how to design and build
an autonomous agent. My electrical design experience can be improved but I am confident that
at the end of the semester I will have a working knowledge of autonomous vehicles and how to
design more to fit my needs.

If I were to start this project over, I would get approval of my design within the first week or two
of the semester so I could get to work right away on designing the platform and ordering parts
for the robot. I would also construct a table of necessary parts for each stage of completion so
that I would not be waiting weeks to get a part necessary to take the next step. I might also have
decided to make a smaller robot that completed fewer tasks. I believe an autonomous vehicle
with four integrated tasks is too complicated for a first time robot builder. However, this
experience has made me want to build more robots in the future.

Chas	 Hoppe	
6634-‐2793	

19	
	

Documentation

Fred Martin, The 6.270 Robot Builder's Guide, MIT, Cambridge, MA, 1992.

Joseph Jones, Bruce Seiger & Anita Flynn, Mobile Robots: Inspiration to Implementation, 2nd
edition, A.K. Peters Publishers, Natick, MA, 1998.

Data Sheets:

Atmel ATmega128
SeattleRobotics.com CMUcam2 User Guide
Omron G5SB Relay
Xiamen Ocular GDM1602K LCD
Sharp IR GP2Y0A21YK
IFI Victor 884 Speed Controllers

Chas	 Hoppe	
6634-‐2793	

20	
	

Appendices

I. Spec Sheets

210-1010
- 10Nm stall torque actuator motor, LH
- 12V reversible
- Water resistant
- Weighs 1.3 pounds

Chas	 Hoppe	
6634-‐2793	

21	
	

II. Sample Code

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/sleep.h>

#include <string.h>

//#include <avr/pgmspace.h>

#include "sleep.h"

#include "LCD.h"

#include "ADC.h"

#include "PVR_Servos.h"

#define FOSC 16000000// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

typedef unsigned int u8;

volatile u8 temp;

volatile u8 i = 0;

volatile u8 cmudat[10];

volatile int tracking_flag = 0;

volatile int align = 0;

//***

//

// Initialize USART

//

//***

void USART_Init(unsigned int ubrr) {

 //

Chas	 Hoppe	
6634-‐2793	

22	
	

 // !!! IMPORTANT !!!

 //

 // ********** REMEMBER TO SET THE JUMPERS FOR BAUD RATE ON THE CMU CAMERA BOARD !! *******

 // Set baud rate registers

 UBRR0L = (unsigned char)ubrr;

 UBRR0H = (unsigned char)(ubrr>>8);

 //Set data frame format: asynchronous mode,no parity, 1 stop bit, 8 bit size

 UCSR0C = (0<<UMSEL0)|(0<<UPM1)|(0<<UPM0)|

 (0<<USBS)|(0<<UCSZ2)|(1<<UCSZ1)|(1<<UCSZ0);

 //Enable Transmitter and Receiver and Interrupt on receive complete

 UCSR0B = (1<<RXEN)|(1<<TXEN)|(1<<RXCIE);

 //enable global interrupts

 //set_sleep_mode(SLEEP_MODE_IDLE);

 sei();

}//end

//***

//

// USART Interrupt Handler

//

//***

// This code was written by Kyle Tripician (a previous student of IMDL)

ISR(USART0_RX_vect) {

 temp = UDR0;

Chas	 Hoppe	
6634-‐2793	

23	
	

 //FlashLight(2);

 // 0x3A = ':'

 // 0x20 = space

 // 0x09 = tab

 // anything less than 9 = other indicators like end of text, etc...

 // 0xFF = a byte received having a value of 255

 if(temp != 0x3A) {

 if(temp == 0x20 || i==10) {

 i=0;

 }

 else if(i==0){

 if(temp == 0xFF){

 cmudat[i]=temp;

 i++;

 }

 }

 else if(temp !=0x20 && i<10) {

 cmudat[i]=temp;

 i++;

 }

 }//if

}//end

//***

//

// Flash LED

//

//***

void FlashLight(int x){

 DDRB = 0b00000001;

Chas	 Hoppe	
6634-‐2793	

24	
	

 int i;

 for (i=0;i<x;x--){

 ms_sleep(100);

 PORTB = 0b11111111;

 ms_sleep(100);

 PORTB = 0b00000000;

 ms_sleep(100);

 }

}

//***

//

// Send a single byte to USART

//

//***

//Send a single byte of data

void uarttransmit(unsigned char data) {

 // Wait for empty transmit buffer

 while (!(UCSR0A & (1<<UDRE0))){}

 // Put data into buffer, sends the data

 UDR0 = data;

}

//***

//

// Send a string to USART

//

//***

// Send a given CR terminated string

void uartstring(unsigned char * myStringIn) {

 unsigned char *myString = myStringIn;

 unsigned char ch1;

Chas	 Hoppe	
6634-‐2793	

25	
	

 unsigned char gotNULL = 0;

 ch1= *myString++;

 while(!gotNULL){

 uarttransmit(ch1);

 ch1 = *myString++;

 if(ch1 == '\r'){

 gotNULL = 1;

 uarttransmit(ch1);

 }

 }

}

//***

//

// Display contents of an T Packet

//

//***

// Display an T packet

void displayTpacket() {

 u8 *mmx, mmy, lcx, lcy, rcx, rcy, pix, conf, packetName;

 // Display the packet vlaues

 packetName = cmudat[1]; // 'S' = 83, 'M' = 77, 'C' = 67, 'T' = 84

 mmx = cmudat[2];

 mmy = cmudat[3];

 lcx = cmudat[4];

 lcy = cmudat[5];

 rcx = cmudat[6];

 rcy = cmudat[7];

 pix = cmudat[8];

 conf = cmudat[9];

 ms_sleep(2000);

Chas	 Hoppe	
6634-‐2793	

26	
	

 lcdClear();

 lcdGoto(0,0);

 lcdString("Packet Name");

 lcdGoto(1,0);

 //if(cmudat[1] == 83) {

 // lcdString("Packet S");

 //}

 if(cmudat[1] == 77) {

 lcdString("Packet M");

 }

 else if(cmudat[1] == 67) {

 lcdString("Packet C");

 }

 else if (cmudat[1] == 84) {

 lcdString("Packet T");

 }

 else {

 lcdString("Packet ERROR!");

 }

 ms_sleep(3000);

 lcdClear();

 lcdGoto(0,0);

 lcdString("Middle Mass X");

 lcdGoto(1,0);

 lcdInt(mmx);

 ms_sleep(3000);

 lcdClear();

 lcdGoto(0,0);

 lcdString("Middle Mass Y");

 lcdGoto(1,0);

 lcdInt(mmy);

Chas	 Hoppe	
6634-‐2793	

27	
	

 ms_sleep(3000);

 lcdClear();

 lcdGoto(0,0);

 lcdString("Pixels");

 lcdGoto(1,0);

 lcdInt(pix);

 ms_sleep(3000);

 lcdClear();

 lcdGoto(0,0);

 lcdString("Confidence");

 lcdGoto(1,0);

 lcdInt(conf);

 ms_sleep(3000);

}

/**

*

* Initialize Modules: Sleep, LCD, USART, ADC, SERVOS

*

***/

void init_modules() {

 // Initialize modules: SLEEP, LCD, USART, ADC, SERVOS

 initSleep();

 //FlashLight(5);

 lcdInit();

 initADC();

 initServo();

 lcdString("Starting System");

 ms_sleep(2000);

 lcdClear();

 lcdString("Init USART");

Chas	 Hoppe	
6634-‐2793	

28	
	

 USART_Init(MYUBRR);

 ms_sleep(3000);

}

/***

*

* Initialize Camera

*

***/

void init_camera() {

 // Initialize the camera

 // Reset the camera with several RS commands

 for(int j=0; j<2; j++) {

 uartstring("RS \r");

 lcdClear();

 ms_sleep(200);

 lcdGoto(0,0);

 lcdString("Resetting Camera");

 ms_sleep(500);

 }

 // Turn on auto tracking LED

 uartstring("L1 1\r");

 ms_sleep(5000);

 // To apply a fluroscent band filter and auto lighting adjust

 // when working under fluroscent lighting, use the following command:

 uartstring("CR 45 7 18 44 5 255\r");

 // For normal and incandescent lighting, just use the following command:

Chas	 Hoppe	
6634-‐2793	

29	
	

 //uartstring("CR 18 44\r");

 // wait for 10 seconds to adjust to lighting conditions

 for(int j=0; j<10; j++) {

 ms_sleep(1000);

 }

 // Turn off auto lighting adjust

 uartstring("CR 18 40 19 32\r");

 // Turn off auto tracking LED

 uartstring("L1 2\r");

 // Indicate to user to prepare the target by flashing light and sending on LCD

 FlashLight(5);

 lcdClear();

 lcdGoto(0,0);

 lcdString("Hold target");

 ms_sleep(3000);

 // Set poll mode; 1 packet

 uartstring("PM 1\r");

 ms_sleep(100);

 // Set raw mode

 uartstring("RM 3\r");

 ms_sleep(100);

 // issue Track Color command for the color "Blue"

 //uartstring("TC 16 50 30 70 100 240\r");

 //ms_sleep(100);

 // display the command being sent

Chas	 Hoppe	
6634-‐2793	

30	
	

 lcdClear();

 lcdGoto(0,0);

 lcdString("Sending TW cmnd");

 ms_sleep(1000);

 // issue Track Window command

 uartstring("TW\r");

 ms_sleep(300);

}

/***

*

* Main program

*

***/

int main (void)

{

 lcdClear();

 lcdString("Chas Hoppe");

 lcdGoto(1,0);

 lcdString("ThirstQuencher");

 ms_sleep(3000);

 init_modules();

 DDRA = 0b00000000;

 DDRB = 0b11111111;

 init_camera();

Chas	 Hoppe	
6634-‐2793	

31	
	

 while(1)

 {

 if (align == 0);

 {

 if ((PINA & 0b00001001) == 0)

 {

 lcdClear();

 lcdString("Bump: Sides");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA & 0b00000110) == 0)

 {

 lcdClear();

 lcdString("Bump: Center");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

Chas	 Hoppe	
6634-‐2793	

32	
	

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA & 0b00000001) == 0)

 {

 lcdClear();

 lcdString("Bump: Right");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(50);

 moveServo2(-50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA & 0b00000010) == 0)

 {

Chas	 Hoppe	
6634-‐2793	

33	
	

 lcdClear();

 lcdString("Bump: Right Mid");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(50);

 moveServo2(-50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA & 0b00000100) == 0)

 {

 lcdClear();

 lcdString("Bump: Left Mid");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

 ms_sleep(2000);

Chas	 Hoppe	
6634-‐2793	

34	
	

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA & 0b00001000) == 0)

 {

 lcdClear();

 lcdString("Bump: Left");

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 else

 {

 int motor_l;

 int motor_r;

 int data,pixels,normal;

 lcdClear();

 lcdString("Sending cmnd");

 ms_sleep(1000);

 uartstring("TC \r");//77 63 56

Chas	 Hoppe	
6634-‐2793	

35	
	

 ms_sleep(100);

 data=cmudat[2];

 pixels=cmudat[8];

 normal=data-80;

 if (data != 0)

 {

 tracking_flag = 1;

 if(pixels<240)

 {

 if(5>normal && normal>-5)

 {

 lcdClear();

 lcdString("Center");

 motor_l=motor_r=25;

 moveServo1(motor_r);

 moveServo2(motor_l);

 ms_sleep(1000);

 moveServo1(-15);

 moveServo2(-15);

 }

 else if(normal>5)

 {

 lcdClear();

 lcdString("Left");

 motor_r=(normal)*(25/80);

 motor_l=-15;

 moveServo1(motor_r);

 moveServo2(motor_l);

 ms_sleep(1000);

 moveServo1(-15);

Chas	 Hoppe	
6634-‐2793	

36	
	

 moveServo2(-15);

 }

 else if (normal<-5)

 {

 lcdClear();

 lcdString("Right");

 motor_l=(-normal)*(25/80);

 motor_r=-15;

 moveServo1(motor_r);

 moveServo2(motor_l);

 ms_sleep(1000);

 moveServo1(-15);

 moveServo2(-15);

 }

 }

 else

 {

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-40);

 moveServo2(25);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 }

 else

 {

 lcdClear();

 lcdString("No Object!");

Chas	 Hoppe	
6634-‐2793	

37	
	

 motor_l=-40;

 motor_r=25;

 moveServo1(motor_r);

 moveServo2(motor_l);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 }

 if (tracking_flag == 0)

 {

 lcdClear();

 lcdString("Searching...");

 if (adcZero() > 50)

 {

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(50);

 moveServo2(-50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if (adcThree() > 46)

 {

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

Chas	 Hoppe	
6634-‐2793	

38	
	

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if (adcOne() > 35 && adcTwo() > 47)

 {

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-50);

 moveServo2(50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if (adcOne() > 35)

 {

 moveServo1(75);

 moveServo2(50);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 if (adcTwo() >47)

 {

Chas	 Hoppe	
6634-‐2793	

39	
	

 moveServo1(50);

 moveServo2(75);

 ms_sleep(2000);

 moveServo1(-15);

 moveServo2(-15);

 }

 }

 moveServo1(25);

 moveServo2(25);

 }

 if ((PINA && 0b10000000)==0)

 {

 align=1;

 moveServo1(-15);

 moveServo2(-15);

 do

 {

 moveServo1(25);

 moveServo2(-15);

 }while ((PINA && 0b01000000) != 0);

 moveServo1(-15);

 moveServo2(-15);

 }

 if ((PINA && 0b01000000)==0)

 {

 align=1;

 moveServo1(-15);

 moveServo2(-15);

 do

 {

Chas	 Hoppe	
6634-‐2793	

40	
	

 moveServo1(-15);

 moveServo2(25);

 }while ((PINA && 0b10000000) != 0);

 moveServo1(-15);

 moveServo2(-15);

 }

 if (align == 1);

 {

 moveServo3(100);

 ms_sleep(90000);

 moveServo3(0);

 moveServo4(100);

 ms_sleep(15000);

 moveServo4(0);

 PORTB = 0b00000010;

 ms_sleep(3000);

 moveServo3(-100);

 ms_sleep(30000);

 moveServo3(100);

 ms_sleep(30000);

 moveServo3(-100);

 ms_sleep(90000);

 moveServo3(0);

 moveServo1(-100);

 moveServo2(-100);

 ms_sleep(3000);

Chas	 Hoppe	
6634-‐2793	

41	
	

 moveServo1(-15);

 moveServo2(-15);

 ms_sleep(300);

 moveServo1(-40);

 moveServo2(25);

 ms_sleep(3000);

 moveServo1(-15);

 moveServo2(-15);

 align=0;

 }

 moveServo1(25);

 moveServo2(25);

 }

}

