

The Constant Gardener

Jose Jayma
The Constant Gardener

EEL5666: Intelligent Machine Design Laboratory
A. Antonio Arroyo, PhD
Eric M. Schwartz, PhD

Abstract: This document presents the design specifications and implementation of my
robot, The Constant Gardener, a robot that roams about on a table, avoiding the table
edge and finding plant pots. Once a pot is found, the moisture level of the soil is sampled
and The Constant Gardener determines whether to water the plant.

 2

Table of Contents

Executive Summary – pg 3
Introduction – pg 4
Integrated System – pg 4
Mobile Platform – pg 4
Actuation – pg 5
Sensors – pg 7
Behaviors – pg 12
Conclusions – pg 13
Appendix – pg 13

 3

Executive Summary

 The Constant Gardener is a robot that, in simple terms, waters potted plants on top
of a table. The behaviors it exhibits includes preventing itself from falling off of the
table, detecting a pot and centering about it, actuating an arm which mounts a moisture
sensor and grabbing the value and determining whether to water the plant based on the
output of that moisture sensor.
 In order to prevent itself from falling off of the table, whether round or
rectangular/square, The Constant Gardener uses four IR sensors mounted on the left,
right, front-left and front-right. The left and right IR sensors help to keep the platform
from approaching a table edge and the two front-mounted IRs prevent the platform from
falling off of a table in direct, forward moving approach.
 The two front-mounted IRs are also used to detect when a pot has been found.
They use an edge-detection algorithm to center about the pot, which makes the next
behavior simpler. After the pot has been centered, the moisture sensor arm is dipped into
the soil of the pot to determine whether the soil is moist or not.
 Once moisture level has been determined, there are two possible behaviors. The
first happens when the moisture sensor determines that the soil is dry/has not been
watered. In this case, the windshield washer pump blasts water into the plot for a period
of 1.25 seconds, and then the moisture sensor arm moves out of the way to allow the
robot to drive away. The other possible behavior is that the soil moisture sensor
determines the plant to have already been watered. In this case, The Constant Gardener
simply flashes its LEDs red and drives away.

 4

Introduction:

 There have been plant watering robots in previous semesters of EEL 5666.
WaterBot, a line-following robot, is an impressive example which used RFID tags to
recognize plant pots and a pump watering system for water delivery. I am going to
attempt to let my plant watering robot, The Constant Gardener, roam freely and find the
plant pots and deliver water using a windshield washer pump. The Constant Gardener
will also be able to determine whether a plant needs watering based on the output of a
soil moisture sensor.

Integrated System:

 The robot is a rectangular shaped, two wheeled robot driven by two servos. The
servos are placed along the long sides near the center of each side. This allows for ease
of control of turning. The robot has two platforms – a lower platform for mounting
control electronics (the microcontroller) and batteries and an upper platform which will
mount the water reservoir and the pump, as well as the arm for the moisture sensor. In
simpler terms, there is a wet platform and a dry platform, for safety of electronics.
 IR sensors are placed along the side walls and on the front of the platform for the
purpose of avoiding obstacles and prevent falling off of a table, a probable consequence
of free roaming. The front mounted IRs sense when a pot is near and uses edge detection
to center about that pot.
 Once a pot is found and centered, the moisture sensor arm is activated and dips
the end of the moisture sensor into the soil. Based on the moisture level of the soil, the
windshield washer pump is either activated if the soil is dry and waters the plant for
approximately 1.25 seconds, or the robot displays that the soil is moist (via the LCD and
LEDs) and drives away.

Mobile Platform:

The driving system will consist of two modified servos. Two casters are placed at
the center-front and center-rear of the platform in order to stabilize the platform and
provide smooth driving operation. The servos are placed at the two long sides of the
rectangular platform and are at the center of both sides. The result is predictable turning
that behaves slightly circular. Servos are being used because they are relatively
inexpensive and simple to deploy. They are slower than motors, which is a positive
aspect for a robot that carries water.
 The lower platform houses the microcontroller board as well as the batteries. This
shields them from any water that is accidentally sprayed back onto the robot. The upper

 5

platform can slide out to allow access for servicing the microcontroller and associated
electronics.

Figure 1 - A 3/4 view of the platform from the right side.

Actuation:

There are two mechanical features of The Constant Gardener – the watering
mechanism and the soil moisture sensor arm.

The watering mechanism consists of a water reservoir and a windshield washer
pump. The windshield washer pump is a 12 V, fairly typical washer pump commonly
found in automobiles. The water reservoir is an RC fuel tank that holds enough water for
approximately eight blasts of water from the windshield washer pump. The blast period
of the windshield washer pump lasts for 1.25 seconds, but can be easily changed within
the code.

 6

Figure 2 - The windshield washer pump is powered by a gigantic and heavy 12 V, 7 Ah battery. The
battery was inexpensive and worked well for my platform.

The arm for the soil moisture sensor is a feather-servo mounted wooden arm that
is approximately four inches in length. At the end of the arm is the moisture sensor,
mounted perpendicular to the arm. The length was chosen based on the centering
behavior of the front IR sensors.

 7

Sensors:

 IR sensors will be used for obstacle avoidance and for avoiding falling off of the
table/platform during demonstration. The TCS230 light frequency sensor will be used to
detect the color of the pots and IR sensors will be used to approach the pots for watering.
A moisture sensor will determine whether a plant needs to be watered or not. The
following are the data collected for the sensors so far.

IR sensor data

Table and Figure 1 represents the sensor output value for each IR sensor when an
object (my wallet) is placed at a measured distance.

Distance (in.) Left IR Right IR Back IR Front IR

1 157 156 157 155
1.5 142 137 127 139
2 117 107 103 115

2.5 94 96 88 95
3 81 77 74 80

3.5 69 70 65 70
4 63 60 61 62

4.5 53 54 51 55
5 48 45 48 51

5.5 45 43 44 47
6 41 40 41 42

6.5 36 37 39 40
7 36 33 35 36

Figure 3 - The output of each IR sensor when measuring an object set at various distances.

 8

The Constant Gardener
IR Distance Test

30

50

70

90

110

130

150

1 3 5 7

Distance (in.)

IR
 V

al
ue

 Left

Right

Back

Front

Figure 4- Under the lighting conditions of my apartment, this is the IR sensor output value when an
object is placed at various distances.

The following tables represent the “safe” range for the robot, which means there
is no obstacle and there is no table edge, under different lighting conditions in different
locations. Table 1 is my apartment, Table 2 is the IMDL lab and Table 3 is the Harris
Corp. Rotunda.

Position Safe Output Value

Front-Left 140~152
Front-Right 127~140

Left 45~55
Right 65~73

Table 1 - The IR sensor values for the lighting conditions inside of my apartment, under fluorescent
lighting.

Position Safe Output Value
Front-Left 128~158

Front-Right 115~150
Left 35~70

Right 55~70
Table 2 - The IR sensor values for the lighting conditions inside of the IMDL lab.

 9

Position Safe Output Value
Front TBD
Back TBD
Left 35~105

Right 35~105
Table 3 - The IR sensor values for the lighting conditions on the circular table of the NEB Harris
Corp. Rotunda.

Vegetronix Soil Moisture Sensor ***Special Sensor

 The soil moisture sensor used is from a company called Vegetronix and the model
number used is VG400. There exists a low voltage version for applications where the
sensor will be left in the soil for extended periods of time. The application for my robot
is an uneven sampling interval (it only samples when the pot is found), so the low voltage
version is not necessary. The sensor is shown in the figure below.

Figure 5 - The Vegetronix VG400 Soil Moisture Sensor.

 The intended purpose of the VG400 is to output a voltage which can be converted
into a Volumetric Water Content, which is the ratio of the volume of water to the volume
of material (in this case, soil). Vegetronix provides an equation for converting the
voltage output of the sensor to VWC, VWC= V*21.186 -10.381. Note that the equation is
linear, which means that conversion to VWC is unnecessary if determination of
“wetness” is all that is required. The following graph is provided by Vegetronix for the
VG400.

 10

Figure 6 - Image courtesy of Vegetronix. http://www.vegetronix.com/Products/VG400/

 Three tests were performed to determine the output from the VG400 Soil
Moisture Sensor. First, the output when the probe is in various environments is
tabulated. Second, the output when the probe is placed at various depths in very moist
soil, soil where the upper layer is moist and a cup of water is tabulated and graphed. The
probe has markings for various depths, starting at point A at 5 mm to point R at 90 mm of
depth. The third test is designed to observe any difference in the output of the sensor in
different water temperatures.

Environment Output
Air 16~18

Palm of my hand (open) 40
Palm of my hand (closed) 115~122
Dry Soil (fully immersed) 28

Damp Paper Towel 63~151 (scale by pressure)
In Air after Damp Paper Towel 16~34

Table 4 - Test 1. The output in various environments is tabulated.
.

 11

Figure 7 - Depth guidelines and letter markings from A to Z (5 mm to 90 mm)

Depth (mm) Pure Water Completely Moist
Soil

Upper Layer Moist
Soil

A – 5 21 27 21
B – 10 34 37 27
C – 15 40 46 35
D – 20 49 50 39
E – 25 52 54 42
F – 30 60 61 43
G – 35 68 68 46
H – 40 71 74 46
I – 45 80 81 47
J – 50 86 87 49
K – 55 90 91 51
L – 60 96 98 51
M – 65 99 99 57
N – 70 104 104 59
O – 75 110 110 60
P – 80 115 115 62
Q – 85 119 118 63
R - 90 127 124 65
Table 5 - Test 2. The outputs in three environments at various depths.

 12

VG400 Soil Moisture Sensor Output at Various Depths

20

40

60

80

100

120

5 15 25 35 45 55 65 75 85

Depth (mm)

S
en

so
r
O

ut
pu

t

Pure Water

Completely Moist Soil

Upper Layer Moist Soil

Figure 8 - The output of the VG400 at various depths. Note the similarities between pure water and
completely moist soil.

Depth (mm) Cold Standard Tap Hot
B – 10 31 32 33
Q – 85 113 113 113
Table 6 The output of the temperature test. The three temperature environments produced similar
or exact output from the sensor. We can conclude that temperature does not need to be considered
when taking readings.

Behaviors:

 Obstacle avoidance and staying on top of a table are the basic behaviors. These
two behaviors are implemented by the four IR sensors and the tabulated output for their
“safe” distances. The left and front-left IRs detect the table edge falloff for the left of the
robot and the right and front-right IRs do the same for the right of the platform. This
behavior has been successfully implemented and it works very well on both circular and
square/rectangular tables, as long as they are at least 15’’ wide.
 The next behavior is to detect the pot with either the front-left or front-right IRs
and use both for edge-detection to center the pot. Once the pot is centered, the next
behavior is to use the moisture sensor arm to dip the moisture sensor into the soil. This
behavior spawns one of the two following behaviors: either a) water the plant if the soil
moisture sensor output senses a low moisture or b) turn the LEDs red when the robot
senses that the soil is already moist and turn and drive away.
 The behaviors are implemented in the software included in the appendix of this
document.

 13

Conclusion:

 For most demonstrations performed with The Constant Gardener, the robot
performed very well and the audience was generally pleased with the watering
mechanism. The first demo day for IMDL proved to be very difficult because The
Constant Gardener began the day off by spinning in circles. Then, it began to show
behaviors that I had corrected for during development, such as stabbing the plant base
with the soil moisture sensor.
 An improvement can be made by utilizing real pot detection. I had intended to
use color sensors but they were not very cooperative. I believe the CMU cam can also
work well, but at an increased cost.

Appendix:

The following is the code used to implement the behaviors of The Constant Gardener.

#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR_Servos.h"
#include "sleep.h"
#include "LCD.h"
#include "ADC.h"

//IR's are left=zero, right=one, two=frontLeft, three=frontRight
//Servo1 is right, Servo2 is left, Servo6 is arm...

int main(void) {

//Initialize everything
initServo();
initSleep();
lcdInit();
initADC();
moveServo6(0);

//Mux, Relay, LEDs Init
DDRB |= 0b00011111;
DDRD |= 0b10000000;
DDRA |= 0b11000011;

//Tell the user what you are doing...
lcdString("Constant");
lcdGoto(1,0);
lcdString("Gardener Proto");
PORTA |= 0b10000001; //turn the LEDs red
PORTA &= ~(0b01111110);

 14

ms_sleep(5000);
PORTA |= 0b01000010; //turn the LEDs green
PORTA &= ~(0b10111101);
ms_sleep(5000);
PORTA |= 0b10000001; //turn the LEDs red again...
PORTA &= ~(0b01111110);
lcdClear();

//FORMER COLOR SENSOR CODE.
//FOR THE COLOR SENSORS
//S0 = A7, S1 = A6, OE3 = A5
//S3 = B7, S2 = B6, OUT = B5

//For GREEN, B6 and B7 HIGH

//init data direction registers
//DDRA |= 0b11100000;
//DDRB |= 0b11000000;
//DDRB &= ~(0b00100000);
//set data
//PORTA |= 0b11000000;
//PORTA &= ~(0b00100000);
//PORTB |= 0b00000000;
//PORTB &= ~(0b11000000);

PORTB |= 0b00000000;
PORTB &= ~(0b00011111);
while (1) {
 if ((adcZero()>35 && adcZero()<105) && (adcOne()>35 && adcOne()<105)
&& (adcTwo()>40 && adcTwo()<105) && (adcThree()>40 && adcThree()<105)) {
 lcdString("Clear");
 ms_sleep(250);
 moveServo1(50);
 moveServo2(-50);
 lcdClear();
 }

 else if ((adcZero()<35 || adcZero()>105) && (adcOne()>35 &&
adcOne()<105) && (adcTwo()>40 && adcTwo()<105) && (adcThree()>40 &&
adcThree()<105)) {
 lcdString("Left danger!");
 moveServo1(-50);
 moveServo2(-50);
 ms_sleep(1500);
 lcdClear();

 15

 }

 else if ((adcZero()>35 && adcZero()<105) && (adcOne()<35 ||
adcOne()>105) && (adcTwo()>40 && adcTwo()<105) && (adcThree()>40 &&
adcThree()<105)) {
 lcdString("Right danger!");
 moveServo1(50);
 moveServo2(50);
 ms_sleep(1500);
 lcdClear();
 }

 else if ((adcZero()>35 && adcZero()<105) && (adcOne()>35 &&
adcOne()<105) && (adcTwo()<40) && (adcThree()>45 && adcThree()<105)) {
 lcdString("FL danger!");
 moveServo1(-50);
 moveServo2(-50);
 ms_sleep(1500);
 lcdClear();
 }

 else if ((adcZero()>35 && adcZero()<105) && (adcOne()>35 &&
adcOne()<105) && (adcTwo()>40 && adcTwo()<105) && (adcThree()<40)) {
 lcdString("FR danger!");
 moveServo1(50);
 moveServo2(50);
 ms_sleep(1500);
 lcdClear();
 }

 else if ((adcTwo()>107)) {
 PORTA |= 0b01000010;
 PORTA &= ~(0b10111101);
 lcdString("FL Found!");
 moveServo1(0);
 moveServo2(0);
 ms_sleep(1500);
 lcdClear();
 //while (adcThree()<120) {
 // moveServo1(10);
 // moveServo2(10);
 // ms_sleep(100);
 //}
 lcdString("Centered!");
 moveServo1(10);
 moveServo2(10);

 16

 ms_sleep(400);
 moveServo1(0);
 moveServo2(0);
 moveServo6(80);
 ms_sleep(5000);
 lcdClear();
 PORTB |= 0b00001000;
 PORTB &= ~(0b00010111);
 ms_sleep(800);
 if (adcThree()<30) {
 PORTA |= 0b01000010;
 PORTA &= ~(0b10111101);
 PORTD |= 0b10000000;
 ms_sleep(1200);
 PORTD |= 0b00000000;
 PORTD &= ~(0b10000000);
 }
 else {
 lcdString("Not Watering");
 PORTA |= 0b10000000;
 PORTA &= ~(0b01111111);
 ms_sleep(1000);
 }
 ms_sleep(5000);
 lcdClear();
 moveServo6(0);
 ms_sleep(1000);
 PORTB |= 0b00000000;
 PORTB &= ~(0b00011111);
 lcdString("Moving");
 moveServo1(-100);
 moveServo2(-100);
 ms_sleep(2000);
 }

 else if ((adcThree()>107)) {
 PORTA |= 0b01000010;
 PORTA &= ~(0b10111101);
 lcdString("FR Found!");
 moveServo1(0);
 moveServo2(0);
 ms_sleep(1500);
 lcdClear();
 while (adcTwo()<105) {
 moveServo1(-10);
 moveServo2(-10);

 17

 ms_sleep(100);
 }
 lcdString("Centered!");
 moveServo1(0);
 moveServo2(0);
 moveServo6(80);
 ms_sleep(5000);
 lcdClear();
 PORTB |= 0b00001000;
 PORTB &= ~(0b00010111);
 ms_sleep(800);
 if (adcThree()<30) {
 PORTA |= 0b01000010;
 PORTA &= ~(0b10111101);
 PORTD |= 0b10000000;
 ms_sleep(1200);
 PORTD |= 0b00000000;
 PORTD &= ~(0b10000000);
 }
 else {
 lcdString("Not Watering");
 PORTA |= 0b10000001;
 PORTA &= ~(0b01111110);
 ms_sleep(1000);
 }
 ms_sleep(5000);
 lcdClear();
 moveServo6(0);
 ms_sleep(1000);
 PORTB |= 0b00000000;
 PORTB &= ~(0b00011111);
 lcdString("Moving");
 moveServo1(-100);
 moveServo2(-100);
 ms_sleep(2000);
 }

 else {
 moveServo1(-50);
 moveServo2(-50);
 }

}

return 0;
}

