

Robo-Dumpster:

The Autonomous Garbage Truck

by
Alan Hamlet

University of Florida

EEL5666
Intelligent Machine Design Lab

Instructors:
Dr. Arroyo

Dr. Schwartz

TA’s:
Mike Pridgen

Thomas Vermeer

 2

Table of Contents

Abstract…………………………………………………………………………………...3

Introduction………………………………………………………………………………4

Integrated System………………………………………………………………………..5

Mobile Platform………………………………………………………….........................6

Actuation………………………………………………………………….........................7

Sensors……………………………………………………………………........................8

Behaviors…………………………………………………………………………………9

Experimental Layout and Results……………………………………………………..10

Conclusion.……………………………………………………………………………...11

Appendix………………………………………………………………………………..12

 3

Abstract

 The goal of this project is to design and build an autonomous mobile robot that
performs a relatively simple task. The robot must demonstrate obstacle avoidance
behaviors as well as incorporate a special sensor. This paper details the design of Robo-
Dumpster, The Autonomous Garbage Truck, an autonomous mobile robot that searches
for full garbage cans, empties them into its’ on board receptacle, and then dumps the
contents of the on board receptacle into a designated garbage area when it is full. How
the robot works, the behaviors of the robot as well as the sensors, actuators and mobile
platform used are explained.

 4

Introduction

 Robo-Dumpster is a proof-of-concept robot that behaves much like a normal
garbage truck but is completely autonomous. This could be used in places such as
grocery stores, amusement parks or even in neighborhoods to save money that would
otherwise have to go toward paying employees to do this tedious and unpleasant job. This
robot could work 24 hours a day 7 days a week for only what it costs to maintain it and
the batteries used to power it. Any jobs lost would be made up for in the industries
building and maintaining these robots.

 The Robo-Dumpster seeks out garbage cans that are full using a CMU camera.
The robot empties the cans into its’ own on board container until it that container is full.
Then, using the CMU camera, it searches for the designated garbage collection area
where it then dumps the garbage and continues searching for full garbage cans.

 5

Integrated System

 The robot is controlled by a Pridgen Vermeer Robotics Xmega128
microcontroller board. The board speed is 32 MHz and has a RISC based 8 bit core as
well as 12 PWM signals. The robot’s sensors make use of the board’s analog to digital
converter ports and the CMU camera uses one of the RS-232 serial ports. Five PWM
signals are used; two are sent to DC motors and three are sent to servo motors. The DC
motors use a Sabertooth regenerative dual channel motor controller from Lynxmotion in
order to control their speed and direction. The microcontroller receives data from the
sensors and based on that data instructs the actuators to take the appropriate action. The
robot also has an LCD screen to provide visual feedback on what it is doing. All of the
robot’s systems are powered by six 1.2 volt Nickel-metal-hydride rechargeable batteries.

Figure 1 - Integrated system block diagram.

 6

Mobile Platform

 The mobile platform needs to allow the robot to move with an acceptable level of
speed and agility over the appropriate terrain. The mobile platform of the Robo-Dumpster
consists of two front wheels, each driven by a 12 volt DC gear head motor, and a rear
caster. The DC motors have 10 kg-cm of stall torque and operate at speeds up to 253
rpm. Since the robot is meant to operate on smooth terrain and will not be moving a large
amount of weight, the size of the motors is more than enough to move the robot at an
acceptable speed. The wheels are 2.13” diameter rubber to increase traction and prevent
slippage. The wheel/motor assemlies are mounted to a 7”x”7 piece of plywood 1/8”
thick.

 The two DC motors in front allow the robot to operate with differential steering.
By having the two wheels drive in opposite directions the robot can perform a nearly zero
radius turn. The motors are controlled by a Sabertooth regenerative dual channel motor
controller.

 7

Actuation

 In addition to the DC motors for propulsion, the Autonomous Garbage Truck will
also have three servos for actuators. The arm that grasps the garbage cans and dumps the
contents of the can into the robot’s bin will consist of two servos. One servo is for
gripping the garbage can and one is for raising the arm. The third servo will be used to
dump the contents of the robot’s bin into the garbage collection area. For raising the arm
I am using a HiTec HS-815BB servo due to the high torque demand for the task. The
servo has a stall torque of 343 oz.-in. and 140° rotation. For both the gripper on the
robot’s arm and the dumping mechanism I am using a HiTec-485HB servo with 83 oz.-in
of torque and 90° rotation.

Figure 2 – Dumping mechanism actuated by a HiTec-485HB servo.

 8

Sensors

 The Autonomous Garbage Truck uses 2 IR sensors for obstacle avoidance; one on
the front left side and one on the front right side. This enables the robot to ‘see’ when it is
approaching an object and turn away from it. The robot is also equipped with a short
range IR sensor placed on the front center of the robot to detect when the garbage cans
are close enough to be picked up.

 My special sensor is a CMUcam 1 used to track the garbage cans as well as the
green trash collection area. The garbage cans are a bright red for easy tracking. The
CMUcam is programmed to search for the centroid of a blob of red while the robot is
looking for full garbage cans. The camera detects the garbage cans and the robot will
drive toward the can and empty its contents. When the robot needs to empty its containers
contents, the CMUcam will be tracking green. Once the camera sees green, the robot will
drive up to the garbage collection area, turn around and dump its’ container.

 9

Behaviors

 When the Autonomous Garbage Truck is turned on it will go through a quick
calibration routine and then begin scanning for garbage cans to be emptied. If no full cans
are seen in its’ current position the robot will move to a new position while obstacle
avoiding and scan the area again. Once a full garbage can is located the robot will drive
up to and grasp the can with its arm, raise the arm emptying the contents of the can into
the robot’s container, and then set the garbage can back down. The Autonomous garbage
truck will then scan again repeating this process 2 times until its container is full. Then
the robot will scan for the green garbage collection area. When the CMUcam sees the
collection area, the robot will approach it until the IR sensors tell the robot it is close
enough, turn around, and back up. Then the robot will dump the trash out and continue
the search for full trash cans.

 The Robo-Dumpster most basic behavior is obstacle avoidance. This behavior is
programmed to be done at all times. The more sophisticated behaviors such as finding the
garbage can and picking it up are overlaid on the basic behavior of obstacle avoidance.
This means that even if Robo-Dumpster sees a full trash can and is driving toward it to
pick it up, the robot will still avoid obstacles that get in its way.

 10

Experimental Layout and Results

 In order to prevent any outside interference from color sources in the audience I
constructed an arena for the Robo-Dumpster to be demonstrated. The two garbage cans
were placed at one end of the arena and the green garbage collection area in the corner on
the other end. The garbage cans were filled with ping-pong balls to represent garbage.

 The Robo-Dumpster successfully and consistently emptied the two garbage into
its bin and then dumped the entire load into the garbage collection area. The
demonstration successfully demonstrated the effectiveness of an autonomous garbage
truck.

 11

Conclusion

 The Robo-Dumpster is a proof-of-concept robot that could save many companies
and the government a lot of money. A robot that completely autonomously finds and
empties full trash cans would be cheaper and more reliable than a human. This would not
negatively affect the economy though since jobs in the new industries of building and
maintaining these robots would emerge, so everybody wins.

I have learned a lot from designing and building the Robo-Dumpster. The
integration of many systems working together to perform even a simple task such as this
is quite complex. It takes detailed mechanical and electrical engineering designs together
to get the many parts to work in harmony. I have learned many intricacies about robots
that I never even thought about before.

 After a semester of designing and building, Robo-Dumpster successfully locates
trash cans and dumps their contents into its’ container. When the dumpster is full, the
robot locates the collection area and dumps the load there all while practicing obstacle
avoidance.

 12

Appendix

Robo-Dumpster code
Functions:

#include <avr/io.h>
#include "usart.h"
#include "global.h"

int ArmPosition;
int CansEmptied;

int MidIR(){
 int sum=0;
 int i=0;
 while(i<4){
 sum=sum+ADCA5();
 i++;
 }
 sum=sum/4;
return(sum);
}

int LeftIR(){
return(ADCA0());
}

int RightIR(){
return(ADCA3());
}

void Straight(){
 ServoD1(-50);
 ServoD0(50);
}

void LTurn(){
 lcdData(0x01);
 lcdString("Avoiding Right");
 lcdGoto(1,0);
 lcdString("LeftIR: ");
 lcdInt(LeftIR());
 int i=49;
 while(i>-50){
 ServoD0(i);
 delay_ms(1);

 13

 i--;
 }
}

void RTurn(){
 lcdData(0x01);
 lcdString("Avoiding Left");
 lcdGoto(1,0);
 lcdString("RightIR: ");
 lcdInt(RightIR());
 int i=-49;
 while(i<50){
 ServoD1(i);
 delay_ms(1);
 i++;
 }
}

void Backup(){
 lcdData(0x01);
 lcdString("Backing Up");
 int i=50;
 int j=-50;
 while(i>-50){
 ServoD0(i);
 ServoD1(j);
 delay_ms(5);
 i--;
 j++;
 }
 delay_ms(200);
 ServoD0(50);
 delay_ms(500);
}

void Backup1(){
 lcdData(0x01);
 lcdString("Backing Up");
 int i=50;
 int j=-50;
 while(i>-50){
 ServoD0(i);
 ServoD1(j);
 delay_ms(5);
 i--;
 j++;

 14

 }
 delay_ms(200);
 ServoD0(50);
 delay_ms(1000);
}

void Backup2(){
 lcdData(0x01);
 lcdString("Backing Up");
 int i=0;
 int j=0;
 while(i>-50){
 ServoD0(i);
 ServoD1(j);
 delay_ms(5);
 i--;
 j++;
 }
 delay_ms(500);
 ServoD0(50);
 delay_ms(1000);
}

void ArmUp(){
 if(ArmPosition!=95){
 ArmPosition=-44;
 while(ArmPosition<95){
 ServoC0(ArmPosition);
 delay_ms(20);
 ArmPosition++;
 }
 delay_ms(1000);
 }
}

void ArmDown(){
 if(ArmPosition!=-45){
 ArmPosition=90;
 while(ArmPosition>-45){
 ServoC0(ArmPosition);
 delay_ms(15);
 ArmPosition--;
 }
 }
}

 15

void Open(){
 ServoC1(100);
}

void Close(){
 ServoC1(-20);
}

void Dump(){
 ServoD0(-40);
 ServoD1(-40);
 delay_ms(4600);
 ServoD1(40);
 delay_ms(1000);
 ServoD1(0);
 ServoD0(0);
 int i=90;
 ServoC0(60);
 while(i>-20){
 ServoC3(i);
 delay_ms(10);
 i--;
 }
 delay_ms(1000);
 while(i<90){
 ServoC3(i);
 delay_ms(10);
 i++;
 }
 CansEmptied=0;
 int p=0;
 while(p<100){
 ServoD1(-50);
 ServoD0(50);
 Avoid();
 p++;
 }
}

void PanRight(){
 ServoD1(0);
 /*int speed=(MX-58);
 if(speed<23){
 ServoD0(15);
 ServoD1(20);

 16

 }
 else{
 ServoD0(speed);
 ServoD1(speed);
 }*/
}

void PanLeft(){
 ServoD0(0);
 /*int speed=(58-MX);
 if(speed<23){
 ServoD0(-15);
 ServoD1(-23);
 }
 else{
 ServoD0(-speed);
 ServoD1(-speed);
 }*/
}

void Stop(){
 ServoD1(0);
 ServoD0(0);
}

void Straight1(){
 ServoD1(-24);
 ServoD0(20);
}

void Straight2(){
 ServoD1(-40);
 ServoD0(40);
}

void Search(int cnt){
 lcdData(0x01);
 lcdString("Searching");
 if(cnt<70 && MX==0){
 ServoD0(30);
 ServoD1(30);
 }
 if(cnt>=70 && MX==0 && Avoid()==0){
 ServoD1(-50);
 ServoD0(50);
 Avoid();

 17

 }
}

int Avoid(){
 if(LeftIR()>=2900 && RightIR()<2900){
 RTurn();
 return(1);
 }
 else if(LeftIR()<2900 && RightIR()>=2900){
 LTurn();
 return(1);
 }
 else if(LeftIR()>=2900 && RightIR()>=2900){
 Backup();
 return(1);
 }
 else
 return(0);
}

void EmptyCan(){
 Stop();
 ArmDown();
 Straight1();
 delay_ms(2500);
 Stop();
 Close();
 delay_ms(300);
 ArmUp();
 delay_ms(300);
 //Shake();
 delay_ms(300);
 ArmDown();
 Open();
 delay_ms(300);
 ArmUp();
 delay_ms(300);
 Backup2();
 CansEmptied++;
}

 18

Robo-Dumpster main code:

int main(){
 xmegaInit(); //setup XMega
 delayInit(); //setup delay functions
 ServoCInit(); //setup PORTC
Servos
 ServoDInit(); //setup PORTD
Servos
 ADCAInit(); //setup
PORTA analong readings
 lcdInit(); //setup LCD
on PORTK //display "PV Robotics" on top line (Line 0) of LCD
 USARTInit(); //move LCD cursor to
the second line (Line 1) of LCD
 lcdGoto(0, 0);
 lcdString("Hello! I'm ");
 lcdGoto(1,0);
 lcdString("Robo-Dumpster.");
 CansEmptied=0;
 int cnt=0;
 int cnt1=0;
 ServoC3(90);
 delay_ms(1500);
 while(1){
 if(cnt==100)
 cnt=0;
 if(cnt1==100)
 cnt1=0;
 if(CansEmptied<2)
 {
 TrackColor("TC 100 245 0 50 0 50\r");
 if(MX==0 && MY==0){
 Search(cnt);
 cnt++;
 }
 else{
 lcdData(0x01);
 lcdString("Locating cans");
 lcdGoto(1, 0);
 lcdString("X: ");
 lcdInt(MX);
 Stop();
 Open();
 if(0<=MX<=45){
 Straight1();

 19

 PanLeft();
 }
 if(MX>=55 && MX<=80){
 Straight1();
 PanRight();
 }
 if(MX>45 && MX<55){
 if(LeftIR()<2900 && RightIR<2900 &&
MidIR()<1900)
 Straight2();
 else
 Straight1();
 if(MidIR()>=1900)
 EmptyCan();
 }
 }
 }
 else if(CansEmptied=2)
 {
 TrackColor("TC 0 50 100 150 0 50\r");
 if(MX==0 && MY==0){
 Search(cnt1);
 cnt1++;
 }
 else{
 lcdData(0x01);
 lcdString("Dumping");
 lcdGoto(1, 0);
 lcdString("X: ");
 lcdInt(MX);
 if(0<=MX<=40){
 Straight1();
 PanLeft();
 }
 if(MX>=60 && MX<=80){
 Straight1();
 PanRight();
 }
 if(MX>40 && MX<60){
 if(LeftIR()>2100 && RightIR()>2100)
 Dump();
 else
 Straight2();
 }
 }
 }/*

 20

 Open();
 //ArmDown();
 TrackColor("TC 150 245 0 50 0 50\r");
 lcdData(0x01);
 lcdString("MX: ");
 lcdInt(MX);
 lcdGoto(1,0);
 lcdString("MidIR: ");
 lcdInt(MidIR());
 delay_ms(400);*/
 }
}

