

Final Report

Crawford Hampson

“Emerson”

April 20, 2010

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Instructors: Dr. A. Antonio Arroyo & Dr. Eric M. Schwartz

TAs: Mike Pridgen & Thomas Vermeer

Table of Contents

Abstract...3
Executive Summary...4
Introduction & Purpose...5
Integrated System...5
Mobile Platform..6
 Structure..6
 Actuators...7
Sensors..7
Behavior...8
Conclusions & Future Work...9
Appendix A: Code

Abstract
 This paper describes “Emerson,” a robot designed to autonomously find and plug itself into wall
outlets. Emerson is built around a circular planform with differential drive wheels. Bump and IR
sensors are used for navigation. Battery voltage is monitored, and a number of subsystems control the
various operations. Emerson is equipped with a two-axis linear actuator stage which is used to
manipulate the plug. While at present plug-finding behavior is intermittent, work is ongoing to make
Emerson a reliably self-reliant robot.

Executive Summary

Robot Name: “Emerson”

Robot Designer: Crawford Hampson

Purpose: Automously find and plug into electrical wall sockets

Microcontroller: Pridgen-Vermeer Robotics Board

Battery: 1 x 6-Cell Rechargable AA NiMH

Motors: 2 x 24 V Merkle-Korff Gearhead Motors

Motor Drivers: 1 x Sparkfun 1A Dual TB6612FNG
 1 x SN754410 H-Bridge Chip

Sensors: 2 x Sharp GP2Y0A21YK Medium-range IR Sensors

2 x Sharp GP2D120 Short-Range IR Sensors
4 x Radio Shack #275-017 “SPDT Switch with 3/4” Roller Lever.”
Battery Voltage Monitoring Circuit (Voltage Divider)
Plug Power Sensor (Optoisolator)
Electromagnetic Sensor (Greenlee Noncontact Voltage Detector)

Actuators: Z-Axis Linear Actuator (Stepper Motor Driven)
 Y-Axis Linear Actuator (Hacked Servo Driven)
 Antenna Switching System (Low-Voltage Relay)

Introduction & Purpose
 “Emerson,” named for the famous author of “Self-Reliance,” is designed to do just as its
namesake advocated – rely on its own abilities to provide that which robots need most to continue
functioning, electrical power. It is intended to seek out electrical wall outlets and plug itself into them.
Emerson roams autonomously, avoiding obstacles, until it detects that its battery voltage has dropped
below a critical threshold. At this point, the robot finds and begins following a wall until, using an
electromagnetic field sensor, it detects a wall outlet. The robot then stops and, using a Y-Z stage
actuating a plug, finds the outlet precisely and plugs itself in. This report will describe the mobile
platform that supports this functionality, the sensors used, the charging subsystems, the electromagnetic
sensor interface, and the software-based behaviors Emerson is currently capable of.

Integrated System

PVR
Board

Motor
Controller

Gearhead
Motor

Gearhead
Motor

Z-Axis
Actuator

H-Bridge
Driver

Y-Axis
Actuator

Battery

Battery
Charger

Switching
Harness

7.5 V
Adaptor

Front IR
Sensors

Side IR
Sensors

EM Sensor Battery
Voltage
Monitor

LCD

Bump
Sensors

Antenna
Switcher

Mobile Platform

 Figure 1 Figure 2

Structure
 Emerson's platform is an approximately one-foot diameter circle, with two large gearhead
electric motors at either side of the circle's centerline providing locomotion (see Figures 1 & 2). These
drive motors are each directly attached to a three inch diameter plastic wheel with rubber traction soles.
Two wheel casters along the centerline oriented ninety degrees from the drive motors provide balance.
The battery is mounted underneath the main platform, and the PVR board controlling the robot is
attached to the platform just aft of center. Two aluminum plates are mounted to the front of the robot,
attached to four bump sensor switches. Based on an idea presented by Professor Arroyo in class, these
bump sensors are wired into a resistor array and connected to one of the analog inputs of the PVR
board; as each is pressed, or as different combinations are pressed simultaneously, different voltages
appear on the output line. Two Sharp medium-range infrared sensors are attached to adjustable mounts
on either side of the robot, just inboard from the wheels. The battery is connected to a switching
harness board which contains a circuit I designed to, upon command from the PVR board, switch the
battery pack over to the battery charger and the microcontroller over to a nine volt AC-DC power
supply. This is done using two double-pole double-throw relays. A 4700 µF capacitor across the PVR
power supply terminals provides constant power to the PVR board during the relays' momentary
switching period.

Actuators
In order to both sense the socket while driving past and precisely locate the hot line of the plug

for final alignment, Emerson has a switchable antenna system. Two different antenna styles were used:

a flat plate approximately two inches on a side provides large-scale sensing, while an approximately
two millimeter metal circle provides high-resolution sensing. The large antenna is affixed to the flat
face of the plug, with two holes through the center to allow passage for the plug tines, the bases of
which have been insulated. I based this design off of the Intel robot “Marvin.”1 A small hole drilled
through the antenna plate directly above the hot tine of the plug allows passage of the small antenna,
which is attached to a flexible wire and extends approximately three millimeters past the large antenna.
The leads from the small and large antennas go to the normally closed and normally open lines of a
small-signal relay, while the wire connected to the detector’s antenna input goes to the common. A
3904 BJT transistor controlled by one of the I/O ports on the PVR board switches the flow of current
through the relay coil.

To actuate the plug, a Y-Z stage is attached to the top of the tower extending from the mobile
platform. X-axis movement is left to the main drive motors. The two axis stage consists of two linear
motors using threaded rod and an aluminum guide rod. The Z-axis actuator, which moves the plug into
and out of the socket, is driven by a large stepper motor, controlled using an H-bridge chip connected
to the PVR board. I used a page from the web site Instructables as a reference while building this.2 The
Y-axis is driven by a hacked servo. The Y-axis actuator, while functional, is not currently
implemented, though some placeholder code exists. At the moment Emerson relies on being pre-set to
the socket height.

Sensors
 The simplest sensors used on this robot are its bump sensors, each of which uses a Radio Shack
#275-017 “SPDT Switch with 3/4” Roller Lever.”3 These are connected using a resistor ladder as
Professor Arroyo described in class, allowing four bump switches to be detected using a single analog
in line on the PVR board.
 The primary obstacle avoidance sensor used is the Sharp GP2Y0A21YK.4 It is the medium
range model, with an approximately 80 cm maximum range. Two are mounted on Emerson, both set
far enough back on the platform such that the approximately 10 cm dead zone in front of the sensor is
taken up by the robot. I initially had great difficulty getting this sensor to work correctly, with a very
strange error – it would output a declining voltage as an object moved from approximately 10 cm to
approximately 150 cm in front of it, at which point the voltage would begin climbing again until
reaching a maximum at approximately 300 cm. I eventually determined, with the help of the TAs and
other students, that this was a strange side effect of using a 3.3V supply for the sensor, when it required
a 5V supply. Upon properly supplying the sensor, it began operating normally. Additionally, the PVR
board’s analog inputs needed to be reset to a 0V to 5V range. This is done by opening the PVR.h code
and setting the ADCA_REFCTRL variable to 0x10, then wiring analog input 1 to the five volt source
on the servo lines.

Power from the plug is split between the AC-input on the hobby battery charger and an
adjustable AC to DC adaptor set to 7.5 V. Voltage on the AC adaptor’s output is currently sensed with
an optoisolator, though this not really necessary given that that voltage is used to power the PVR board
when connected to the wall.
 The electromagnetic sensor presented the greatest difficulty of any of the sensors used, and
ultimately was the element preventing Emerson from being fully operational by Media Day. Initially, I
experimented a number of circuits I found on the internet designed to detect wires behind walls, but I
did not have a great deal of success. Later, I attempted to use the live wire sensor embedded in a

1. Paper available at http://www.bdm.cc/pubs/plugin.pdf.
2. http://www.instructables.com/id/Drive-a-Stepper-Motor-with-an-AVR-Microprocessor/
3. Available at http://www.radioshack.com/product/index.jsp?productId=2049719.
4. Available at http://www.sparkfun.com/commerce/product_info.php?products_id=242.

Stanley stud finder. While I was able to tap into the IC lines that were triggered when an
electromagnetic field was detected, the sensor itself turned out to be insufficiently sensitive, and
additionally used an inconvenient voltage. I then attempted to build a custom op amp circuit, following
the lead of the group which built Marvin, an Intel robot which can plug itself into walls.5 While I could
detect signals fairly well on the bench, integrating it with the mobile platform proved extremely
difficult. The inconsistent power supply and requirement for a virtual ground meant that the available
voltage was insufficient to sufficiently amplify the signal. After this attempt failed, I purchased an
adjustable electrician’s live wire detector,6 which has proved more successful than the previous
methods. However, difficulties with noise initially made detection of the socket nearly impossible. The
construction of a Faraday cage around the entire sensor unit and plug assembly and the use of bypass
capacitors helped this problem, but the noise problem was not gone, and difficulties with providing a
consistent power supply remained.

An additional important part of Emerson’s plug-finding behavior is the ability to follow walls.
To do this, Emerson is equipped with two Sharp GP2D120 short range IR sensors which face to the
left.

Behavior
 The software Emerson is currently equipped with allows it to navigate with reasonable success
in the environment of an academic building. The infrared sensors are sufficient to detect large
obstacles, such as walls and other broad obstacles, and stop the robot before a collision occurs. As there
are two such sensors, the robot is able to differentiate between obstacles to its left or right, and turn
accordingly. If an obstacle is detected by both sensors, the robot at this point always turns right, but
will eventually turn randomly. Because of its circular, symmetrical design, it is capable of rotating
three hundred and sixty degrees in place. In order to prevent smaller or lower obstacles from
obstructing the robot's progress, two aluminum plates mounted to bump sensor switches are attached to
the front of the robot. Additionally, as the motors are fairly strong for its weight, the robot can drive
over small obstacles such as door sills. The robot also uses a fuzzy logic speed control system, wherein
the robots forward drive speed is controlled by the distances to objects reported by the infrared sensors.
Thus, the robot will slow its forward progress if it “sees” something in its path, even if that object is not
within the critical stopping distance to trigger its obstacle avoidance behavior.
 The power seeking behavior mode consists of switching to the large antenna, activating the
wall-following algorithm while operating the bump sensors, and checking for socket fields. The
infrared sensors are disabled, as they face slightly outward and tend to be triggered by the proximity of
the wall. This should not prove to be too large a problem, as the wall-following speed is significantly
below Emerson’s normal speed. In order to combat the noise problem, sensor readings from the
detector are averaged with the previous measurements weighted more strongly than the current one.
When a socket is detected, Emerson stops and enters its plug-alignment routine. After switching to the
small antenna, the drive motors are driven forward for very short bursts, stepping forward about a half-
centimeter at a time. At each point, a measurement is taken from the electromagnetic field detector.
When eight measurements have been taken, the largest measurement is found, and Emerson steps back
to that point. The detector is turned on again, and if a field is detected, the Z-axis stepper motor is
engaged, constantly checking for power on the plug. When power is detected, the stepper motor is

5. See Note 1
6. Available at

http://www.mygreenlee.com/GreenleeDotCom/Products/main.shtml?greenlee_category_id=6&product_categ
ory=162&adodb_next_page=1&adodb_next_page=2&portalProcess_2=showGreenleeProductTemplate&upc
_number=12727.

stopped and Emerson enters charging mode. At the moment this is simply timed, but eventually the
output of the charger status LED will be captured in order to determine directly when the batteries are
charged. The switching harness is triggered, and the batteries are switched to the charger, while the
microcontroller is switched to the adjustable 7.5 V AC adaptor. The motor driver’s power lines are left
unconnected, as the main drive motors are not usable until the plug is disengaged. When time is up, the
stepper motor is driven backwards until the plug power sensor shows no power on the line. The flag for
powerseeking mode is disengaged, and obstacle avoidance mode resumes.
 Unfortunately, much of the powerseeking behavior does not work consistently, or occasionally
at all. Getting a stable, reliable signal from the detector is difficult, especially when the battery voltage
is low, and difficulties with the wall-following algorithm have made socket-finding even more
problematic. Hopefully, with more fine-tuning of the code and tweaking of the detector, this can be
fixed.

Conclusion & Future Work
 While Emerson is not exactly a success at this point, he has a lot of potential. The mobile
platform is very solid, and all of the infrastructure for detecting and utilizing wall sockets is present.
With more work and refining, full operation seems entirely possible. Eventually, I would like to replace
the hacked live wire detector with a sensor circuit designed using some of the experiences gained here
as a guide. The key to successful operation here is fine-grained detection of electromagnetic fields, and
to do that an integrated, custom sensor is really needed. As an autonomously self-recharging robot
platform is a valuable and versatile thing to have, I intend to continue work on Emerson. It could serve
as a base for any number of interesting and useful projects, and with a bit more work it will be able to
fulfill the promise it has now.

Appendix A: Code

#include <avr/io.h>
#include "PVR.h"

/*****************
Left Turn Function
*****************/
void lturn(int speed){
 TCC0_CCA = 5000; //Set motor speed
 TCC0_CCB = 5000;
 PORTB_OUT = 0x16; //Turn left
}

/******************
Right Turn Function
******************/
void rturn(int speed){
 TCC0_CCA = 5000; //Set motor speed
 TCC0_CCB = 5000;
 PORTB_OUT = 0x19; //Turn right
}

/******************
Drive Stop Function
******************/
void drivestop(void){
 PORTB_OUT = 0x10; //Stop drive motors
}

/*********************
Drive Forward Function
*********************/
void driveforward(int speed){
 TCC0_CCA = 0.95*speed; //Set speed
 TCC0_CCB = speed;
 PORTB_OUT = 0x1A; //Set direction = forward
}

/*********************
Drive Reverse Function
*********************/
void drivereverse(int speed){
 TCC0_CCA = speed; //Set speed
 TCC0_CCB = speed;
 PORTB_OUT = 0x15; //Set direction = reverse
}

/***********************
Z-Stepper Drive
***********************/
void stepdrive(int steps){
 int stepdex=0;

 if (steps>0){
 while (stepdex<steps){
 PORTF_OUT = 0x01;
 delay_ms(15);
 PORTF_OUT = 0x05;
 delay_ms(15);
 PORTF_OUT = 0x06;
 delay_ms(15);
 PORTF_OUT = 0x0A;
 delay_ms(15);
 stepdex=stepdex+1;
 int pow = (PORTH_IN & 0x04)>>2;

 if (pow == 1){

 PORTH_OUT |= 0x02;
 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Charging");
 lcdGoto(1,0);
 lcdString("Battery");
 delay_ms(120000);
 }
 }
 }
 if (steps<0){
 while (stepdex>steps){
 PORTF_OUT = 0x0A;
 delay_ms(15);
 PORTF_OUT = 0x06;
 delay_ms(15);
 PORTF_OUT = 0x05;
 delay_ms(15);
 PORTF_OUT = 0x01;
 delay_ms(15);
 stepdex=stepdex-1;
 int pow = (PORTH_IN & 0x04)>>2;

 if (pow == 1){

 PORTH_OUT &= 0xFD;
 stepdex=steps;
 powerseek=0;
 }

 }
 }
}

/*************************
Battery Check
*************************/
void battcheck(void){
 int battdisp = ADCA7();
 int voltdisp;
 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Battery Level:");

 for(int i=0;i<4;i++){
 voltdisp = ADCA7();
 battdisp = (voltdisp+3*battdisp)/4;
 }

 if(battdisp>3180){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("100%");
 }
 if((battdisp>3160) & (battdisp<=3180)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("95%");
 }
 if((battdisp>3140) & (battdisp<=3160)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("90%");
 }
 if((battdisp>3120) & (battdisp<=3140)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("85%");
 }
 if((battdisp>3100) & (battdisp<=3120)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("80%");
 }
 if((battdisp>3080) & (battdisp<=3100)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("75%");
 }
 if((battdisp>3060) & (battdisp<=3080)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("70%");
 }
 if((battdisp>3040) & (battdisp<=3060)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("65%");
 }
 if((battdisp>3020) & (battdisp<=3040)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("60%");
 }
 if((battdisp>3000) & (battdisp<=3020)){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("55%");
 }
 if(battdisp<=3000){
 lcdGoto(1,0); //Go to LCD top left
 lcdString("LOW");
 }
}

/*********************
Plug Finding Algorithm
*********************/
void plugfind(void){
 PORTH_OUT &= 0xFE;
 int xfind=1;
 int yfind=1;
 int emfind;

 int plug=0;
 int cnt=0;
 while ((xfind=1) & (cnt<8)){
 int xdex=0;
 int xdat[]={0, 0, 0, 0, 0, 0, 0, 0};
 while(xdex<9){
 xdat[xdex] = ADCA4();
 delay_ms(100);
 driveforward(3000);
 delay_ms(30);
 drivestop();
 delay_ms(50);

 xdex=xdex+1;
 }

 int xmax=xdat[0];
 int dex=1;
 xdex=0;

 while(dex<9){
 if(xdat[dex]>xmax){
 xmax=xdat[dex];
 xdex=dex;
 }
 dex=dex+1;
 }

 drivereverse(3000);
 delay_ms(30*(7-xdex));
 drivestop();

 emfind = ADCA4();
 if (emfind>1000){
 xfind=0;
 cnt=0;
 plug=1;
 stepdrive(400);
 stepdrive(-200);
 }

 drivereverse(3000);
 delay_ms(30*xdex);
 drivestop();

 cnt=cnt+1;
 }
 drivestop();

 /*while ((yfind=1) & (cnt<8)){
 int ydex=0;
 int ydat=[8];

 while(ydex<9){
 ydat[ydex] = ADCA4();

 ServoD5(-10);

 ydex=ydex+1;
 }

 int ymax=ydat[0];
 int dex=1;
 ydex=0;

 while(dex<9){
 if(ydat[dex]>ymax){
 ymax=ydat[dex];
 ydex=dex;
 }
 dex=dex+1;
 }

 ServoD5(10*(7-ydex));

 emfind = ADCA4();
 if (emfind>1000){
 yfind=0;
 }

 ServoD5(10*xdex);

 cnt=cnt+1;
 }
 */

}

/*************************
Main Robot Operation Code:
*************************/

void main(void){

 /****************
 Initialize System
 ****************/

 xmegaInit(); //setup XMega
 delayInit(); //setup delay functions
 ServoCInit(); //setup PORTC Servos
 ServoDInit(); //setup PORTD Servos
 ADCAInit(); //setup PORTA analong readings
 lcdInit(); //setup LCD on PORTK
 lcdString("Emerson"); //display startup text
 lcdGoto(1,0);
 lcdString("Active");
 PORTQ_DIR |= 0x01; //set Q0 (LED) as output
 PORTH_DIR = 0x03;
 PORTA_DIR = 0x00; //set Port A as inputs
 PORTB_DIR = 0xFF; //set Port B as outputs for motor driver control
 PORTF_DIR = 0xFF; //set Port F as outputs for stepper driver control
 PORTB_OUT &= 0x00; //clear Port B

 PORTF_OUT &= 0x00; //clear Port F
 int i = 0; //declare & zero counter variable
 int lir; //declare left IR sensor variable
 int rir; //declare right IR sensor variable
 int r_obs = 0; //declare & clear right obstacle flag
 int l_obs = 0; //declare & clear left obstacle flag
 int l = 0; //declare & zero left IR averaging variable
 int r = 0; //declare & zero right IR averaging variable
 int powerseek=0; //declare & clear power seeking flag
 int bump = 0; //declare bump sensor variable
 int em;
 int emav=0;
 int a = 5000;
 int t = 0;
 int fwir;
 int bwir;
 int volt;
 int batt;
 int pow;
 int first=1;
 TCC0_CCA = a; //Right
 TCC0_CCB = a; //Left
 batt = 3500;
 PORTH_OUT &= 0xFE;
 /***********************************
 Initial Waiting Mode
 ***********************************/

 while((bump<2000)& (first=1)){

 bump = ADCA3();

 /************
 Test Area
 ************/

 //powerseek = 0;

 /************
 End Test Area
 ************/

 }

 battcheck();
 delay_ms(3000);

 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Obstacle");
 lcdGoto(1,0);
 lcdString("Avoidance");

 delay_ms(1000);

 /***********************************
 Obstacle Avoidance - Autonomous Mode
 ***********************************/

 while(powerseek==0){ //While power seeking flag is clear

 bump = ADCA3(); //Get bump sensor circuit value

 if ((bump>2400) & (bump<3000)){

//If front left bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 rturn(0.5);
 delay_ms(1000);
 }

 if (bump>3400){ //If front right bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 lturn(0.5);
 delay_ms(1000);
 }

 if ((bump>750) & (bump<950)){ //If side right bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 lturn(0.5);
 delay_ms(1000);
 }

 if ((bump>480) & (bump<600)){ //If side left bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 rturn(0.5);
 delay_ms(1000);
 }

 lir = ADCA1(); //Get left IR sensor value

 rir = ADCA2(); //Get right IR sensor value
 l = (l + lir); //Add left sensor value for
averaging
 r = (r + rir); //Add right sensor value for
averaging
 i = i + 1; //Increment counter

 if (i>3){ //When counter gets to four
 l = l/4; //Average left IR
 r = r/4; //Average right IR
 if (l > 1200) //If obstacle to left
 l_obs = 1; //Set left obstacle flag
 else //Otherwise
 l_obs = 0; //Clear left obstacle flag
 if (r > 1200) //If obstacle to right
 r_obs = 1; //Set right obstacle flag
 else //Otherwise
 r_obs = 0; //Clear right obstacle
flag

 if ((l_obs==0) & (r_obs==0)){ //If no obstacles
 a = ((14000+(-10)*(l+r)/2)+a)/2;

//Take average of sensor readings, convert to speed
 driveforward(a);

 }

 if ((l_obs==1) & (r_obs==1)){ //If obstacle on both sides
 if (l > r) //If left obstacles closer
than right
 r_obs = 0; //Set left obstacle flag
 else //Otherwise
 l_obs = 0; //Set right obstacle flag
 }

 l = 0; //Clear sensor variables
 r = 0;
 i = 0;
 }

 if (r_obs==1){ //If right obstacle flag set
 drivestop(); //Stop
 delay_ms(100); /Wait 100 milliseconds
 lturn(0.5); //Turn left half speed
 delay_ms(1000); //For 1 second
 drivestop(); //Stop
 delay_ms(100); //Wait 100 miliseconds
 r_obs = 0; //Clear obstacle flags
 l_obs = 0;
 }
 if (l_obs==1){ //If left obstacle flag set
 drivestop(); //Stop
 delay_ms(100); //Wait 100 milliseconds
 rturn(0.5); //Turn right half speed
 delay_ms(1000); //For 1 second
 drivestop();
 delay_ms(100); //Wait 100 milisecond
 r_obs = 0; //Clear obstacle flags
 l_obs = 0;
 }

 /********
 Demo Code

 t = t+1;
 if (t>300){
 powerseek = 1;
 t = 0;
 }

 End Demo Code
 ************/

 volt = ADCA7();
 batt = (volt+3*batt)/4;

 if (batt < 3000){

 powerseek = 1;
 }

 }

 /*************************
 Power Seeking Mode
 *************************/
 drivestop();

 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Battery Low!");
 lcdGoto(0,0);
 lcdString("Seeking Outlet");

 delay_ms(5000);
 PORTH_OUT |= 0x01;

 while(powerseek==1){

 fwir = ADCA5(); //Wall Following
 bwir = ADCA6();
 TCC0_CCB = 2000+(2300-fwir)*2-(2300-bwir)*2-(2300-(bwir+fwir)/2);
 TCC0_CCA = 2000-(2300-fwir)*2+(2300-bwir)*2+(2300-(bwir+fwir)/2);

 PORTB_OUT = 0x1A; //Set direction = forward

 bump = ADCA3(); //Get bump sensor circuit value

 if ((bump>2400) & (bump<3000)){//If front left bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 rturn(0.5);
 delay_ms(1000);
 }

 if (bump>3400){ //If front right bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 lturn(0.5);
 delay_ms(1000);
 }

 if ((bump>750) & (bump<950)){ //If side right bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 lturn(0.5);
 delay_ms(1000);
 }

 if ((bump>480) & (bump<600)){ //If side left bump sensor triggers
 drivereverse(5000);
 delay_ms(300);
 rturn(0.5);
 delay_ms(1000);

 }

 em = ADCA4();
 emav = (6*emav + em)/7;

 if(emav>1000){
 drivestop();
 emav = 0;
 i=0;
 while(i<5){
 em = ADCA4();
 emav = (4*emav + em)/5;
 i=i+1;
 }
 if(emav>1000){
 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Socket Found!");
 lcdGoto(1,0);
 lcdString("Aligning...");
 plugfind();
 first=0;
 }

 }

 volt = ADCA7();

 if (volt<1500){
 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Out of Power");
 lcdGoto(1,0);
 lcdString("Please Assist");
 while(1){
 }
 }

 /********
 Demo Code

 t = t + 1;

 if(t>100){

 drivestop();

 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Antenna");
 delay_ms(2000);
 lcdGoto(1,0);
 lcdString("Large");
 delay_ms(500);
 PORTH_OUT = 0x01;
 delay_ms(5000);

 lcdGoto(1,0);
 lcdString("Small");
 delay_ms(500);
 PORTH_OUT = 0x00;
 delay_ms(7000);

 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Plug Actuator");
 lcdGoto(1,0);
 lcdString("Demonstration");
 delay_ms(3000);

 stepdrive(300);
 delay_ms(1000);
 stepdrive(-300);
 delay_ms(5000);

 ServoD5(-100);
 delay_ms(6000);
 ServoD5(100);
 delay_ms(6000);
 ServoD5(2);

 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Plug In");
 lcdGoto(1,0);
 lcdString("To Charge");

 while(1){

 pow = (PORTH_IN & 0x04)>>2;

 if (pow == 1){

 PORTH_OUT |= 0x02;
 lcdData(0x01); //Clear LCD
 lcdGoto(0,0); //Go to LCD top left
 lcdString("Charging");
 lcdGoto(1,0);
 lcdString("Battery");
 while(1){
 }
 }
 }

 }

 End Demo Code
 ************/

 }

}

