
University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Final Report

Click and Clack

Jason Monsorno

TAs: Mike Pridgen

Thomas Vermeer

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

University of Florida

Departments of Electrical and Computer Engineering

EEL 5666

Intelligent Machines Design Laboratory

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 2 of 45

Table of Contents

Abstract ………………………………………………………………………………….. 3

Executive Summary .. 3

Introduction ……………………………………………………………………………... 5

Integrated Systems ... 5

Mobile Platform …………………………………………………………………………. 6

Actuation ... 6

Sensors …………………………………………………………………………………... 7

Behaviors ... 8

Experimental Layout and Results ……………………………………………………….. 9

Conclusion .. 9

Documentation …………………………………………………………………………... 10

Appendices .. 10

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 3 of 45

Abstract

Click & Clack are cooperative retrieval robots. They will each use a camera to detect objects and

depending on the color will retrieve the object itself or ask for help and both robots will

simultaneously carry the object back to a storage bin.

Executive Summary

The project started as an idea of swarm robotics and turned into a smaller version of it. Click &

Clack were cooperative in the individual retrieval of a certain color object, green for media day,

using the exact same behaviors. After that the first robot started would take lead and retrieve any

remaining objects of the secondary color which were presumed to be heavier. It put on a show to

convey the idea of being heavier and to need help, and then the second robot would come to the

rescue and help pick it up cooperatively. Though it ran to the wire in terms of completion time,

the project was completed for media day.

Obtaining a base for the mobile platform started with my familiarity with the behavior and

communication for the iRobot Create which is an educational and hobby release of the

company’s popular Roomba just without the vacuum. After a few days of shopping online, three

original series Roombas were purchased. The pros were starting with a fairly solid base that

included bump sensors, motors, motor encoders, and wheel drop switches – the additional IR

receiver and “cliff sensors” were removed for this project. The cons were that the original series

did not have a serial interface like the later versions without soldering to the motherboard, had a

different communication protocol, and had that pesky vacuum. The solution was to not use the

serial communication but to interface with each component separately. The bump sensors and the

encoders use break-beam infrared LED and photo-resistor sets so they took some resistors and

then were hooked in directly. The motors were standard DC motors with attached capacitors

which were plugged directly into a motor driver. The vacuum and all the brushes were removed

which left plenty of room to work with but left the robot without a cover plate to properly access

the space from the top.

Next the arm had to be made, to turn and be able to go up and down it had to have a gripping

servos and at least 2 DOF. To maintain a uniform plane for the objects that were picked up, a

third DOF was added at the “wrist” of the arm. This would ensure for pickup up and dropping

off that the gripper/claw could be positioned at any reasonable angle while the distance away

from center was controller by the servo on the same axis but lower on the arm. The last servo

was used for rotating the entire arm which was considered a greater load and was designed to not

use a standard two bearing system per joint so a heavier duty metal gear servo with internal

bearings was used.

The robot required a way to identify the objects and the drop off point so a camera was the

obvious choice. The camera used was a C3088 which is the same camera used on the CMU

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 4 of 45

camera system but used an onboard vision system built into the controller. The camera was

mounted where the original infrared receiver was since it was in the front and centered, it nearly

fit the camera lens perfectly so little was needed except for actually securing it down. The final

assembly stages were motor drivers and wireless communication.

The controller had onboard motor driver but was limited to the base voltage of the controller

which is not intended to exceed a 7.2v battery pack which did spin the motors but slowly and had

a working range of 80% to 100% power otherwise would not spin. A motor driver was wired

with 14.4v and used the onboard drivers as signals to drive the external motor driver. Everything

seemed fine for about 2 weeks except for the day before demonstration day. The night before the

robots were supposed to be complete and demoed, while working on the code to control an over

tracking issue, the motor driver sparked a small fire and fried the motor driver, luckily nothing

else was damaged. Since two robots were complete, the second robot’s motor driver was taken

for testing. About an hour later, that motor driver met the same fate with a proportionally large

fire enough to melt the solder and remove the motor driver chip from the breakout board. After

that and the unknown cause of their demise, the onboard slower motor driver seemed the logical

choice especially considering time constraints.

The wireless communication was originally intended for implementation with some cheap RF

communication chips, a separate frequency for each transmitter and receiver per robot. That did

not work before demoing because no matter what, not a single byte – bit either for that matter –

was received by the other board. Transmission and reception were examined using the

oscilloscope and the controller board was sending bytes to the transmitter but nothing came out

of the receiver. XBee modules were rushed shipped the day after with corresponding 5v to 3.3v

adapters. They were hooked up as described directly to a rs232 signal but all the was received

was gibberish, a byte received for every few bytes sent and the received was not even any of the

bytes sent. After testing different baud rates and researching and testing a possible solution was

discovered. Even though the XBee interface described excepting a rs232 signal and having the

5v adapter did reduce the signal for the XBee as specified necessary, the further documentation

described how the byte was supposed to look, having a normally low signal. This meant the

signal needed to be inverted so a 5v logic hex inverter chip, 7404, was used to invert the rs232

normally high signal. The result was receiving a byte for every one sent but it still being the

wrong byte. After trying some conversion to see if that was possibly they issue, different baud

rates were tried. Initially lower baud rates were tried to try and ensure no bytes were dropped and

that the transistors, hex inverter, could fire fast enough, but the same results were produced.

Finally a baud rate 9600 bps was set and every fell together, received byte was the sent byte.

 Most of the basic behaviors and the communication were already coded but very little of the

behaviors involving communication was tested since previously it was tested using a modified

Ethernet cable as the serial connection. Very little modification was needed to the existed code

but further behaviors for the secondary objects needed to be coded so that robots would visibly

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 5 of 45

help each other. That presented a few challenges since they always knew what each other were

doing but did not actually know where they were, the simple solution to this was to use the drop

off point and keep the robots positioned off that is at all possible. So when the total count of

primarily objections was found, any robots dropping off objects would wait for the total count of

dropped off object to also be the total count of primary object, then a secondary routine was

started. Having then a primary robot, the other robots had to only find the primary robot or at

least the object it brought back. Other than using the same color as the bin, this was not much of

an issue and when along well.

The project did have quite a few hiccups that were at minimum resolved. Both robots did finish

with identical builds and identical code as intended but did a different sequence of cooperative

work. Additional aesthetics were added to the cooperative routine to appeal to the crowd which

seemed to go over well and from peer response actually convinced some people in the crowd that

the secondary objects were heavier. All in all, I was happy with the results.

Introduction

This project started because of my desire to make a practical robot. Making a robot follow a line

was impressive for the technology years ago but is not practical for many real-world applications

and has already been made a countless number of times. Swarm robotics is still a point of interest

from the mechanical and programming aspects of robots as well as electrical which most fields

seem to be. For my own sanity and wallet, the project will only include two robots but the

environment is loosely design to allow more robots to coexist without disrupting the original two

and will create more emergent behaviors.

Integrated Systems

Each robot is built identical so described the design and assembly of a single robot which can be

reproduced. The robot main platform is an iRobot Roomba Original (fig 7.1) that has been

modified. The cover, vacuum, and front infrared sensors have been removed. The original motor

encoders, bump sensors, and wheel drop sensors. Added to the platform are infrared distance

sensors, a camera, and a 3 DOF arm with claw for picking up objects in additional to the XBC v2

controller. The controller has two RF serial communication chips attached to communicate with

the other robot. The motor encoders are hooked up directly to the motor output before going

through a gearbox which increases the resolution. Each encoder uses the typical infrared photo-

resistor break beam technology that most encoders utilize and are connected to digital ports. An

internal clock monitors the encoder count and each motor speed change recalculates position.

The bump sensors are also infrared photo-resistor break beams and are additionally connected to

digital ports. Normally operation should not set off the bump sensors and are only monitored

when tracking with the camera while the infrared distance sensors are ignored. The wheel drop

sensors are physical switches attached to the suspension of each wheel and are monitored in a

separate thread which will shutdown all other threads, motors, and servos. The infrared distance

University of Florida

Department of ECE EEL 5666

sensors are homemade from SparkFun Electronics infrared LED and photo

SEN-00241) similar to the encoder and bump sensor. The set is put at an angle pointing towards

each other with a separator. The output from the photo

distance is calculated linearly. The camera is a 32

CMOS image sensor. The XBC controller has built

library to interface with. The servo arm has 1 metal gear Towerpro MG94

gear ElectriFly ES100 for same axis tilt, and another ES100 for the cla

controlled by with 8-bit resolution for approximately 0.7 degree resolution. The controller is a

XBC v2 – Xport Botball Controller version 2

coprocessing and display. The controller has 8 digital ports, 8 analog ports, 4 motor drivers and 4

servo ports in addition to the camera port and vision processing with blob tracking. Back EMF

and vision functions are included in libraries.

inverter chips and XBee modules, 1mW chip antenna, equipped with 5v adapters.

Mobile Platform

The platform for each robot is an iRobot Roomba Original

Series (fig 7.1). With the complexity r

multiple robots and the requirement of obstacle avoidance

with a bump sensor, the Roomba family of robots was a

good starting point. The Original Series was never

equipped with the serial interface that all the later models

had which iRobot has release the interface for so the

platform has to be physical hacked to function with my

controller board. Each sensor is fed directly into the

controller board instead of the Roomba's motherboard.

The motors had gone through a secondary motor driver

speed but were brought back down to 7.2v pack voltage

Actuation

Each Roomba came equipped with a drive system which is comprised of a DC motor and a

gearbox leading to the drive wheel. Each drive system is also hi

to provide a simple form of shocks. A servo controller arm and grabber mechanism is added to

the front to allow the robots to grab and lift objects. The panning servos is metal geared and

includes bushings, the next servo

servos act as a single-axis tilt to allow the claw to be positioned at multiple distances with

maintaining the same relative parallel angle to the ground to have consistent gripping action.

Each of the two tilt servos has a secondary pivot point mounting on the opposite side of the servo

in-line with the servo spline to act as a second bearing and to distribute the lateral load. The

fourth servo is a mounted to the second tilt servo and is used f

20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz

Page 6 of 45

Figure 7.1

emade from SparkFun Electronics infrared LED and photo-resistor set (SKU

00241) similar to the encoder and bump sensor. The set is put at an angle pointing towards

The output from the photo-resistor is nearly linear; ther

distance is calculated linearly. The camera is a 32-pin C3088 with an OmniVision OV6620

CMOS image sensor. The XBC controller has built-in video processor and comes with

library to interface with. The servo arm has 1 metal gear Towerpro MG946R for pan, 2 resin

gear ElectriFly ES100 for same axis tilt, and another ES100 for the claw. Each servo is

it resolution for approximately 0.7 degree resolution. The controller is a

Xport Botball Controller version 2 – which utilizes a Nintendo GameBoy for

coprocessing and display. The controller has 8 digital ports, 8 analog ports, 4 motor drivers and 4

servo ports in addition to the camera port and vision processing with blob tracking. Back EMF

uded in libraries. The RF communication was made using 7404 hex

inverter chips and XBee modules, 1mW chip antenna, equipped with 5v adapters.

The platform for each robot is an iRobot Roomba Original

Series (fig 7.1). With the complexity required of having

multiple robots and the requirement of obstacle avoidance

with a bump sensor, the Roomba family of robots was a

good starting point. The Original Series was never

equipped with the serial interface that all the later models

ot has release the interface for so the

platform has to be physical hacked to function with my

controller board. Each sensor is fed directly into the

controller board instead of the Roomba's motherboard.

through a secondary motor driver for a 14.4v amplification to boost motor

but were brought back down to 7.2v pack voltage.

Each Roomba came equipped with a drive system which is comprised of a DC motor and a

gearbox leading to the drive wheel. Each drive system is also hinged in the rear and has a spring

to provide a simple form of shocks. A servo controller arm and grabber mechanism is added to

the front to allow the robots to grab and lift objects. The panning servos is metal geared and

includes bushings, the next servo is mounted directly to attached servo horn. The following two

axis tilt to allow the claw to be positioned at multiple distances with

maintaining the same relative parallel angle to the ground to have consistent gripping action.

of the two tilt servos has a secondary pivot point mounting on the opposite side of the servo

line with the servo spline to act as a second bearing and to distribute the lateral load. The

fourth servo is a mounted to the second tilt servo and is used for the claw assembly. The

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Figure 7.1

resistor set (SKU

00241) similar to the encoder and bump sensor. The set is put at an angle pointing towards

resistor is nearly linear; therefore

pin C3088 with an OmniVision OV6620

in video processor and comes with a camera

6R for pan, 2 resin

w. Each servo is

it resolution for approximately 0.7 degree resolution. The controller is a

utilizes a Nintendo GameBoy for

coprocessing and display. The controller has 8 digital ports, 8 analog ports, 4 motor drivers and 4

servo ports in addition to the camera port and vision processing with blob tracking. Back EMF

was made using 7404 hex

inverter chips and XBee modules, 1mW chip antenna, equipped with 5v adapters.

for a 14.4v amplification to boost motor

Each Roomba came equipped with a drive system which is comprised of a DC motor and a

nged in the rear and has a spring

to provide a simple form of shocks. A servo controller arm and grabber mechanism is added to

the front to allow the robots to grab and lift objects. The panning servos is metal geared and

is mounted directly to attached servo horn. The following two

axis tilt to allow the claw to be positioned at multiple distances with

maintaining the same relative parallel angle to the ground to have consistent gripping action.

of the two tilt servos has a secondary pivot point mounting on the opposite side of the servo

line with the servo spline to act as a second bearing and to distribute the lateral load. The

or the claw assembly. The

University of Florida

Department of ECE EEL 5666

assembly has one sided motion. The entire arm and claw assembly is built from Lego pieces for

easy prototyping changes and replication.

Sensors

Each robot is equipped with 2 infrared distance sensors, 4 infrared photo

switches, and 1 camera. The infrared distance sensors are mounted in the front and are used for

obstacle avoidance. Two infrared photo

two are used as wheel encoders. Each wheel, 2 drive and 1 fr

them to detect if the robot is not touching the ground with all the wheels. The camera is mounted

to view the front of the robot for detecting and tracking objects.

The distance sensors give nearly linear output at dis

and Fig 9.2. The controller supports 8

noticeable slower and giving random artifacts so 8

basic obstacle avoidance. The bumper sensors and wheel encoders use the same technology of an

infrared LED and photo-resistor set but are used with digital ports since the normal behavior uses

digital logic and no further resolution is necessary. The encoders have a separate clock

monitor steps and are position is tracked upon each speed change to track encoder position with

relative directions. Following each speed change of either or both motors, the encoders are read

and reset. Using the robot wheel base, tire diameter, direc

relative position and orientation is calculated and the absolute

position and orientation are adjusted accordingly. The bump sensors are used when an object has

been detected and is being approached, during this behavior the distance sensors are ignored to

avoid false positives of obstacles as the intended object would be picked up and otherwise the

distance sensor should be sufficient for obstacle avoidance by themselves. The three wheel dro

switches are monitored by a separate thread and will shutdown all other threads if tripped and

stop the motors and servos, this is used as a failsafe from the robot falling and so lifting the robot

will stop execution.

The camera is controlled by built

channels with blob tracking gives location and size of the object to track. The major flaw with

y = -0.552x + 3.8797

R² = 0.8925

0

1

2

3

4

5

0 2 4

V
o

lt
a

g
e

Distance (inches)

Figure 9.1

20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz

Page 7 of 45

assembly has one sided motion. The entire arm and claw assembly is built from Lego pieces for

easy prototyping changes and replication.

Each robot is equipped with 2 infrared distance sensors, 4 infrared photo-resistor set

switches, and 1 camera. The infrared distance sensors are mounted in the front and are used for

obstacle avoidance. Two infrared photo-resistor sets are used for bump detection and the other

two are used as wheel encoders. Each wheel, 2 drive and 1 front caster, have limit switches on

them to detect if the robot is not touching the ground with all the wheels. The camera is mounted

to view the front of the robot for detecting and tracking objects.

The distance sensors give nearly linear output at distances from 1 to 6 inches as shown in Fig 9.1

and Fig 9.2. The controller supports 8-bit and 10-bit analog inputs. The 10-bit seems to

noticeable slower and giving random artifacts so 8-bit is used which is more than enough for

The bumper sensors and wheel encoders use the same technology of an

resistor set but are used with digital ports since the normal behavior uses

digital logic and no further resolution is necessary. The encoders have a separate clock

monitor steps and are position is tracked upon each speed change to track encoder position with

relative directions. Following each speed change of either or both motors, the encoders are read

and reset. Using the robot wheel base, tire diameter, direction, and encoder step count, the

relative position and orientation is calculated and the absolute – relative to starting origin

position and orientation are adjusted accordingly. The bump sensors are used when an object has

proached, during this behavior the distance sensors are ignored to

avoid false positives of obstacles as the intended object would be picked up and otherwise the

distance sensor should be sufficient for obstacle avoidance by themselves. The three wheel dro

switches are monitored by a separate thread and will shutdown all other threads if tripped and

stop the motors and servos, this is used as a failsafe from the robot falling and so lifting the robot

The camera is controlled by built-in library functions. Feedback from three different color

channels with blob tracking gives location and size of the object to track. The major flaw with

0.552x + 3.8797

R² = 0.8925

6

Distance (inches)

y = -0.4245x + 3.3446

R² = 0.9997

0

1

2

3

4

0 2 4

V
o

lt
a

g
e

Distance (inches)

Figure 9.2

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

assembly has one sided motion. The entire arm and claw assembly is built from Lego pieces for

resistor sets, 3

switches, and 1 camera. The infrared distance sensors are mounted in the front and are used for

resistor sets are used for bump detection and the other

ont caster, have limit switches on

them to detect if the robot is not touching the ground with all the wheels. The camera is mounted

tances from 1 to 6 inches as shown in Fig 9.1

bit seems to

bit is used which is more than enough for

The bumper sensors and wheel encoders use the same technology of an

resistor set but are used with digital ports since the normal behavior uses

digital logic and no further resolution is necessary. The encoders have a separate clock to

monitor steps and are position is tracked upon each speed change to track encoder position with

relative directions. Following each speed change of either or both motors, the encoders are read

tion, and encoder step count, the

relative to starting origin –

position and orientation are adjusted accordingly. The bump sensors are used when an object has

proached, during this behavior the distance sensors are ignored to

avoid false positives of obstacles as the intended object would be picked up and otherwise the

distance sensor should be sufficient for obstacle avoidance by themselves. The three wheel drop

switches are monitored by a separate thread and will shutdown all other threads if tripped and

stop the motors and servos, this is used as a failsafe from the robot falling and so lifting the robot

in library functions. Feedback from three different color

channels with blob tracking gives location and size of the object to track. The major flaw with

0.4245x + 3.3446

R² = 0.9997

6

Distance (inches)

University of Florida

Department of ECE EEL 5666

the built-in functions is the returned image is 356 x 292 while the largest blob size is limited to

MAX_INT of 32767 which is 1/3 of the image’s pixels; consequently, once the object’s blob

floods 1/3 of the screen, no further useful information is obtained while approaching the object.

The major trick learned is to severely limit the color channel’s color

that stand out from background colors. Bright objects with the color models set in a small range

of pixels around the brightest detected color will back the camera once recognize the top of the

object and will provide extremely

major advantages, the first being that the camera is less likely to have false positives since the

color model is smaller and unique to the desired object which if chosen correctly will be

significantly different from common background colors of wall, chairs, etc. The second

advantage is the blob size is relatively smaller to the entire object so it will not flood the

camera’s maximum size as soon providing more relative data and a closer ra

virtually increasing distance resolution with the camera. A snippet of the camera functions from

the html manual for the XBC in attached in the appendix.

Behaviors

The robots basic behavior is to go and

pick up certain marked objects. The

objects will either be orange or green so

the camera can detect them. When a robot

sees a green object then it will go retrieve

it and brings it back to base. After all the

green objects are picked up, when a robot

sees an orange object, it asks for

from another robot. The other robot

responds and object is picked up by both

robots simultaneously. As a parameter,

the total number of green and orange

objects is set for the environment. The robots will communicate their finds to meet their

combined goals of retrieving all the objects. Emergent behavior occurs when the robots find

orange objects, when they are both trying to unload their retrieved object too close to each other,

and when all the green objects are picked up if any orange objects are l

Fig 10.1 shows a basic block diagram of the behaviors and processes. Detailed behavior charts

are included in the appendices.

20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz

Page 8 of 45

in functions is the returned image is 356 x 292 while the largest blob size is limited to

X_INT of 32767 which is 1/3 of the image’s pixels; consequently, once the object’s blob

floods 1/3 of the screen, no further useful information is obtained while approaching the object.

The major trick learned is to severely limit the color channel’s color model to the extreme colors

that stand out from background colors. Bright objects with the color models set in a small range

of pixels around the brightest detected color will back the camera once recognize the top of the

object and will provide extremely consistent data especially for round objects, balls. This has two

major advantages, the first being that the camera is less likely to have false positives since the

color model is smaller and unique to the desired object which if chosen correctly will be

significantly different from common background colors of wall, chairs, etc. The second

advantage is the blob size is relatively smaller to the entire object so it will not flood the

camera’s maximum size as soon providing more relative data and a closer range can be obtained

virtually increasing distance resolution with the camera. A snippet of the camera functions from

the html manual for the XBC in attached in the appendix.

The robots basic behavior is to go and

. The

objects will either be orange or green so

the camera can detect them. When a robot

sees a green object then it will go retrieve

After all the

hen a robot

ks for help

robot

picked up by both

As a parameter,

the total number of green and orange

objects is set for the environment. The robots will communicate their finds to meet their

goals of retrieving all the objects. Emergent behavior occurs when the robots find

orange objects, when they are both trying to unload their retrieved object too close to each other,

and when all the green objects are picked up if any orange objects are left.

Fig 10.1 shows a basic block diagram of the behaviors and processes. Detailed behavior charts

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

in functions is the returned image is 356 x 292 while the largest blob size is limited to

X_INT of 32767 which is 1/3 of the image’s pixels; consequently, once the object’s blob

floods 1/3 of the screen, no further useful information is obtained while approaching the object.

model to the extreme colors

that stand out from background colors. Bright objects with the color models set in a small range

of pixels around the brightest detected color will back the camera once recognize the top of the

consistent data especially for round objects, balls. This has two

major advantages, the first being that the camera is less likely to have false positives since the

color model is smaller and unique to the desired object which if chosen correctly will be

significantly different from common background colors of wall, chairs, etc. The second

advantage is the blob size is relatively smaller to the entire object so it will not flood the

nge can be obtained

virtually increasing distance resolution with the camera. A snippet of the camera functions from

objects is set for the environment. The robots will communicate their finds to meet their

goals of retrieving all the objects. Emergent behavior occurs when the robots find

orange objects, when they are both trying to unload their retrieved object too close to each other,

Fig 10.1 shows a basic block diagram of the behaviors and processes. Detailed behavior charts

Figure 10.1

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 9 of 45

Experimental Layout and Results

The layout will be a set starting point with a fixed relatively located base to drop to objects off

in. The starting point will be surrounded by orange and green objects. The number of each is

preset in the coding but is a defined constant and can be changed near instantly but requires a

computer.

When more green balls were added, there was an occasion when the robots went after the same

ball and even occasionally once the other robot picked it up it was still tracked. The least count

possible to still show off the cooperative communication and waiting was planned to be ideal.

For further testing and showing, the majority of the time only two were used.

Any number of orange balls worked since it was slight more straight-forward and only a single

robot would retrieve them. Due to its theatrics and the overall slow speed, this was kept to a

minimum as well but only for crowd appeal not for ideal behavior purposes.

The ideal numbers for combined behaviors and crowd appeal ended up being 2 green balls and 1

orange ball. With 2 green balls, each robot still had to retrieve a ball and one robot always had

wait while the other was dropping their ball off which was a race condition with tracking the ball

and then the bin which showed emergent behavior.

Conclusion

Both robots met the original specification, not as personally intended as though still fits the

description. The key goals that were met were both robots have as close to identical build as

possible, having the exact same code, and doing cooperative work. Each robot was built using

the same components and wiring; other than minor measurements in controller placement and

servo placement, the robots have identical builds. The code is 100% identical, no additional

offsets or predetermined numbering of the robots was necessary. Both robots cooperate with

each other during picking up the green balls and cooperatively pick up the orange balls meeting

my goals.

Definitely the biggest backset was the wireless communication which was assumed to be more

straight-forward than it was; mainly because of a lack of documentation with both wireless

module attempts and ambiguity in serial protocol naming. The motor driver issue was definitely

frustrating and cumbersome but luckily there was an alternative which though being slower that

intended, was much easier to track with. The infrared distance sensors were on the robot and

coded but they ended up physically breaking and had to be removed for media day, simple

obstacle avoid was implemented with the bump sensors instead.

There is not much I would change with the robot. A longer and strong arm would be nice and

possibly rerouting some of the cabling, primarily the camera cable. Otherwise the robots are

fairly well off. I would have liked to cover it but from the appeal of using a GameBoy, I decided

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 10 of 45

against it. As far as the project goes, I should have tested the wireless communication earlier as

well as done some basic coding for the encoders while I had some free time between

assignments. I did not need all the data to make much of the logic and still referenced defined

constants that were only necessary for actually running the robot; the math was the same and just

included variables/constants.

This definitely was a challenge which was the reason I chose it and I would like to thanks to

TA’s for giving up the extra labs hours, their assistance in addition to being surrounded by peers

just as frustrated helped me push on to complete this project through a few sleepless nights and

countless other long days.

Documentation

Larry D. Moore, "File:Roomba original.jpg," Wikipedia.org, Feb. 27, 2006. [Online]. Available:

http://en.wikipedia.org/wiki/File:Roomba_original.jpg.

KISS Institute, "XBC camera | Botball Store," botballstore.org, [Online]. Available:

https://botballstore.org/content/xbc-camera.

KISS Institute, " XBC v2 Robot Controller | Botball Store," botballstore.org, [Online].

Available: https://botballstore.org/content/xbc-v2-robot-controller.

KISS Institute, "IC Vision API for the XBC," in IC Programmers Manual, Jan. 05, 2006

[Software Manual]. Available: http://botball.org/ic.

Appendices

Appendix A – Figures pg 11

Appendix B – Flow charts pg 12

Appendix C – Manuals pg 14

Appendix D – Source code pg 21

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 11 of 45

Appendix A – Figures

RS232 normally high to normally low adapter logic diagram

Infrared LED photo-resistor set circuit diagram

Communication protocols

Function Event Result

Request Robot Number At program start Return other robot #+1 or

defaults to 1

Ball Count After each green ball is picked up Other robot updates count

Ball Done Count After each green ball is dropped off Other robot updates done count

Base Busy After bin align Lock global resource

Base Free After drop off Unlock global resource

Request Help After bin track, from primary Request help from secondary

Helped After orange ball grab, from

secondary

Primary begins lift

University of Florida

Department of ECE EEL 5666

Appendix B – Flow charts

Fundamental program process

Green Ball procedure for both robots (Communication see Appendix A)

20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz

Page 12 of 45

Green Ball procedure for both robots (Communication see Appendix A)

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

University of Florida

Department of ECE EEL 5666

Orange Ball procedure for primary, Robot 1 (Communication see Appendix A)

20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz

Page 13 of 45

Orange Ball procedure for primary, Robot 1 (Communication see Appendix A)

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 14 of 45

Appendix C – Manuals

XBC Manual (Camera Snippet)

IC Vision API for the XBC

• To use any camera routines, be sure to put
 #use "xbccamlib.ic"
at the top of your file

• You must call
 void init_camera();
to initialize the camera before any other camera functions will work

Tracking APIs

• Use
 int track_is_new_data_available();
to determine if tracking data is available which is newer than the data processed by the

last call to track_update().

• Use
 void track_update();
to process tracking data for a new frame and make it available for retrieval by the

following calls.

• Use
 long track_get_frame();
to return value is the frame number used to generate the tracking data.

• Use
 int track_count(int ch);
to return the number of blobs available for the channel ch, which is a color channel

numbered 0 through 2.

• Use the following functions of the form
 int track_property(int ch, int i);
to return the value of a given property for the blob from channel ch (range 0-2), index i

(range 0 to track_count(ch)-1). Fill in track_property from one of
the following:

o track_size
gets the number of pixels in the blob, note that this

maxes out (saturates) at 32,767 if the area gets that

large

o track_x gets the pixel x coordinate of the centroid of the

blob

o track_y
gets the pixel y coordinate of the blob

(note: 0,0 is the upper left; 356x292 is the lower

right)

o track_confidence gets the confidence for seeing the blob as a

percentage of the blob pixel area/bounding box area

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 15 of 45

(range 0-100, low numbers bad, high numbers

good)

o track_bbox_left gets the pixel x coordinate of the leftmost pixel in

the blob

o track_bbox_right gets the pixel x coordinate of the rightmost pixel in

the blob

o track_bbox_top gets the pixel y coordinate of the topmost pixel in

the blob

o track_bbox_bottom gets the pixel y coordinate of the bottommost pixel

in the blob

o track_bbox_width
gets the pixel x width of the bounding box of the

blob. This is equivalent to track_bbox_right
- track_bbox_left

o track_bbox_height
gets the pixel y height of the bounding box of the

blob. This is equivalent to track_bbox_bottom
- track_bbox_top

• Use

 void track_set_ch_enable(int ch, int val);

 int track_get_ch_enable(int ch);

to enable or disable processing tracking data for a particular channel ch (range 0-2). The

value passed into val or returned by track_get_ch_enable is 0=disabled, 1=enabled. All

channels are enabled by default. Disabling unused channels is not required, but can

increase performance.

• Use

 void track_enable_orientation();

 void track_disable_orientation();

 void track_set_orientation_enable(int val)();

 int track_orientation_enabled();

to enable or disable orientation calculation, or get the current value of this setting

(0=disabled, 1=enabled). This is disabled by default, and takes significant extra

computation when enabled.

• When orientation calculation is enabled, use the following functions of the form

 float track_property(int ch, int i);

to return the value of a given orientation-related property for the blob from channel ch

(range 0-2), index i (range 0 to track_count(ch)-1). Fill in track_property

from one of the following:

o track_angle
gets the angle in radians of the major axis of the blob.

Zero is horizontal and when the left end is higher

than the right end the angle will be positive. The

range is -PI/2 to +PI/2.

o track_major_axis
gets the length in pixels of the major and minor axes

of the bounding ellipse

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 16 of 45

track_minor_axis

• Use
 void track_set_minarea(int minarea);
 int track_get_minarea();
to set or retrieve the minimum area of a blob necessary to consider it valid. Blobs with

area below minarea are ignored, and only blobs with area above minarea are

returned by the above calls. Default value of min area is 100. The min area can be set

interactively using the vision menus as well.

• Use
 void track_show_display(int show_processed, int frameskip,
int channel_mask);
to show tracking results on the Gameboy display.

o show_processed controls what type of video is displayed. If it is zero then

raw video will be displayed, meaning that the video will be shown as it comes

from the camera; if it is non-zero then processed video will be shown, meaning

that pixels matching each color channel will be shown as a different color, and

pixels matching no color channel will be shown as black.

o frameskip controls how many frames of video are skipped between display

updates. Smaller numbers will result in smoother video, but will heavily load the

system and cause other computation to happen more slowly. Larger numbers will

result in jerkier video, but allow other computaion more time to execute.

o channel_mask controls which channels blob tracking data and/or processed

video is shown for. The LSB controls channel 0, the next most significant bit

controls channel 1, etc. A 1 in each bit position means to show that channel, and a

0 means to not show it. For example, 7 (0b111) shows all channels, 4 (0b100)

shows just channel 2, etc.

A user may exit out of tracking display mode by hitting the B button on the Gameboy,

which is consistent with the way display modes are exited when using the menu system.

Camera Configuration APIs

• Concepts:

o White Balance refers to the "color temperature" the camera uses in converting the

incoming light into pixel values. This is necessary because different light sources

can contain a significantly different balance of red and blue components. For

example, the sun and incandescent lights are much redder, and fluorescent lights

are much bluer. Human brains compensate for changes in lighting color very

quickly, to the point where we are mostly unaware that the issue exists.

Cameras, however, need to use explicit mechanisms to try to compensate for these

changes so that things in the image look "right" to humans, and more importantly

for color segmentation, so that the HSV values reported by the camera when

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 17 of 45

looking at a given object can be fairly uniform when seen in a range of different

lighting sources.

By default cameras turn on Auto White Balance (AWB) and dynamically adjust

their color temperature to keep the amounts of red and blue in the field of view

roughly balanced. This is fine if the content of the field of view is roughly

balanced between red and blue and if the goal is to look good to humans in

changing, arbitrary lighting situations. However, when trying to do color

tracking, dynamically changing color temperature is generally counter

productive.

Instead, you should use the Vision/Camera Config menu and press the Start

button to interactively calibrate the white balance while pointing the camera at a

white sheet of paper. This will adjust the Red and Blue components of the color

temperature until the amount of each in the scene balances, then turn off AWB to

lock those values in. After this procedure, it's a good idea to go to the

Vision/Flash Memory menu, select "Setting: < Camera Config >", and then "Save

to Flash".

o Exposure (range 0-154) refers to the amount of time during each frame that the

camera spends allowing light to be detected. If the light is very bright this will be

a small amount of time, since in bright light it doesn't take long to accumulate all

the light the camera's detector can handle. If the light is dim then this will be a

larger amount of time. By default the camera enables Automatic Exposure

Control (AEC) and dynamically adjusts this value to maintain a constant relative

percentage of "bright" and "dark" pixels. If you disable AEC then the Exposure

will stay at whatever value it was last set to until AEC is enabled again.

o Gain (range 0-248) controls how much the raw image integrated from the

incoming light is multiplied in order to generate the pixel values reported by the

camera. If the light is bright enough, Gain should be zero. When the light is not

bright enough, Gain has to be higher in order to compensate or the image will be

too dark to be useful, but the quality of the image goes down and looks grainier.

By default the camera enables Automatic Gain Control (AGC) and dynamically

adjusts this value to maintain a constant relative percentage of "bright" and "dark"

pixels. If you disable AGC then the Gain will stay at whatever value it was last

set to until AGC is enabled again.

o Exposure/Gain xpoSetting:

� The camera will report the Exposure and Gain values which it is currently

using independent of whether AEC or AGC are enabled.

� The user can directly set the Gain value (which also implicitly disables

AGC), but the camera does not support not support directly setting the

Exposure value.

� There are two parameters which allow the user to adjust the way the

camera dynamically adjusts its Exposure and Gain:

� Auto Exposure Ratio (AERatio) (range 1- 254, default=65) controls

the percentage of "bright" versus "dark" pixels which it tries to

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 18 of 45

maintain: 1 = Maintain 0.5% "bright" pixels, 65 = 25% "bright",

254 = 99.5% "bright". The net effect of this is that low AERatio

values make the image look darker, and high values make the

image look brighter.

� Exposure Reference Level (ExpRL) (range 0-224, default 160)

selects the reference level voltage used for automatic setting of

Exposure and Gain. Higher values make the image look brighter,

and lower values make it look darker. This is actually a 3-bit value

in the most significant 3 bits of a byte, so value changes are in

increments of 32.

� When AEC and AGC are both enabled, the camera will set Gain to zero if

the light is bright enough and modify Exposure to achieve the desired

percentage of "bright" pixels given the current values of AERatio and

ExpRL. As the light level decreases the camera will increase Exposure

until it hits the maximum value (154), then modify Gain as much as it

needs to to achieve its goals or until it hits the maximum value (248).

• Use

 int camera_get_awb();

 int camera_set_awb(int enable);

to get or set whether or not Auto White Balance is enabled (0=disabled, 1=enabled).

• Use

 int camera_get_wb_color_temp(int color[]);

 int camera_set_wb_color_temp(int color[]);

to get or set the red and blue components of color temperature. Calling

camera_set_wb_color_temp implicitly disables AWB. color[] is an int array of

length 2 where:
o color

[0] = red

o color

[1] = blue

The return values are 0 for success, -1 for failure (fails if _array_size(color)!=2). If you

want to use these functions from the interaction window you will need to use a block to

create a color[] array:

o {int color[2]; camera_get_wb_color_temp(color); printf("Red=%d, Blue=%d\n",

color[0], color[1]);}

o {int color[]={100,200}; camera_set_wb_color_temp(color);}

• The following are equivalent in function, but may be more convenient for interactive use:

 int camera_get_wb_red_temp();

 int camera_get_wb_blue_temp();

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 19 of 45

• Use

 int camera_get_aec();

 int camera_set_aec(int enable);

to get or set whether or not Auto Exposure Control is enabled (0=disabled, 1=enabled).

• Use

 int camera_get_exposure();

to get the current value of Exposure. There is no set function for Exposure because the

camera does not support that operation.

• Use

 int camera_get_aec_ratio();

 int camera_set_aec_ratio(int val);

to get or set the value of the Auto Exposure Ratio (AERatio) (range 1- 254, default=65).

• Use

 int camera_get_exp_ref_level();

 int camera_set_exp_ref_level(int val);

to get or set the value of the Exposure Reference Level (ExpRL) (range 0-224, default

160).

• Use

 int camera_get_agc();

 int camera_set_agc(int enable);

to get or set whether or not Auto Gain Control is enabled (0=disabled, 1=enabled).

• Use

 int camera_get_gain();

 int camera_set_gain(int val);

to get or set the value of Gain (range 0-248).

 Calling camera_set_gain also implicitly disabled AGC.

Color Model APIs

• Color models are expressed as a range of values in the HSV (Hue, Saturation, Value)

cube which are considered to be included within the range of pixels accepted by that

model.

o Hue (range 0-359) is analogous to what we usually think of as the "color" of a

pixel: Red ~= 0, Green ~= 100, Blue ~= 240. The Hue range may wrap, for

example hMin=340, hMax=10 is a valid range. However, the distance from hMax

to hMin ((360 + hMax - hMin) % 360) may not exceed 120.

o Saturation (range 0 - 223) is how pure and intense the hue is: 0 = totally

unsaturated, such as black, white, or grey; 223 = totally saturated, such as neon

orange, fire-engine red, etc. Hue is most reliable, and therefore color distinction

is more robust, for pixels with high Saturation. If Saturation is too low, then the

Hue calculation will be fairly random. Therefore you can set sMin, the minimum

acceptable Saturation value, but sMax is the maximum possible value of 223 for

color tracking.

o Value (range 0-223) is how dark or bright the pixel is: 0 = black, 223 = bright.

Hue is most reliable, and therefore color distinction is more robust, for pixels with

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 20 of 45

high Value. If Value is too low, then the Hue calculation will be fairly random.

Therefore you can set vMin, the minimum acceptable Value, but vMax is the

maximum possible value of 223 for color tracking.

• Use
 int color_get_model(int model_num, int model[]);
 int color_set_model(int model_num, int model[]);
to get or set the parameters of color model model_num (range 0-2) currently in use.

model[] is an int array of length 4 where:
o model[0] = hMin
o model[1] = hMax
o model[2] = sMin
o model[3] = vMin

The return values are 0 for success, -1 for failure (fails if _array_size(model)!=4 or

arguments out of range). If you want to use these functions from the interaction window

you will need to use a block to create a model[] array:

o {int model[4]; color_get_model(0, model); printf("H=(%d->%d), S>=%d,

V>=%d\n", model[0], model[1], model[2], model[3]);}

o {int model[]={0, 100, 200, 200}; color_set_model(0,model);}

• The following are equivalent in function, but may be more convenient for interactive use:

 int color_get_ram_hmin(int model_num);

 int color_get_ram_hmax(int model_num);

 int color_get_ram_smin(int model_num);

 int color_get_ram_smax(int model_num);

 int color_get_ram_vmin(int model_num);

 int color_get_ram_vmax(int model_num);

 int color_set_ram_model(int model_num, int hmin, int hmax, int smin, int vmin);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 21 of 45

Appendix D – Source Code

CandC.ic

/*

 * Title: Click and Clack *

 * Author: Jason Monsorno *

 * Language: Interactive C 8.0.2 for XBC *

 * Created: Feb. 28th, 2010 *

 * Last Modified: Apr. 19st, 2010 *

 * *

 */

#use "xbccamlib.ic"

#use "xbcserial.ic"

#use "globals.ic"

#use "functions.ic"

#use "calibration.ic"

#use "bump_avoidance.ic"

#use "mission.ic"

//Menu

#define options 5

char arrMenu[options][18] = {"Mission", "Bump Avoid", "Calibration", "Pinouts", "Serial

Reset"};

void main ()

{

 int selection = 0;

 int prevSelec = -1;

 int i;

 do

 {

 selection = 0;

 while (a_button());

 while(!a_button())//Menu

 {

 if(selection != prevSelec)

 {

 display_clear();

 for(i = 0; i < options; i++)

 {

 if (selection == i)

 {

 printf("* ");

 }

 else

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 22 of 45

 {

 printf(" ");

 }

 printf(arrMenu[i]);

 printf("\n");

 }

 prevSelec = selection;

 }

 if (down_button())

 {

 while(down_button()); //wait for release

 selection = min(selection + 1, options - 1);

 }

 if (up_button())

 {

 while(up_button()); //wait for release

 selection = max(selection - 1, 0);

 }

 }

 while(a_button());

 display_clear();

 printf("Starting \"");

 printf(arrMenu[selection]);

 printf("\"\n");

 switch(selection)

 {

 case 0:

 mission();

 break;

 case 1:

 bump_avoidance();

 break;

 case 2:

 calibration();

 break;

 case 3:

 pinouts();

 break;

 case 4:

 serial_set_mode(0);

 break;

 default:

 printf("Not yet coded, good-bye");

 }

 } while (selection >= 2);

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 23 of 45

Mission.ic
void mission()

{

 int moved2 = 0;

 BaseMid;

 ArmExtend;

 GripOpen;

 enable_servos();

 sleep(.75);

 ArmUp;

 initialize();

 serial_set_mode(BAUD_RATE);

 start_process(serial_thread());

 request_robot_number();

 sleep(1.0);

 if (robot_number == 0)

 robot_number = 1; //incase no response

 init_camera();

 printf("Robot %d starting\n", robot_number);

 NormalFind();

 if (global_ball_count_done < START_COUNT)

 {

 moved2 = 1;

 Turn(45L, robot_number-1);

 MoveSteps(8000L, -100);

 Turn(135L, robot_number-1);

 changeSpeed(0, 0);

 printf("Waiting on other robot\n");

 }

 while(global_ball_count_done < START_COUNT)

 msleep(100L);

 printf("Cooperative mode on\n");

 if(robot_number == 1)

 {

 if (!moved2)

 Turn(180L, dirC);

 SpecialFind();

 }

 else if (!moved2)

 {

 Turn(45L, robot_number-1);

 MoveSteps(8000L, -100);

 Turn(90L, robot_number-1);

 MoveSteps(2000L, -100);

 changeSpeed(0, 0);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 24 of 45

 }

 else

 {

 Turn(45L, 1 - (robot_number-1));

 MoveSteps(2000L, -100);

 changeSpeed(0, 0);

 }

 if (robot_number == 2)

 {

 helpMode();

 }

 changeSpeed(0,0);

 beep();

 msleep(50L);

 beep();

 msleep(50L);

 beep();

 msleep(50L);

 beep();

 msleep(50L);

 beep();

 msleep(50L);

 disable_servos();

}

void helpMode()

{

 int intSpecial = 0;

 while (intSpecial < SPEC_COUNT)

 {

 while(!coop_help)

 msleep(100L);

 printf("Helping, hold on\n");

 search(SPECIAL, 5);

 if (track_size(SPECIAL, 0) > pickUpSize - 1000)

 MoveSteps(4000L, -100);

 align(SPECIAL);

 trackUntilSize(SPECIAL, pickUpSize);

 changeSpeed(0,0);

 ArmDown;

 GripOpen;

 sleep(.5);

 MoveSteps(750L, 100);

 changeSpeed(0,0);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 25 of 45

 write_helped();

 GripClose;

 ArmExtend;

 sleep(1.75);

 GripOpen;

 sleep(.25);

 MoveSteps(1000L, -100);

 changeSpeed(0,0);

 coop_help = 0;

 intSpecial++;

 }

 Turn(45L, dirCC);

}

void SpecialFind()

{

 while (intSpecial < SPEC_COUNT)

 {

 if (DEBUG)

 printf("Starting Search\n");

 search(SPECIAL, 2);

 if (DEBUG)

 printf("Starting Pickup\n");

 if (pickup_special(SPECIAL))

 {

 intSpecial++;

 while(!dropoff(BIN));

 sleep(1.5);

 changeSpeed(0, 0);

 ArmFakeUp();

 beep();

 beep();

 beep();

 printf("HELP ME\n");

 write_request_help();

 while(!coop_help)

 msleep(10L);

 set_servo_position(ServoJoint, 190);

 sleep(.25);

 ArmExtend;

 sleep(2.25);

 ArmUp;

 BaseMid;

 sleep(.65);

 changeSpeed(100, 100);

 while(!SensBump);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 26 of 45

 changeSpeed(0, 0);

 ArmDeploy;

 sleep(1.5);

 GripOpen;

 sleep(.5);

 ArmUp;

 if (DEBUG)

 printf("Count Remaining %d\n", absJ(SPEC_COUNT - intSpecial));

 Turn(180L, dirC);

 }

 }

}

void NormalFind()

{

 while (global_ball_count < START_COUNT)

 {

 if (DEBUG)

 printf("Starting Search\n");

 if (!search(NORMAL, 0))

 return;

 if (DEBUG)

 printf("Starting Pickup\n");

 if (pickup(NORMAL))

 {

 local_ball_count++;

 global_ball_count = local_ball_count + away_ball_count;

 write_ball_count();

 Turn(180L, dirC);

 changeSpeed(0,0);

 while(!dropoff(BIN));

 changeSpeed(100, 100);

 while(!SensBump);

 changeSpeed(0, 0);

 ArmDeploy;

 sleep(1.5);

 GripOpen;

 sleep(.5);

 ArmUp;

 write_base_free();

 local_ball_count++;

 write_ball_count_done();

 if (DEBUG)

 printf("Count Remaining %d\n", absJ(START_COUNT - global_ball_count));

 }

 }

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 27 of 45

}

void ArmFakeUp()

{

 int i;

 for(i = 140; i <= 170; i++)

 {

 set_servo_position(ServoJoint, i);

 msleep(30L);

 }

 sleep(.35);

 ArmDown;

 for(i = 140; i <= 190; i++)

 {

 set_servo_position(ServoJoint, i);

 msleep(30L);

 }

 sleep(.55);

 ArmDown;

 for(i = 110; i <= 140; i++)

 {

 set_servo_position(ServoArm, i);

 msleep(40L);

 }

 sleep(1.15);

 ArmDown;

}

int dropoff(int intChannel)

{

 if(base_busy)

 printf("Base is busy\n");

 while(base_busy);

 if (intSpecial > 0)

 search(intChannel, 6);

 else

 search(intChannel, 1);

 if(base_busy)

 changeSpeed(0,0);

 while(base_busy);

 write_base_busy();

 if (motorSpeedLeft == 0 && motorSpeedRight == 0)

 sleep(3.0); //Wait for other robot to move

 printf("Aligning with base\n");

 align(intChannel);

 printf("Tracking with base\n");

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 28 of 45

 return trackUntilSize(intChannel, dropOffSize);

}

int pickup_special(int intChannel)

{

 long delay = TIME_90;

 int pos = get_servo_position(ServoBase);

 if (!pickupPart1(intChannel))

 return 0;

 pickupPart2(intChannel);

 delay = TIME_90 / (long)(BaseRightPosition - BaseMidPosition) / 2L;

 changeSpeed(-MAX_SPEED, MAX_SPEED);

 while(pos != BaseRightPosition)

 {

 set_servo_position(ServoBase, pos++);

 msleep(delay);

 }

 return 1;

}

int pickupPart1(int intChannel)

{

 if (DEBUG)

 printf("Starting Align\n");

 write_base_free();

 align(intChannel);

 if (DEBUG)

 printf("Starting Track\n");

 if (!trackUntilSize(intChannel, pickUpSize))

 return 0;

 return 1;

}

void pickupPart2(int Channel)

{

 changeSpeed(0,0);

 GripOpen;

 sleep(.25);

 ArmDown;

 sleep(.5);

 changeSpeed(MAX_SPEED, MAX_SPEED);

 sleep(2.15);

 changeSpeed(0, 0);

 GripClose;

 sleep(.5);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 29 of 45

}

int pickup(int intChannel)

{

 if (!pickupPart1(intChannel))

 return 0;

 pickupPart2(intChannel);

 ArmUp;

 sleep(1.5);

 return 1;

}

int trackUntilSize(int intChannel, int intSize)

{

 int x;

 track_update();

 while (track_size(intChannel, 0) < intSize && foundReliable(intChannel))

 {

 x = adjustX(intChannel);

 if (x < 0)

 changeSpeed(scaleSM(x, TRACK_FACTOR), MAX_SPEED);

 if (x >=0)

 changeSpeed(MAX_SPEED, scaleSM(x, TRACK_FACTOR));

 track_update();

 }

 return foundReliable(intChannel);

}

void align(int intChannel)

{

 int x, y;

 track_update();

 x = adjustX(intChannel);

 if (x < -25)

 {

 changeSpeed(-turnSpeed, turnSpeed);

 do

 {

 track_update();

 x = adjustX(intChannel);

 }while(x < -25);

 }

 if (x > 25)

 {

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 30 of 45

 changeSpeed(turnSpeed, -turnSpeed);

 do

 {

 track_update();

 x = adjustX(intChannel);

 }while(x > 25);

 }

}

int adjustX (int intChannel)

{

 return track_x(intChannel, 0) - (SCREEN_WIDTH / 2);

}

int adjustY (int intChannel)

{

 return track_y(intChannel, 0) - (SCREEN_HEIGHT / 2);

}

int search(int intChannel, int stage)

{

 printf("Searching Stage %d\n", stage);

 if (stage != 5 && (robot_number == 2 || stage == 2 || stage == 6))

 changeSpeed(-turnSpeed, turnSpeed);

 else

 changeSpeed(turnSpeed, -turnSpeed);

 track_update();

 while (!foundReliable(intChannel))

 {

 track_update();

 if (stage == 0 && local_ball_count + away_ball_count >= START_COUNT)

 return 0;

 }

 return 1;

}

int foundReliable(int intChannel)

{

 return !(!(track_count(intChannel) > 0 && track_confidence(intChannel, 0) > 20 &&

track_size(intChannel,0) > 500));

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 31 of 45

Globals.ic

#define DEBUG 1

#define START_COUNT 2

#define ORANGE 0

#define GREEN 2

#define BLUE 1

#define SPEC_COUNT 1

#define NORMAL GREEN

#define SPECIAL ORANGE

#define BIN ORANGE

#define MAX_SPEED 100

#define ROTATION 6017L

#define TIME_90 3471L

#define SCREEN_WIDTH 356

#define SCREEN_HEIGHT 292

#define dirC 0

#define dirCC 1

#define dirRand 2

#define TRACK_FACTOR 1

#define turnSpeed 100

//Pin definitions

#define BumpLeft 15

#define BumpRight 8

#define DropFront 9

#define DropLeft 11

#define DropRight 10

#define EncoderLeft 13

#define EncoderRight 14

#define MotorLeft 3

#define MotorRight 1

#define ServoBase 0

#define ServoArm 1

#define ServoJoint 2

#define ServoGrip 3

//Servo functions

#define GripClose set_servo_position(ServoGrip, 50)

#define GripOpen set_servo_position(ServoGrip, 128)

#define ArmUpPosition 245

#define JointUpPosition 10

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 32 of 45

#define ArmUp {set_servo_position(ServoArm, ArmUpPosition); sleep(.45);

set_servo_position(ServoJoint, JointUpPosition);}

#define ArmDown {set_servo_position(ServoJoint, 140); sleep(.25);

set_servo_position(ServoArm, 110);}

#define ArmExtend {set_servo_position(ServoArm, 170);

set_servo_position(ServoJoint, 100);}

#define ArmDeploy {set_servo_position(ServoArm, 200);

set_servo_position(ServoJoint, 50);}

#define BaseRightPosition 206

#define BaseLeftPosition 16

#define BaseMidPosition 110

#define BaseLeft set_servo_position(ServoBase, BaseLeftPosition)

#define BaseMid set_servo_position(ServoBase, BaseMidPosition)

#define BaseRight set_servo_position(ServoBase, BaseRightPosition)

//Sensor definitions

#define SensBL !digital(BumpLeft)

#define SensBR !digital(BumpRight)

#define SensBump (SensBL | SensBR)

#define SensDF digital(DropFront)

#define SensDL digital(DropLeft)

#define SensDR digital(DropRight)

#define SensDrop (SensDF | SensDL | SensDR)

#define SensEL read_encoder(EncoderLeft)

#define SensER read_encoder(EncoderRight)

//Used for drop sensor shutdown

int _shut_down_pid;

int global_x = 0, global_y = 0;

//Calibration

int pickUpSize = 19500;

int dropOffSize = 32767;

//Motor Tracking

int motorSpeedLeft = 0;

int motorSpeedRight = 0;

//Buttons

int arrButton[8] = {1, 2, 16, 32, 64, 128, 256, 512};

#define BUTTON_A 1

#define BUTTON_B 2

#define BUTTON_RIGHT 16

#define BUTTON_LEFT 32

#define BUTTON_UP 64

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 33 of 45

#define BUTTON_DOWN 128

#define BUTTON_R 256

#define BUTTON_L 512

//Ball Count

int base_busy = 0;

int global_ball_count = 0;

int local_ball_count = 0;

int away_ball_count = 0;

int global_ball_count_done = 0;

int local_ball_count_done = 0;

int away_ball_count_done = 0;

int robot_number = 0;

#define BAUD_4800 BAUD_9600*2

#define BAUD_2400 BAUD_4800*2

#define BAUD_1200 BAUD_2400*2

#define BAUD_RATE BAUD_9600

int coop = 0;

int intSpecial = 0;

int coop_help = 0;

int ball_coordinates[4] = {0, 0, 0, 0};

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 34 of 45

Calibration.ic

#define calOptions 6

char calArrMenu[calOptions][18] = {"Pickup Distance", "360 Rotation", "90 Test", "Serial

Read", "Serial Write", "Exit to Main Menu"};

void calibration()

{

 int selection = 0;

 int prevSelec = -1;

 int i;

 do

 {

 prevSelec = -1;

 selection = 0;

 while (a_button());

 //Menu

 while(!a_button())

 {

 if(selection != prevSelec)

 {

 display_clear();

 for(i = 0; i < calOptions; i++)

 {

 if (selection == i)

 {

 printf("* ");

 }

 else

 {

 printf(" ");

 }

 printf(calArrMenu[i]);

 printf("\n");

 }

 prevSelec = selection;

 }

 if (down_button())

 {

 while(down_button()); //wait for release

 selection = min(selection + 1, calOptions - 1);

 }

 if (up_button())

 {

 while(up_button()); //wait for release

 selection = max(selection - 1, 0);

 }

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 35 of 45

 }

 while(a_button());

 display_clear();

 // printf("Starting \"");

 // printf(arrMenu[selection]);

 // printf("\"\n");

 switch(selection)

 {

 case 0:

 pickUpDistance();

 break;

 case 1:

 rotation();

 break;

 case 2:

 test90();

 break;

 case 3:

 serial_reader();

 break;

 case 4:

 serial_writer();

 break;

 case calOptions-1: //Exit to menu

 break;

 default:

 printf("Not yet coded, good-bye\n");

 sleep(1.0);

 }

 }while(selection != calOptions-1);

}

void serial_reader()

{

 int val;

 serial_set_mode(BAUD_RATE);

 while(1)

 if(serial_buffer_count() > 0)

 {

 val = serial_read_byte();

 printf("%x = %d\n", val, val);

 }

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 36 of 45

void serial_writer()

{

 int i=0;

 sleep(1.0);

 serial_set_mode(BAUD_RATE);

 serial_write_byte(201);

 serial_write_byte(0x0D);

 sleep(.75);

 serial_write_byte(202);

 serial_write_byte(0x0D);

 sleep(.75);

 serial_write_byte(203);

 serial_write_byte(0x0D);

 sleep(.75);

 serial_write_byte(204);

 serial_write_byte(0x0D);

 sleep(3.75);

 serial_write_byte(205);

 serial_write_byte(0x0D);

 sleep(.5);

 while(0)

 {

 for(i=0; i<255; i++)

 {

 serial_write_byte(i);

 printf("W: %x = %d\n", i, i);

 sleep(.75);

 }

 }

}

void test90()

{

 int EncoderL = 0, EncoderR = 0;

 long time;

 disable_encoder(EncoderLeft);

 disable_encoder(EncoderRight);

 enable_encoder(EncoderLeft);

 enable_encoder(EncoderRight);

 reset_encoder(EncoderLeft);

 reset_encoder(EncoderRight);

 motor(MotorLeft, -100);

 motor(MotorRight, 100);

 time = mseconds();

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 37 of 45

 do

 {

 EncoderL = read_encoder(EncoderLeft);

 EncoderR = read_encoder(EncoderRight);

 }while((long)(EncoderL + EncoderR) < ROTATION / 2L);

 ao();

 time = mseconds() - time;

 printf("Left: %d\nRight: %d\nAverage: %d\n", EncoderL, EncoderR, (EncoderL + EncoderR)

/ 2);

 printf("Time (ms): %d", time);

 waitForButton(BUTTON_A);

 disable_encoder(EncoderLeft);

 disable_encoder(EncoderRight);

}

void rotation()

{

 int EncoderL = 0, EncoderR = 0;

 disable_encoder(EncoderLeft);

 disable_encoder(EncoderRight);

 enable_encoder(EncoderLeft);

 enable_encoder(EncoderRight);

 printf("Spinning Left\n");

 motor(MotorLeft, -100);

 motor(MotorRight, 100);

 while(analog(2) < 128);

 reset_encoder(EncoderLeft);

 reset_encoder(EncoderRight);

 printf("Encoders Reset\n");

 while(analog(2) > 128);

 while(analog(2) < 128)

 {

 if (read_encoder(EncoderLeft) > 30000 || read_encoder(EncoderRight) > 30000)

 {

 printf("%d : %d", read_encoder(EncoderLeft), read_encoder(EncoderRight));

 reset_encoder(EncoderLeft);

 reset_encoder(EncoderRight);

 }

 }

 EncoderL = read_encoder(EncoderLeft);

 EncoderR = read_encoder(EncoderRight);

 ao();

 printf("Left: %d\nRight: %d\nAverage: %d\n", EncoderL, EncoderR, (EncoderL + EncoderR)

/ 2);

 waitForButton(BUTTON_A);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 38 of 45

 disable_encoder(EncoderLeft);

 disable_encoder(EncoderRight);

}

void pickUpDistance()

{

 int set = 0;

 printf("Pick Up Distance\nPress \"A\" to lower arm\n");

 waitForButton(BUTTON_A);

 ArmExtend;

 BaseMid;

 GripOpen;

 enable_servos();

 sleep(.75);

 do

 {

 GripOpen;

 ArmDown;

 printf("Place Ball in gripper and press \"A\"\n");

 waitForButton(BUTTON_A);

 GripClose;

 printf("Press \"A\" to accept\nPress \"B\" to try again\n");

 set = waitForAnyButton();

 }while(set != BUTTON_A);

 printf("Hold Ball in place and press \"A\"\n");

 waitForButton(BUTTON_A);

 GripOpen;

 sleep(.75);

 ArmUp;

 printf("Let go of ball and press \"A\"\n");

 waitForButton(BUTTON_A);

 init_camera();

 track_update();

 pickUpSize = track_size(ORANGE, 0);

 printf("Size: %d", pickUpSize);

 waitForAnyButton();

 disable_servos();

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 39 of 45

Bump_avoidance.ic

void bump_avoidance()

{

 initialize();

 while(1)

 {

 changeSpeed(100, 100);

 while(!SensBump);

 if(SensBL & SensBR)

 {

 Turn(90L, dirRand);

 }

 else

 {

 if (SensBL)

 Turn(30L, dirC);

 else

 Turn(30L, dirCC);

 }

 }

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 40 of 45

Functions.ic

void pinouts()

{

 printf("*******************\n");

 printf("* Pinouts *\n");

 printf("*Drop Sensors *\n");

 printf("* Front %x *\n", DropFront);

 printf("* Left %x *\n", DropLeft);

 printf("* Right %x *\n", DropRight);

 printf("*Bump Sensors *\n");

 printf("* Left %x *\n", BumpLeft);

 printf("* Right %x *\n", BumpRight);

 printf("*Encoders *\n");

 printf("* Left %x *\n", EncoderLeft);

 printf("* Right %x *\n", EncoderRight);

 printf("*******************\n");

 waitForAnyButton();

}

void serial_write_char(char string[], int length)

{

 int i = 0;

 for(i=0; i < length; i++)

 {

 serial_write_byte(string[i]);

 }

}

int absJ(int val)

{

 if (val > 0)

 return val;

 return -val;

}

int max(int a, int b)

{

 if (a > b) return a;

 return b;

}

int min(int a, int b)

{

 if (a < b) return a;

 return b;

}

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 41 of 45

void request_robot_number()

{

 write_s3(200, 0, 0);

}

void write_ball_count()

{

 write_s3(200 + robot_number, 1, local_ball_count);

}

void write_base_busy()

{

 write_s3(200 + robot_number, 2, 1);

}

void write_base_free()

{

 write_s3(200 + robot_number, 2, 0);

}

void write_ball_count_done()

{

 write_s3(200 + robot_number, 4, local_ball_count);

}

void write_request_help()

{

 write_s3(200 + robot_number, 5, 0);

}

void write_helped()

{

 write_s3(200 + robot_number, 5, 1);

}

void write_s3(int p1, int p2, int p3)

{

 serial_write_byte(p1);

 serial_write_byte(p2);

 serial_write_byte(p3);

}

void serial_thread()

{

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 42 of 45

 int part1 = 0, part2, part3;

 printf("Serial Thread Started\n");

 serial_set_mode(BAUD_RATE);

 while(1)

 {

 do

 {

 while(serial_buffer_count() <= 0);

 part1 = serial_read_byte();

 }

 while(part1 < 200);//Main function

 while(serial_buffer_count() <= 0);

 part2 = serial_read_byte();

 while(serial_buffer_count() <= 0);

 part3 = serial_read_byte();

 if (part2 == 0)//Used for intialize robot number

 {

 if (part3 == 0)

 {

 write_s3(200, 0, robot_number + 1);

 printf("Send Robot #%d\n", robot_number + 1);

 }

 else

 robot_number = part3;

 }

 else if (part2 == 1) //Receiving ball update

 {

 away_ball_count = part3;

 global_ball_count = local_ball_count + away_ball_count;

 }

 else if (part2 == 2) //Receiving base busy update

 {

 base_busy = part3;

 }

 else if (part2 == 3) //Cooperative mode - outdated

 {

 if (coop < 4)

 ball_coordinates[coop++] = part3;

 }

 else if (part2 == 4) //Receiving ball update

 {

 away_ball_count_done = part3;

 global_ball_count_done = local_ball_count_done + away_ball_count_done;

 }

 else if (part2 == 5) //Cooperative Help

 {

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 43 of 45

 coop_help = 1;

 }

 }

}

void initialize()

{

 int i = 0, x, y;

 if (SensDrop)

 {

 printf("Place Robot on ground.\n");

 while(SensDrop)

 {

 beep();

 sleep(.1);

 }

 }

 _shut_down_pid = start_process(_shut_down_task());

 //Enable both encoders

 enable_encoder(EncoderLeft);

 enable_encoder(EncoderRight);

 printf("Starting in : 5");

 for(i = 5; i > 0;)

 {

 tone((float)i * 1000., .1);

 sleep(.9);

 display_get_xy(&x, &y);

 display_set_xy(x - 1, y);

 printf("%d", --i);

 }

 printf("\n");

}

void Turn(long Degrees, int Direction)

{

 int dir = 1;

 long Steps = ROTATION * Degrees / 180L;

 long Current = 0L;

 if (Direction > 1)

 Direction = random(2);

 if (Direction == dirCC)

 dir = -1;

 changeSpeed(turnSpeed * dir, -turnSpeed * dir);

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 44 of 45

 while(Current < Steps){Current = (long)read_encoder(EncoderLeft) +

(long)read_encoder(EncoderRight);}

}

void MoveSteps(long steps, int speed)

{

 long Current = 0L;

 changeSpeed(speed, speed);

 while(Current < steps){Current = (long)read_encoder(EncoderLeft) +

(long)read_encoder(EncoderRight);}

}

void changeSpeed(int MotorSpeedLeft, int MotorSpeedRight)

{

 track_position();

 motor(MotorLeft, MotorSpeedLeft);

 motor(MotorRight, MotorSpeedRight);

 motorSpeedLeft = MotorSpeedLeft;

 motorSpeedRight = MotorSpeedRight;

}

void track_position()

{

 reset_encoder(EncoderLeft);

 reset_encoder(EncoderRight);

}

void _shut_down_task() //Botbal Function from Kiss Inistitute

{

 int i,j;

 while(!SensDrop);

 hog_processor();

 ao();

 disable_servos(); // delete this line if you want your servos to freeze but remain powered at the

end

 printf("Game over");

 i= 0;

 for (j= 256; j <= 1024; j+=256) {

 hog_processor();

 while (i < j) {

 kill_process(_shut_down_pid+(++i));

 kill_process(_shut_down_pid-i);

 }

 ao();

 disable_servos(); // delete this line if you want your servos to freeze but remain powered at

the end

University of Florida

Department of ECE
20-April-2010

EEL 5666-Intelligent Machines Design Lab

A. Antonio Arroyo, PhD

Eric M. Schwartz, PhD

Page 45 of 45

 }

 serial_set_mode(0);

 printf(".\n");

}

int scale(int i, int org, int new)

{

 return (i * new) / org;

}

int scaleSM(int i, int intScaleFactor) //Scale screen to motor

{

 return scale((SCREEN_WIDTH / 2 - absJ(i)) * intScaleFactor, SCREEN_WIDTH / 2,

MAX_SPEED);

}

void waitForButton(int button)

{

 while (check_button(button));

 while (!check_button(button));

 while(check_button(button));

}

int waitForAnyButton()

{

 int i;

 int val=0;

 while (any_button());

 while (!any_button());

 while(any_button())

 {

 val = 0;

 for(i = 0; i < 8; i++)

 {

 if (check_button(arrButton[i]))

 val += arrButton[i];

 }

 }

 return val;

}

