University of Florida

BRaD: Bomb Recovery and Disposal Robot

EEL 5666: Intelligent Machines Design Laboratory
Ist Written Report
Spring 2010

Student Name: Jose R. Vento

Instructors: Dr. Eric M. Schwartz
Dr. A. Antonio Arroyo

TAs : Mike Pridgen
Thomas Vermeer

Date: 4/20/10



I. Table of Contents

Contents
L. Table Of COMENES ...oouiiiiiiiiiiieiieete ettt ettt ettt ettt et et et ettt e 2
II. ADSTIACT 1.ttt ettt ettt ettt et et ettt ettt et et ettt ettt e ae e 3
I1I. EXECULIVE SUMIMATY ....viiiiiiiiiiiecieeeie ettt ette et ettt e st esabeesateesbeeeseeesneessaeeasaeesnseesnseesnseeans 3
IV INEOAUCTION .ottt et et ettt et et et ettt ettt ere e 3
VI MOoDbile PLatfOrm c...oo.eiiiiiiiiiiie ettt et ettt 5
VIL  ACKHUATION ettt ettt et ettt et et e bt e bt et e bt et e bt e bt e bt et e e bt et e eneeenteenne 6
VLI SEISOTS .ttt ettt ettt ettt et e bt e bt et e bt et e s bt e bt e bt e bt e bt et e e bt ebe e bt et e e bt enteenteenteenne 7
IXL BERAVIOTS toueiiiiiiiiiie ettt sttt 10
X. Experimental Layout and RESULILS .........cociiiiiiiiiiiiieeie ettt 10
XI. CONCIUSION ..ottt ettt ettt e s b e bt e bt e bt e s bt e sbeesbeesbeesbeesbeenbeens 10
XIL. DoCUMENtAION .....eeutiiiieiieieeieeieeieeie ettt Error! Bookmark not defined.

D BN 03 o 1S3 s e B LSS 11



II. Abstract

Because of the increasing hazards troops face in present urban combat environments
more autonomous systems are needed to decrease the exposure that soldiers face. The Bomb
Recovery and Disposal robot is aimed at detecting, acquiring and disposing of hazardous objects
in the form of colored balls. The vehicle is built on a tracked propulsion system for increased
maneuverability and accessibility in varying terrain conditions. The robot will pick up the balls
and place them in an onboard chute and eject them into a bin in a predetermined location. The
system will use a camera to distinguish between the targets and a combination of sonar and IR to
navigate around objects.

III. Executive Summary

This project had as its target the creation of an autonomous robot that would retrieve an
item by searching randomly and place it in a container without prior knowledge of their
respective locations. BRaD uses CMUI CMOS camera to detect a color in a specific range and
track it continuously until it is able to retrieve it with the arm. The camera is interfaced via the
MAVRIC IIB board which is effectively the brain of the system; controlling all inputs and
outputs, the LCD screen, the motors, the servos, the sonars, and the IRs. The sonars and the IRs
are polled constantly to determine whether there is an object in the proximity of the robot and try
to avoid it by increasing distances. The IRs provide immediate object detection since they have a
limited range of approximately 12 inches, the sonars on the other hand provide a much wider
range of vision and allow for maneuvering in a greater spatial environment. The camera turned
out was the main sensor used in this project, there were several hurdles mainly with how the
camera behaved on changing environments with respect to light. To solve this problem a large
external light was added and it was found that performance increased greatly with respect to the
area where it was being operated, mainly the ability of the floor to reflect light.

IV. Introduction

In the last hundred years humanity has seen conflicts in all types of environments and
settings. From trench warfare in World War I and 1II, to guerilla warfare in Korea and Vietnam to
the urban intensive environments of both Gulf wars. BRaD is a robot aimed to reducing the
hazards of urban confrontations for the soldiers and shifting it to equipment with low operational
overhead, i.e. an autonomous robot. The Bomb Recovery and Disposal robot is a comparatively
low cost low maintenance high performing system designed to detect “hazardous devices,” store
them and dispose of them in a safe manner; while eliminating the exposure of personnel.

Through this exposition we will see the different components that make up BRaD and the
logic process the system applies to differentiate between a potentially harmful device and a
device that presents no danger to friendly troops. BRaD is a tracked system that will roam any
room that it is placed in and scout for balls of different colors, store them in its confines and eject
them into a bin at a set location. The recovery system is tentatively done with a three axis arm



that picks the ball and places it into a chute to be ejected via a solenoid into the bin. We will also
see the logic process for the behavior of the system and how it is achieved through the merging
of analog sensors and digital processing.

V. Integrated System

The Bomb Recovery and Disposal robot is built as a highly modular system, from an
integration point of view the robot has several important components and some redundant
systems for the more complicated functions that it needs to achieve, i.e. obstacle avoidance.
Figure 1 shows an overall block diagram of how the system converges to achieve its tasks. For
navigation in theory but mainly obstacle avoidance the robot will rely on sonars and IRs to detect
objects in its cope of movement. These two sensors are purposely redundant, first because IR
may not work on varying light conditions or in the case sonar, outside interference by overlaying
signals; and second because the robot always needs to stay aware of its environment for survival
purposes. In the case of the target detection and acquirement system the robot will rely on a
camera to distinguish the different colored objects to decide whether to pick up the object and
store it or let it be. For this specific robot, the camera is its largest limitation; it is the most cost
intensive item and it limits us to simple objects like balls.

Sonar

Obstacle
Avoidance

ATMega 128

Detection and

Camera > Acquirement

4

Aduation F eedback

—

Motors Servos LCD LEDs

Figure 1: Hardware Integration



The system has two types of output, the feedback interface and the actuation. The system
will be able to tell the users what its current function is and what the sensor values at that time,
the LCD is the main source since it is much more interactive and more information can be
displayed. We also use LED to provide certain type of specific information (i.e. is the robot in
active mode or wait mode). Certainly the most important part of the robot is the actuation
portion. This robot hast two propulsion motors and depending on how the arm is achieved from 3
to 4 servos.

Behind all the systems is an Atmel ATMega 128 microcontroller on a BDMICRO
Mavricll-B board. This development board offers all the range needed for this project. From dual
UARTs 6 PWM channels for the two motors and the servos; 8 analog to digital converters and
up to 53 input/output pins.

VI. Mobile Platform

Table 1: Dimensions

Width (in) | Length (in) | Height (in)

13.25 11.00 ~8.00

Figure 2: BRaD at construction phase.

The robot is built on a pre-manufactured polyurethane on plastic track system from
Lynxmotion, with a modified Erector® set frame attached to a Plexiglas body. BRaD has a deck
distribution, several decks allow for the separation of components by its placement priority. The



electronics and propulsion systems are set on the bottom deck to allow for the navigation and
detection system to be placed on the more accessible portions.

VII. Actuation

The dual track system calls for two motors to actuate each track and enable steering
comparable to that of a tank. Depending on the direction of turn one of the tracks may be stopped
or reversed. The PK22 (shown in Figure 3) motors run at 12 V with a nominal speed of 64 RPM.
These motors were selected because they offer a high amount of torque at relatively decent
speed, for this application the speed is just right but with respect to other packages offered this
gearhead design is a tad slow.

Figure 3:PK22 Motor, 12 V 64 RPM

To control these motors, a Scorpion dual motor controller from robot power is used
(Figure 4). This controller offers a wide range of input voltage and a continuous current rating of
12.5 Amps, much more that that needed for the motors which have a stall current of
approximately 3.5 Amps. Although this might seem as overkill for this specific application, the
modular nature of the robot might call for future expansion and outfitting of new parts and the
remaining parts must be able to handle such growth. Providing power for this design are two
Lithium Polymer 11.1 V 4000 mAh BlueLipo batteries (Figure 5); one is designated for the
electronics and servos and the other is completely dedicated to propulsion. The dual battery
design not only offers extended usable life of the system but protects the electronics from the
residual spikes of the motors.



S
L

» .-'”L;;.fms})g

-
——
-

Figure 4: Scorpion Motor Controller

Figure 5: BlueLipo Batteries, LiPo 11.1 V 4000mAh

VIII. Sensors

Due to the objection that the robot will encounter different environments, there was a
need to have more than one ranging system. The system will optimally use 4 sonars and 5 IR
placed strategically. Since the obstacle avoidance portion of this robot is not yet built, it is
subject to change and will be discussed further. For detection the most likely candidate will be a
CMU camera to detect bright colors. The placement of the ranging sensors is shown in figure
8.The placement for the IR’s was a result mainly of wanting to create an immediate “perimeter”
around the robot so it know when there are things in its immediate proximity. Sonars, however,
are set for navigation; with the wider cone at long ranges we can create an all around closeness
map to navigate around the objects before they are too close.



Figure 6: IR Sensors

Figure 7: SRF05



BRaD

Figure 8: Sensor Placement.

The CMU1 Camera used in this project offers a flexibility to the project needed for the
the different settings in which the robot would operate. The camera has the following
specifications:

Track user defined color blobs at 17 Frames Per Second

Find the centroid of the blob

Gather mean color and variance data

Transfer a real-time binary bitmap of the tracked pixels in an image
Arbitrary image windowing

Adjust the camera's image properties

Dump a raw image

80x143 Resolution

115,200/ 38,400/ 19,200 / 9600 baud serial communication

Slave parallel image processing mode off a single camera bus
Automatically detect a color and drive a servo to track an object upon startup

Ability to control 1 servo or have 1 digital 1/O pin



These capabilities allow us to assign different colors to each one of the targets (i.e. the
placement bin, the targets, and the dummy targets).

IX. Behaviors

The navigation algorithm will be an average of what the sonars see at medium to “long”
range and what the IR see at short range. Since there will be two IR for each of the sides any
discrepancy in their values will invalidate them for real use and the value used would be that of
the sonar, and vice-versa.

X. Experimental Layout and Results

Through testing we were able to determine the real values under different condition on
which the IRs would work. This was critical in order to establish an operating zone for the robots
sensors, this way we can know that even under environment changes the IRs will perform. The
result from these experiments is shown in Table 2. Figure 7 shows a small exponential trend, this
is the result of ambient noise, the closer the target is to the sensor the more accurate the data.
When the target is too close the sensor saturates.

Table 2: IR Range Table

Distance (in.) Digital Read
12 176-185
10 205-218
8 264-276
6 350-365
4 488-500
2 510-630
1 70-90 (Saturation)
700
600 =
500 | *
400 ]
300 . =&—Short Values
200 | [ | =f—Long Values
100 .
0
12 10 8 6 4 2 1

Figure 9: IR trend



XI. Conclusion

Although at this stage of the project not much has been completed one can say that
realistically that BRaD has yet to give its first steps. However, much progress has been done with
respect to propulsion, since there has been a first, second, and third test runs the last being the
only successful one since the others ended because of some form of failure.

The idea of having an autonomous machine running around with an explosive device
might be a bit unnerving but with the right application of technology and proofs of concept like
this robot it might just be possible.

XII. Appendices

Here we can see all the portions of my code.
/11111111/IMAIN CODE
#define F_CPU 16000000UL // 16 MHz
#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <avr/pgmspace.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

#include "LCD.h"
#include "PWM.h"
#include "ir.h"
#include "inout.h"

//#include "USART.h"
//#include "CMU1.h"

//ICMU FUNCTIONS

/*

void cmu_init(void);

void CMU_GM(void);

void CMU_TC(int ,int ,int ,int ,int ,int );
int binary2int(unsigned char);



//USART FUNCTIONS

void uvart0_init(void);

void UARTO_ TX(char );

unsigned char UARTO RX(void);*/
#define SONAR PORT PORTD
#define SONAR DDRX DDRD
#define SONAR PINX PIND

volatile uint16_t ms_count;

volatile int MAX MSG_SIZE = 30;
volatile unsigned char CMUBuffer[15];
unsigned char CMUreturn[15];

char front[10];

unsigned int RED;

unsigned int GREEN;

unsigned int BLUE;

unsigned int Xpos;

unsigned int Ypos;

unsigned int conf;

int igotthetarget = 0;

int stopinthenameoflove = 0;
int complete = 0;

int begin = 0;

int done = 0;

int beginbox = 0;

int donebox = 0;

int rad = 0;

uintl6_trise = 180;

uintl6_t risebox = 50;

int LF; //1
int LR;

int RF; //2
int RR;
intF; //0

int sonarFL = 0; //2
int sonarFR = 0; //3
int sonarRL = 0; //0
int sonarRR = 0; /1

int hello=10;



T
HHTTTICNa CODE /1777710071011
//CODE WRITTEN BY LUIS VEGA AND MODIFIED TO SUIT THIS APPLICATION///////1//
s
void uart0_init(void)
{
UBRROH = 0x00;
UBRROL = 16; //16 is for 115.2k if U2X=1, 0x33 = 51 for 38.4k baud
UCSROA = 0x02;
UCSROB = 0x18; //Bit 4 is Rx enable, Bit 3 is Tx enable
UCSROB |= (I<<RXEN)|(I<<TXEN);
UCSROC = 0x06; //Bit 6 = Mode (0=Ascync, 1=Sync),
}

/*Transmit a message over UARTO in the form of a character array*/
void UARTO TX(char message[MAX MSG_ SIZE))

{
intt=0;
while ((t <(MAX_MSG_SIZE + 1)) & (message[t] != 0x00))
{
/*Wait for an empty transmit buffer*/
while (!( UCSROA & (1<<UDREQO0)));
UDRO = message][t];
t++;
h
h

/*Receive a message*/
unsigned char UARTO RX(void)

{

while(!(UCSROA & (1<<RXC0)));
return UDRO;

}
T
// FUNCTIONS FOR CMU//1111i111111

/¥*CMUCam functions*/
void cmu_init(void)
{
/*Reset*/
UARTO TX("RS\");
_delay _ms(200);
/*¥Poll Mode*/



UARTO TX("PM 1\r");
_delay _ms(200);
/*Raw Output*/
UARTO TX("RM 3\r");
_delay _ms(200);
/*Middle Mass On*/
UARTO TX("MM 1\r");
//_delay ms(200);
/*Track with the full window*/
UARTO_TX("SW 11 80 143 \r");
//_delay _ms(200);

}

/*
** Get the mean (average) values of red, green, and blue (R, G, B)
** and store them in the global "CMUBuffer"
*/
void CMU_GM(void)
{
/Nled_clear screen();
/Nlcd_out_string("1*");

inti=0;

char tempChar;
UARTO_TX("GM\r");
//led_out_string("2*");

/*Read and discard the first 255 framing byte*/
tempChar = UARTO RX(); /// 0058
/tempChar = UARTO_RX(); /// 0058

/Nlcd_out_string("3*");
/*Read 7 byte long "type S" packet®/
for(i=0;1<7;1++)

{

}
/Nlcd_out_string("4*");

CMUBuffer[i] = UARTO_RX();

/*Trash the last 255 framing byte*/
while(tempChar !=":")

{
}

tempChar = UARTO0 RX();



/Nlcd_out_string("5*");

CMUBufter[i] ="\0";
/Nlcd_out_string("6*");

}

/*Tracks a color*/
void CMU_TC(int Rmin, int Rmax, int Gmin, int Gmax, int Bmin, int Bmax)
{

inti=0;

char tempChar, tempMessage[30];

sprintf(tempMessage,"TC %i %i %i %i %1 %i\r", Rmin, Rmax, Gmin, Gmax, Bmin,
Bmax);

UARTO TX(tempMessage);

tempChar = UARTO_RX();

/*Return a 9 byte long "type M" packet*/

for(i=0;1<9;1++)

{
CMUBufter[i] = UARTO0_RX();
}
while(tempChar!=":")
{
tempChar = UARTO0 RX();
}

CMUBufter[i] ="\0"

void display mean(void){
alloff();

CMU_GM(); // Dummy read
red();

_delay _ms(1000); // Wait for transients to die out (Very important)
yellow();

LCD _com(0x01);

LCD string(" RED: GREEN: BLUE:");

while(1){
alloff();
CMU_GM(); // Get means (15 min, 240 max)

_delay _ms(20);



RED = CMUBuffer[1]; / Red mean
GREEN = CMUBuffer[2]; // Green mean
BLUE = CMUBuffer[3]; // Blue mean

blue();
_delay ms(10);
LCD_com(0xCO0);
LCD_int(RED);
LCD_string(" ");
LCD_com(0xC7);
LCD_int(GREEN);
LCD_string(" ");
LCD com(0xCE);
LCD_int(BLUE);
LCD_string(" ");
_delay ms(10);

}

}

11111117171 TSON AR

1/

int sonar(int sonar_number)

{
int done = 0;
int counter=0;
int distance=0;
// 0 RL

//'TRR

unsigned int sonar_unsigned=0b00000001;
///Shifts to the desired pin///

sonar_unsigned = sonar_unsigned<<(sonar_number);

///Set pin to output///
DDRD |= sonar_unsigned;
///Set pin high, this is the trigger///

PORTD &= ~sonar_unsigned

_delay us(10);
PORTD |= sonar_unsigned;
///Wait for atleast 10 microseconds///
_delay us(15);
///Set pin low///
PORTD &= ~sonar_unsigned;



///Set the pin to input///
DDRD &= 0x00;
///Wait for the high signal from the sonar output///
while((PIND & sonar_unsigned)==0){}
///Wait for the end of the high signal///
while((counter>=0) & (done == 0))

{
///increment counter///
counter++;
///check for end of high signal and break if low///
if((PIND & sonar_unsigned)==0){ done = 1;}
}

distance= counter/74 ;

return distance;

}
HHHT7TTTTISONARRRRR

void recogete(void){
motors(225,225);

_delay _ms(2000);

motors(0,0);

_delay _ms(1000);
servo(-175,rise,-400,-30);
_delay _ms(1000);
servo(-175,0,-400,-30);

LCD _com(0x01);

LCD string(" I GOT THE TARGET");
_delay ms(20);

igotthetarget = 1;

h

void sueltame(void){

LCD _com(0x01);

LCD string(" PUTIT IN");
_delay _ms(20);

F=1R value(1, 5);
_delay _ms(30);

servo(-175,risebox,-100,-50);
_delay _ms(2000);
motors(0,0);



motors(220,-220);
_delay _ms(250);;

while(F <= 400){
motors(200,200);
F =1R value(0, 5);

}

motors(0,0);
servo(-175,risebox,-400,-50);
_delay _ms(2000);
servo(-175,risebox,-400,-400);
_delay_ms(2000);
servo(-175,0,-100,-400);
motors(-225,-225);

_delay _ms(1000);
servo(-175,0,-400,-400);
motors(-225,-225);
_delay_ms(500);

LCD _com(0x01);

LCD string("  DROPPED TARGET");
_delay ms(20);

complete = 1;

}

void track(void){
int doit = 0;
while((rise<= 450) & (done == 0)){

if(begin == 0){rise=0;
begin = 1;}
servo(-175,rise,-400,-350);

memset(CMUBuffer, 0, 15);

CMU_TC(210, 240, 30, 120, 13, 17);/LAB
//ICMU_TC(210, 240, 210, 240, 10, 30); /HOUSE

motors(0, 0);
Xpos= CMUBuffer[1]; // Red mean

Ypos = CMUBuffer[2]; // Green mean
conf = CMUBuffer[8]; // Green mean



if (Xpos > 50) & (conf >40)){
motors(-225, 225);
//ILCD_com(0x01);
//ILCD_string("CENT: TURN LEFT");
j
else if ((Xpos< 30)& (conf >40)){
motors(225, -225);
/l LCD_com(0x01);
/l LCD_string("CENT: TURN RIGHT");

b
else if (((Xpos >= 30) | (Xpos <= 50)) & (conf > 40)){
if(Ypos <40){
motors(225,225);

/l LCD_com(0x01);
/! LCD_string("CENTERED!!! MOVING FORWARD");
h
else{
motors(0,0);
red();
if(rise <= 450){
yellow_only();
rise = rise + 50;

else{done = 1;}

}

else{ doit =1 ;
LCD _com(0x01);
LCD_string(" CRAZY :-)");

}
if(doit == 1){
recogete();}

}

void track box(void){

int doitbox = 0;

while((risebox<= 145) & (donebox == 0)){
igotthetarget = 0;



if(beginbox == 0){risebox = 0;
beginbox = 1;}
servo(-175,risebox,-400,-50);

memset(CMUBuffer, 0, 15);

CMU _TC(30, 75, 210, 240, 90, 150);
//ICMU_TC(220, 240, 220, 240, 220, 240);//LAB
//ICMU_TC(210, 240, 210, 240, 10, 30); /HOUSE

motors(0, 0);

Xpos= CMUBuffer[1]; // Red mean
Ypos = CMUBuffer[2]; // Green mean
conf = CMUBuffer[8]; // Green mean

if (Xpos > 50) & (conf >40)){
motors(-225, 225);
LCD _com(0x01);
LCD_string("CENT: TURN LEFT");
}
else if ((Xpos< 30)& (conf >40)){
motors(225, -225);
LCD _com(0x01);
LCD_string("CENT: TURN RIGHT");
}
else if (((Xpos >= 30) | (Xpos <= 50)) & (conf > 40)){
if(Ypos <50){
motors(225,225);
LCD _com(0x01);
LCD_string("CENTERED!!! MOVING FORWARD");
}
else{
motors(0,0);
red();
if(risebox <= 150){
yellow_only();
risebox = risebox + 45;

else{donebox = 1;}

}
}
else{ doitbox =1 ;
LCD _com(0x01);



LCD string(" STOPPED ON THE BOX");

}
}
if(doitbox == 1){
sueltame();
done = 0;

donebox = 0;
igotthetarget = 0;}

}

T T
HHTTTTTTTTTEND CMUY T
T T

/INTERRRUPTTTTTTOOOO
/*
void pardonme(void){

TCCRO |= (1<<WGMO1) |(1<<CS02) | (1<<CS01) | (1<<CS00);
OCRO = 16;
TIMSK |= (1<<OCIE0);
sei();
hl

int main(void)
{
// INITIALIZATIONS
servo_init();
init LCD();
adc_init();/* initialize A/D Converter */
uart0_init();
cmu_init();
// END INITIALIZATIONS

//TURN ON BOARD LED



DDRB |=0x01; //Enable PORTBO as output
PORTB "= 1; //toggle LED
//END BOARD LED

//PANNEL LED TEST ROUTINE
red only();
_delay _ms(250);
blue_ only();
_delay _ms(250);
white_only();
_delay _ms(250);
yellow_only();
_delay _ms(250);
//END TEST ROUTINE

//CAMERA LED TEST
UARTO_TX("L1 1\r"); // CAMERA LED TESTING for FUNCTIONALITY
_delay _ms(1000);
UARTO_TX("L1 2\r"); // RETURN LED TO DEFAULT(TRACKING)
_delay _ms(1000);

//END CAMERA TEST
servo(-175,0,-400,-400);

//// BEGIN CODE////

CMU _TC(210, 240, 210, 240, 10, 30);/HOUSW
_delay _ms(10);

while(1){
memset(CMUBuffer, 0, 15);

CMU _TC(210, 240, 30, 120, 13, 17);//LAB
conf = CMUBuffer[8];

_delay ms(10);

F=1R value(0, 5);

LF =1IR value(1, 5);

RF =1R value(2, 5);

if(conf<40){

//if(F>=300){
/*
motors(-225,-225);
H



else if(RF>=300) {
motors(-225,225);
}

else if(LF>=300){
motors(225,-225);

}
else{*/
motors(-225,225); // go left
1}
}
else{
alloff();

CMU_TC(200, 240, 90, 100, 11, 18);/TRACK THE BALL
_delay ms(20);

red();

yellow();

igotthetarget = 0;
complete = 0;
begin = 0;

done = 0;
beginbox = 0;
donebox = 0;

rad = 0;

rise = 0;

risebox = 0;

track();
while(igotthetarget == 1){
F=1R value(0, 5);
LF =1IR value(1, 5);
RF =1R value(2, 5);
CMU_TC(30, 75, 210, 240, 90, 150);//LAB
conf = CMUBuffer[8]; // Green mean
_delay ms(10);
if(conf<40){
/*
if(F>=300){
motors(-225,-225);
}
else if(RF>=300){
motors(-225,225);
}



else if(LF>=300){
motors(225,-225);

§

else{*/

motors(225,-225); // go left
/1}

h
else{track box();}

}

motors(-225,225);
_delay _ms(1000);

} // end big else

}//end while

}
/*

ISR(TIMERO COMP _vect){

CMU_TC(210, 240, 30, 120, 13, 17);//LAB
conf = CMUBuffer[8]; // Green mean
_delay _ms(10);

if(conf>40){

LCD_com(0x01);

LCD_string(" IGOTIT");
stopinthenameoflove = 1;

}

else{

LCD _com(0x01);

LCD_string(" I DONT GOT IT ");

}

sonarFL; //2
// sonarFR; //3
// sonarRL; //0
// sonarRR; //1



//sonarFL = sonar(2);
//sonarFR = sonar(3);
//sonarRL = sonar(0);
//sonarRR = sonar(1);

LCD_com(0x01);
LCD_ string(" FL FR RL RR");

LCD_com(0xCO0);
LCD _int(sonarFL);
LCD string(" ");
LCD _int(sonarFR);
LCD_string(" ");
LCD _int(sonarRL);
LCD_string(" ");
LCD _int(sonarRR);
LCD_string(" ");

3
/11111//LCD CODE

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/delay.h>

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

void LCD_com(int command)

{

N 6 5 43210
//DB7 DB6 DB5 DB4 E RW RS

unsigned int UpperNibble = 0xF0 & command,
unsigned int LowerNibble = 0xOF & command;
LowerNibble = LowerNibble << 4;
LowerNibble = LowerNibble & 0xFO;



PORTC = 0x04 | UpperNibble;
_delay ms(1);
PORTC = 0x00 | UpperNibble;
_delay ms(1);

PORTC = 0x04 | LowerNibble;
_delay ms(1);

PORTC = 0x00 | LowerNibble;
_delay ms(1);

}

void LCD_char(int character)

{

unsigned int UpperNibble = 0xFO & character;
unsigned int LowerNibble = 0xOF & character;
LowerNibble = LowerNibble << 4;
LowerNibble = LowerNibble & 0xFO0;

PORTC = 0x05 | UpperNibble;
_delay ms(1);
PORTC = 0x01 | UpperNibble;
_delay ms(1);

PORTC = 0x05 | LowerNibble;
_delay ms(1);
PORTC = 0x01 | LowerNibble;
_delay ms(1);

}
void LCD_string(char stringy[])
{
inti=0;
while (stringy[i] !="\0")
{

LCD_char(stringy[i]);
i++;

b



void init LCD(void)
{

DDRC = 0xFF; // LCD Output

_delay ms(15);
LCD _com(0x33);
_delay ms(1);
LCD _com(0x32);
LCD_com(0x2C);
LCD_com(0x0F);
LCD _com(0x01);

}

void LCD _int(uintl6 _t integer)
{
/*
** Break down the original number into the thousands, hundreds,
tens,
** and ones places and then immediately write that value to the
LCD
*/
uint8_t thousands = integer / 1000;

LCD_char(thousands + 0x30); // 0x30 = zero in hexidecimal format = 0b00110000

(in binary format)
uint8 t hundreds = (integer - thousands*1000) / 100;
LCD_char(hundreds + 0x30);
uint8_t tens = (integer - thousands*1000 - hundreds*100 ) / 10;
LCD_char(tens + 0x30);
uint8_t ones = (integer - thousands*1000 - hundreds*100 - tens*10);
LCD_char(ones + 0x30);

}

11111117777TTIR CODE

/*
* ATmegal28 A/D Converter utility routines
*/

#include <avr/io.h>
#include <stdio.h>

/*
* adc_init() - initialize A/D converter



*

* Initialize A/D converter to free running, start conversion, use
* internal 5.0V reference, pre-scale ADC clock to 125 kHz (assuming
* 16 MHz MCU clock)
*/
void adc_init(void)
{
/* configure ADC port (PORTF) as input */
DDRF = 0x00;
PORTF = 0x00;

ADMUX = BV(REFS0);
ADCSR = BV(ADEN)| BV(ADSC)| BV(ADFR) |
BV(ADPS2)| BV(ADPS1)| BV(ADPS0);

/*
*adc_chsel() - A/D Channel Select
*

* Select the specified A/D channel for the next conversion
*/
void adc_chsel(uint8 t channel)

{

/* select channel */
ADMUX = (ADMUX & 0xe0) | (channel & 0x07);

}

/*
* adc_wait() - A/D Wait for conversion
*

* Wait for conversion complete.
*/

void adc_wait(void)

{

/* wait for last conversion to complete */
while ((ADCSR & BV(ADIF)) ==0)

9

}

/*
*adc_start() - A/D start conversion
*

* Start an A/D conversion on the selected channel



*/

void adc_start(void)

{
/* clear conversion, start another conversion */
ADCSR |= _BV(ADIF);

}

/*
*adc_read() - A/D Converter - read channel
*

* Read the currently selected A/D Converter channel.
*/
uintl6_t adc_read(void)

{
return ADC;

}

/*
* adc_readn() - A/D Converter, read multiple times and average
*
* Read the specified A/D channel 'n' times and return the average of
* the samples
*/
uintl6_t adc_readn(uint8 t channel, uint8 t n)
{
uintl6 _tt;
uint8 t1i;

adc_chsel(channel);
adc_start();
adc_wait();

adc_start();

/* sample selected channel n times, take the average */
t=0;
for (i=0; i<n; i++) {

adc_wait();

t +=adc_read();

adc_start();

}

/* return the average of n samples */
return t / n;



uintl6_t IR value(uint8 tir select, uint8 t sample rate)

{

// ' DDRD |= 0xOF;
/* CHANNEL NAMES ADDRESS on PORT D
2 RF -- RIGHT SIDE FRONT IR 0x02
3 RR -- RIGHT SIDE REAR IR 0x03
4 F -- FRONT IR 0x04

0 LF -- LEFT SIDE FRONT IR 0x00
1 LR -- LEFT SIDE REAR IR 0x01

*/

if(ir_select ==0){
/l PORTD |= 0x00;
return adc_readn(0, sample rate); // the first value is always 0
// because it is PIN 0 on PORT F
// the second value is the number of
// samples passed to the function
}
else if(ir_select == 1 ){
/! PORTD |= 0x01;
return adc_readn(1, sample rate); // the first value is always 0
// because it is PIN 0 on PORT F
// the second value is the number of
// samples passed to the function
}
else if(ir_select == 2 ){
/! PORTD |= 0x02;
return adc_readn(2, sample rate); // the first value is always 0
// because it is PIN 0 on PORT F
// the second value is the number of
// samples passed to the function
}
/* else if(ir_select == 3 ){
/l PORTD |= 0x03;
return adc_readn(0, sample rate); // the first value is always 0
// because it is PIN 0 on PORT F
// the second value is the number of
// samples passed to the function

}

else if(ir_select == 4 ){



/! PORTD [= 0x05;

return adc_readn(0, sample rate); // the first value is always 0

3/
}

H1HINPUT OUTPUT MANIPULATION
#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <avr/delay.h>

#include <stdio.h>

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

//Enable PORTBO as output
// bit 0 RED write 0x01
// bit 1 WHITE write 0x02
// bit 2 BLUE write 0x04
// bit 3 Yellow write 0x08

void red_only(void){
DDRA |= 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |= 0x01;
}
void white_only(void){
DDRA |= 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |= 0x02;
}
void blue only(void){
DDRA |= 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |= 0x04;
}
void yellow_only(void){
DDRA |= 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |= 0x08;

// because it is PIN 0 on PORT F
// the second value is the number of
// samples passed to the function



H
void red(void){

DDRA |= 0x0F; //Enable PORTA as output
//PORTA &= 0x00;

PORTA |- 0x01;

}
void white(void){

DDRA |- 0x0F; //Enable PORTA as output
//PORTA &= 0x00;

PORTA |- 0x02;

}
void blue(void){
DDRA |= 0x0F; //Enable PORTA as output
//PORTA &= 0x00;
PORTA |= 0x04;
}
void yellow(void){
DDRA |= 0x0F; //Enable PORTA as output
// PORTA &= 0x00;
PORTA |= 0x08;
}
void allcolors(void){
DDRA |= 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |- 0x0F;
}
void alloff(void){
DDRA |- 0x0F; //Enable PORTA as output
PORTA &= 0x00;
PORTA |= 0x00;

}

//POINTLESSSS CODEEEEEEEE

/*

// LIGHT SHOW ---------

DDRA |= 0x0F; //Enable PORTBO as output

PORTA |= 0x08; //bit 0 RED write 0x01
/I bit 1 WHITE write 0x02
// bit 2 BLUE write 0x04
//'bit 3 Yellow write 0x08

_delay _ms(1000);

PORTA [= 0x04;

_delay_ms(1000);

PORTA = 0x02;



_delay _ms(1000);
PORTA |= 0x01;

_delay_ms(500);
PORTA "= 0x0f;
_delay_ms(500);
PORTA "= 0x0f;
_delay_ms(500);
PORTA "= 0x0f;

_delay _ms(1000);
PORTA |- 0x01;
_delay _ms(1000);
PORTA = 0x02;
_delay _ms(1000);
PORTA |- 0x04;
_delay _ms(1000);
PORTA [= 0x08;
*/



