
1	
	

Student Name: Matt Shockley
TAs: Mike Pridgen

Thomas Vermeer
Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

Final Report

	

2	
	

Table of Contents

I. Abstract 3
II. Executive Summary 4
III. Introduction 5
IV. Integrated System 6
V. Mobile Platform 7
VI. Actuation 8
VII. Sensors 9
VIII. Behaviors 16
IX. Experimental Layout 17
X. Conclusion 18
XI. Documentation 19
XII. Appendices 20

3	
	

Abstract

 OMNI is an autonomous omni-directional computer vision robot designed to implement
any number of computer vision applications. OMNI’s movement made omni-directional through
the use of 4 omni-directional wheels which allow for movement along two perpendicular axes.
Using this drive system, OMNI is capable of moving in any direction without rotating, though it
is also capable of rotating in place as well. OMNI is equipped with a single IP webcam which
transmits image data to a remote machine, in this case a laptop computer, for image processing
and computer vision algorithms. This is then translated into movement commands and sent via
wireless serial link to OMNI’s PVR board, where it is factored into an on-the-fly behavior
algorithm. This configuration is ideal for implementing computationally expensive vision
algorithms remotely, allowing the PVR board on OMNI to only handle the behavior algorithm.
OMNI is also equipped with a ring of 8 infrared rangefinder sensors and 4 radial bump switches
for obstacle detection and avoidance. Though not used in OMNI’s final behaviors for this course,
OMNI’s camera is also mounted on a 360 degree servo and is able to pan on its own axis which
will allow for some particularly interesting behaviors to be implemented in the future. I intended
OMNI to be a platform with potential for growth and expansion and I believe that I have
achieved my goal.

4	
	

Executive Summary

 My goal when creating OMNI was to create an extensible autonomous computer vision
platform. OMNI is designed to tackle any variety of computer vision algorithms, but for this
class he was programmed with a simple color tracking and following algorithm. OMNI derives
its name from being an omni-directional robot using dual axis wheels which allow OMNI to roll
across perpendicular axes.
 OMNI is equipped with 8 infrared rangefinder sensors spaced along every edge of its
octagonal chassis. It uses these for obstacle awareness and incorporates their readings into its
behavior algorithms. OMNI is also equipped with 4 radial bump sensors which allow OMNI to
detect if it has collided with an obstacle, and determine the ideal direction to move to get away
from the object after a collision has occurred.
 OMNI’s special sensor is an IP webcam mounted in the center of its top platform. This
webcam feeds a stream back to a remote machine where vision processing can occur. This
machine then transmits commands to OMNI via a wireless serial link, thanks to a pair of linked
xBee modules. This is OMNI’s defining system, since vision processing is done remotely on a
much more powerful machine (ideally), it is possible to perform complex vision algorithms
while freeing up the PVR board mounted on OMNI to simply handle behaviors. OMNI’s camera
is also mounted on a 360 degree servo, which was not used for this class due to time constraints,
but is definitely an area for future expansion.
 Overall, OMNI is a successful project, held back only by having its vision algorithms run
on a 3 year old laptop that was unable to handle this plus the overhead involved in the serial
communication. As a proof of concept, OMNI is quite functional and operates extremely
smoothly if linked to a fast machine, such as a multi-core desktop.

5	
	

Introduction

 OMNI represents the pinnacle of my studies in computer engineering, and has been a
tremendous learning experience for me over the course of the semester. I have always been
interested in computer vision and I wanted to build a robot which would have large potential for
variability in applications in computer vision. Because of this, I decided to design a vision robot
which used an IP webcam which would send image data to be processed on a more powerful
remote machine, giving me the opportunity to run any variety of computer vision algorithm and
preventing me from being limited by the specs of the PVR board or a proprietary camera board
such as the CMU cam. Initially, I wanted to place this on a quadruped robot, but decided that I
would probably spend more time on the mechanical engineering aspect of the robot, something
not exactly in my studies. I still wanted to have an unorthodox method of locomotion, but I
wanted something much simpler to control, and it was this line of thought that led me to omni-
directional wheels. They were unusual enough to make me happy (I loved hearing “it looks like a
crab!” when OMNI moved along a diagonal axis), and was also very simple to write servo
control algorithms for. These omni-directional wheels then led me to design the robot chassis, 2
octagonal sandwiched platforms which allowed for an aesthetically pleasing symmetrical design.
On the bottom platform I mounted the batteries and wheel servos, while on the top platform I
mounted all of the electronics and sensors.
 The behavior that I ultimately ended up implementing for this class was a simple color-
following routine which used the webcam to track predetermined colors and then follow the
object. This behavior runs in tandem with the obstacle avoidance routine, which takes
precedence if there is a conflict. However, due to processor throughput limitations, even this
algorithm ran rather slow on my external machine, a 3 year old laptop. This occasionally
introduced some nasty latency which could be crippling to the behavior algorithm. Run on a fast
machine though, OMNI works flawlessly and is the perfect example of a simple computer vision
robot in action.

6	
	

Integrated System

 OMNI’s software is built upon TA’s Mike Pridgen and Thomas Vermeer’s PVR board,
powered by an Atmel processor. This board is responsible for all servo control, sensor reading
and behavior algorithms. This board proved to be extremely versatile and was able to handle
polling my 8 infrared sensors simultaneously quite admirably.
 Bump sensors were simply attached to a pull up resistor and then to the digital inputs on
the PVR board, while the IR sensors were connected to the AD inputs pins. I also attached an
xBee wireless serial communication module to the RS-232 communication pins on the board.
 OMNI also has an LCD screen, which was mostly used for debugging purposes. This is
attached and controlled through the provided LCD control header on the PVR board.

	
System	 Connectivity	 Diagram

7	
	

Mobile Platform

 OMNI’s chassis is constructed out of a two 8-inch wide octagonal platforms sandwiched
by 2 inch steel standoffs. The servos controlling the omni-directional wheels are mounted on the
lower platform along with the board power supply. All of the electronics and sensors are
mounted on the top platform. These platforms were cut using the T-tech in lab out of high-
quality wood and then sanded. Many coats of metallic red spray paint were then applied to give
OMNI some sex appeal.
 My main design decision when creating OMNI was to make the chassis as symmetrical
as possible. In some cases this proved to be out of necessity, for the wheels and the IR and bump
sensors, but I also chose to mount the IP webcam in the center of the top platform on top of a 360
degree servo allowing for a full range of view in all directions, though it was not utilized in the
final behavior algorithm.
 The omni-directional wheels (Kornylak Transwheels) provide for motion along 2 axes,
which allowed OMNI to move in any direction without turning. This was a huge advantage for
designing the behavior algorithms later on down the road. I had heard reports of these omni-
directional wheels having poor grip, so I made sure to order the special variety which included a
rubberized coating on the cross-axis inset wheels. These provided more than adequate traction. I
also went with the dual layer omni-wheels, despite the significant price difference. This was a
good decision, since the single layer wheels have reports of not allowing for smooth cross-axis
motion.

Kornylak Transwheel (dual layer)

8	
	

Actuation

 Actuation is where I reaped the rewards of the simplicity of my mobile platform’s design.
The algorithms to control the omni-directional wheels were very simple to calculate, as
illustrated here, keeping in mind that the magnitude of rotation for any single servo can be
altered to produce intermediary results.

	

	
Rotate	

	

	
Forward	

	

	 	
Diagonal	

9	
	

Sensors

Bump Switches

Description

 Bump switches are the simplest of OMNI’s sensors. There are four 2 terminal
microswitches mounted underneath the top panel of the chassis. These are staggered such that
each is responsible for sensing collisions on a quarter of OMNI’s periphery. Each switch has a
flexible metal rod welded to it to extend the action for the switch around the edge of OMNI’s
chassis.
 These switches are intended to be a last resort for obstacle avoidance, allowing OMNI to
detect when its IR sensor bank has failed to catch an obstacle and on which side that a collision
has occurred. With this information OMNI can then attempt to navigate away from the collision,
orient itself for better IR detection of the object which it just collided with, and then continue on
its way.
 In OMNI’s code these switches are handled through interrupts which fire whenever a
switch goes high. There are external interrupts configured to listen on each of the digital input
ports which are connected to a bump switch. When the switch goes logic high, the interrupt fires
and starts the subroutine for a bump switch collision. The alternative to this method was polling
the switches continuously in the program loop, but the use of interrupts helps to save some time
in main program loop allowing it to execute faster.

Connection

 These sensors are really nothing more than simple SPST (single pole, single throw)
switches. This means that when the switch is activated it makes a connection between the two
terminals, otherwise there is no connection. This is not very conducive to digital circuits, as I
want the switch to pull down to logic zero (ground) when it is not activated, rather than hang

10	
	

floating. In order to rectify this I created circuits for each switch which tied the logic terminal
through a large resistor (>5kΩ) to ground. When a connection is made and VCC is allowed to
pass through the switch to the logic terminal, very little current and voltage is lost over the high
resistance branch. In retrospect it would’ve been easier to use 3 terminal microswitches.

Wiring Diagram:

Sensor Data

 This sensor only returns values of logic high and logic low, corresponding to whether the
switch is activated or deactivated respectively.

Switch Position Value at Digital Input
Activated 1
Deactivated 0

11	
	

Infrared Distance Sensors

Description

 OMNI employs a ring of eight Sharp GP2D120 distance measuring sensors along each
edge of the octagonal chassis. Since the length of each of these edges is approximately three
inches, and the sensor itself takes up more than an inch, OMNI is able to effectively judge its
distance from its surroundings in all directions with almost no blind spots. These sensors claim to
be able to determine distances within the range of 4 to 30cm, but I was really only able to
measure a little over half that range accurately as the sensor data later in this report shows. Due
to the minimum range requirement of 4 inches, I set the sensors about an inch back from the
edge of the chassis so that the range of acceptable values fell closer to OMNI’s proximity. Since
there is about another 2 to 3 inches of wheels and bump switches, this puts the minimum sensor
reading just at just before bump switches, perfect for obstacle avoidance and wall-following
applications.
 The biggest issues that I encountered with these sensors are that they are extremely noisy
and they return a rather unusual non-linear function for the distance. The first issue was solved
programmatically using some filtering techniques which kept a short history of previous values,
reducing the effect that IR sensor noise has on the servo control algorithm. This significantly
reduced some jittering behaviors that were emerging due to OMNI acting on sensor noise. The
issue with the non-linear function for distance is somewhat of a non-issue since OMNI does not
need exact distance measurements to perform obstacle avoidance, it simply reacts when an object
passes a certain distance threshold. This threshold was determined experimentally, and
fortunately it occurs only once in the distance function curve so I did not have to worry about
throwing out sensor readings which are too close or too far returning the same value.

Connection

 Each infrared sensor is connected to Port A on the PVR board, the designated ADC port.
There are just enough (8) lines on this port for all of my sensors. The IR sensors require both a
power and ground input and output an analog voltage. These sensors were made to connect with

12	
	

a 3-pin JST connector, pictured below. This cable was modified to connect directly into the 3
header pins on Port A.

Sensor Data

This graph shows the IR sensor readings at increasing distance in inches from the IR
sensor. Values shown are the average of several tests on several individual sensors. As you can
see the data is anything but linear. The range that I am concerned with is the 3 – 5 inch range,
where OMNI is about to collide with an incoming object. This range reads about 3000 – 3500,
and this is set to the threshold for my ADC values to trigger obstacle avoidance.
 These IR sensors also tend to idle at a value in the low hundreds, around 300 or so, when
they are first switched on. Once an object is brought within 18 inches or so of the sensor they
‘wake up’ and start sensing the values shown above. After this happens they tend to idle at
around 4000. I’m not sure why the sensors have this peculiarity, but it does not affect my
algorithm.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	

13	
	

 There is also a huge spike in the values at around 9 inches away from the sensor. The
values then decay from that point on and eventually hover around 4000, the idling value.

Wireless IP Camera

Description

OMNI is equipped with one Linksys WVC54GCA wireless IP camera which is used to
acquire and transmit visual data to a remote machine for processing. This camera is mounted on
a hacked GWS S03NXF 2BB servo for a full 360 degree field of view around OMNI. OMNI
uses this camera to pick out a target color in its environment and home in on the source of the
color. Obstacle avoidance is handled by a ring of eight infrared range finders and four bump
switches mounted on the periphery of OMNI’s chassis, the camera is intended solely for color
tracking in its current incarnation.

In this way OMNI is able to balance obstacle avoidance with behavioral objectives.
OMNI gives obstacle avoidance a much higher priority than behavioral objectives so that
obstacles will always be avoided, keeping any vision behaviors from interfering when a collision
is imminent. Future plans for development include incorporating the camera into the obstacle
avoidance algorithm.

Connection

OMNI’s camera is not connected directly to the PVR board, it relays streaming video
through a wireless router to a computer. The Linksys WVC54GCA wireless IP camera is
configured to connect to a specified wireless router and supply a MJPEG stream at a sub-address
under its DHCP address. The video stream is accessed on the computer and it is piped through
vision algorithms for color detection and location. Once the approximate location of the highest
area of concentration of a specified color is found, coordinates are relayed back to OMNI over a

14	
	

pair of linked Xbee wireless serial communication modules. These coordinates are then be used
to modify the variables driving each of the wheels, allowing OMNI to attempt to move closer to
the colored object. The webcam is connected to its own power supply on OMNI which supplies
5V.

The streaming video from the webcam must be parsed and analyzed for key aspects, in

this case color. OMNI is a color tracking robot, so color analysis is the primary function of the
vision algorithms.
 The first thing the vision algorithms tackle is dilating the colors of the picture. This
algorithm enhances the colors of the foreground while obscuring the colors of the background.
This is accomplished by taking each pixel that appears to exist in a blob (a large area of similarly
colored pixels) and then expanding the blob by coloring all adjacent pixels the same color as the
blob. By doing this large blob objects become accentuated, such as the object that OMNI is
tracking, while insignificant background noise or smaller color concentrations are eroded and
eventually eliminated by the expansion of their neighbors.
 After this is completed the next step is to pick out the particular color that is being
tracked. This is done through color filtering. The algorithm searches the image for pixels which
are within a certain threshold (10 RGB units for my algorithm) from specified values, and turns
all pixels that do not fall within this threshold black. The result is an image with just the object
and a black background, assuming that there weren’t any other significantly large objects in the
picture that were a similar color.

15	
	

 Now that the algorithm has highlighted the object in the image all that is left is to
determine its location. To do this all of the x and y coordinates of the non-black pixels in the
image are averaged to determine the average x and y coordinate of the colored pixels, which
usually is located at a decent estimation of the center of the object being tracked. A box is then
drawn around this coordinate, the size of which is determined by the deviation of the pixels
coordinates. For example the box is small and well-fitted when the previous steps in the vision
algorithm are able to filter out most of the noise in the image.

 Image algorithms are implemented using the RoboRealm computer vision toolkit,
an incredibly useful computer vision resource.

16	
	

Behaviors

OMNI’s overall software system can be broken down into two modules: obstacle
avoidance and colored object tracking. For obstacle avoidance OMNI utilizes its ring of infrared
rangefinder sensors to determine if there are any objects within a set distance from OMNI in
every direction. OMNI also has 4 radial bump switches which trigger should OMNI collide with
an obstacle. OMNI uses the measurements that it reads off of these sensors to gauge and weight
its servo control algorithms. OMNI also uses a wireless IP webcam to track a colored object. The
tracking itself is done remotely, as described in the previous sections, but once the vision
algorithm calculates the location of the object within the frame it transmits a command via
wireless serial communication telling OMNI to weight its servo control variables to either rotate
left or right to center the object or to move straight because the object is already centered. Keep
in mind that these are simply weights, so any other algorithms such as obstacle avoidance and
previous tracking weights will still be taken into account when calculating the final servo control
value. This allows for a very dynamic control mechanism for OMNI’s movement, allowing it to
move away from an obstacle while tracking an object at the same time and also gives it more
realistic appearing motion as behavior modifications to servo values tend to “meld” into a
smoother motion. It should also be noted that all servo values decay at a constant rate so that
when no stimulus is applied to any sensors OMNI will remain stationary or, in a later version of
the behavior software, will enter a “seek” mode in which it rotates looking for an object to track.
For better understanding of OMNI’s behaviors, please see the code attached in the appendix.

17	
	

Experimental Layout and Results

 Sensor testing was the first experimentation that I performed, testing the IR ranges and
the bump switch actuation. These experiments can be seen in my ‘Sensors’ section.
 I also experimented quite a bit with the best algorithms for color tracking, also
enumerated in the ‘Sensors’ section.
 Later experimentation involved mainly the camera tracking, as I was still trying to get
OMNI to operate using the 360 degree servo to rotate the wireless IP camera. These experiments
ultimately led me to temporarily abandon the use of this servo since it became apparent that I
would need a motor encoder or some form of sophisticated vision waypoint system to determine
the exact orientation of the camera at any point in time. Thus, due to time constraints this was not
implemented in my final build.
 As an interesting side note, I was very pleased with the layout of my IR sensors. The
octagonal layout allowed for 3 sensors to always be detecting any extended wall that OMNI
approached. Because of this, OMNI surprised me by being remarkably adept at wall-following
simply using its obstacle avoidance routine.

18	
	

Conclusion

 Although I did not manage to get OMNI working as smoothly as I had hoped due to
processor limitations on my laptop and time constraints, it was still a rewarding project that I will
continue to tinker with for some time to come. I started with big plans and I’m pleased that while
I was not able to implement some of them OMNI at least has the hardware framework down for
me to implement these plans later on down the road. I would like to make OMNI’s camera rotate
on its own axis and incorporate this ability into its behaviors. I think that allowing it to look in
any direction while also moving in any direction (due to the omni-directional wheels), is a very
cool combo with lots of potential for cool behaviors.
 Overall, the project cost upwards of around $600 which was about $300 more than I
expected. I didn’t fully appreciate how expensive certain parts would be. For example, the IP
webcam turned out to be an item that goes for >$100, I got mine refurbished for $60. The battery
and charger for my camera came to $40. The IR sensors were $7 each and were expensive since I
had to order a new batch after finding that my original ones were too long-range and would fail
to sense objects close to OMNI.
 If I had more time I would’ve tracked down a faster laptop to run my software on so that
there would be minimal latency. Also, I would’ve implemented a more complex computer vision
routine. My original plan was to have OMNI recognize glyphs with the camera and then
reproduce them with a marker attached to a push servo on its underbelly, going through the
bottom platform. While this is technically possible, I would’ve wanted to invest some money in
some high precision motors to run my wheels rather than the relatively unreliable servos that I
have.
 Overall, I have learned a lot in this class. Building the robot was definitely the trickiest
bit for me, since I’m more of a software guy. The first revision is never perfect, and I plan on
improving on OMNI’s design in the future.	

19	
	

Documentation

Sources for information outside my own personal testing and development:

• Mike and Thomas’ PVR board documentation and C libraries
• Digi X-CTU (for xBee configuration and drivers)
• AVR Studio, WinAVR
• Roborealm computer vision toolkit
• Documentation for:

o Sharp IR Sensors
o WVC wireless IP webcam
o All servos
o xBee module

Appendices

20	
	

Appendix A:
Behavior, C code

#include "usart_driver.h"
#include "avr_compiler.h"

#include <avr/io.h>
#include "PVR.c"

/*! Define that selects the Usart used in example. */
#define USART USARTF0

#define IR_THRESH_HIGH 3500
#define IR_THRESH_LOW 3000
#define SERVO_STEP 25
#define CAMERA_STEP 15
#define CAMERA_DECAY 1
#define DECAY 5
#define SERVO_ZERO 10
#define CAMERA_SERVO_ZERO 5
#define OS_TO 100

int main(void)
{

 /* Variable used to send and receive data. */
 //uint8_t sendData;

 uint8_t receivedData;

 /* This PORT setting is only valid to USARTC0 if other USARTs is used a
 * different PORT and/or pins is used. */
 /* PIN3 (TXD0) as output. */
 PORTF.DIRSET = PIN3_bm;

 /* PC2 (RXD0) as input. */

 PORTF.DIRCLR = PIN2_bm;

 /* USARTC0, 8 Data bits, No Parity, 1 Stop bit. */
 USART_Format_Set(&USART, USART_CHSIZE_8BIT_gc, USART_PMODE_DISABLED_gc,
false);

 /* Set Baudrate to 9600 bps:
 * Use the default I/O clock fequency that is 32 MHz.
 * Do not use the baudrate scale factor
 *
 * Baudrate select = (1/(16*(((I/O clock frequency)/Baudrate)-1)
 * = 208
 */
 // xmegaInit() sets internal clock to 32MHz, this must be adjusted accordingly
 // this was fun to figure out
 USART_Baudrate_Set(&USART, 208 , 0);

 /* Enable both RX and TX. */
 USART_Rx_Enable(&USART);
 USART_Tx_Enable(&USART);

21	
	

 xmegaInit(); //setup
XMega

 delayInit(); //setup
delay functions

 ServoCInit(); // init
servo ports
 //ServoDInit();

 PORTH_DIR |= 0x00; // set
port H to inputs

 ADCAInit();
 // init ADC for IR
 lcdInit();
 lcdString("OMNI Operational");

 int C0,C1,C2,C3,D0,D1,D2,D3;
 // initial servo values

 C0 = 0;
 C1 = 0;
 C2 = 0;
 C3 = 0;
 D0 = 0;
 D1 = 0;
 D2 = 0;
 D3 = 0;
 // variables for handling overshoot
 char prev = ' ';
 int os_timeout = 0;

 while(true) {

 int timeout = 1000;
 // check for serial communication from computer
 do{
 /* Wait until data received or a timeout.*/

 timeout--;
 }while(!USART_IsRXComplete(&USART) && timeout != 0);

 // if it didnt time out, read the character

 if (timeout !=0) {
 receivedData = USART_GetChar(&USART);
 }
 // locked onto tracked object, damp camera servo control
 if ((char)receivedData == 's') {
 // move straight
 C2 -= CAMERA_STEP;

22	
	

 C3 += CAMERA_STEP;
 C1 -= CAMERA_STEP;
 C0 += CAMERA_STEP;
 /*
 if (D0 > 0) {
 D0 -= CAMERA_DECAY * 15;
 if (D0 < 0) {
 D0 = 0;
 }
 }
 else if (D0 < 0) {
 D0 += CAMERA_DECAY * 15;
 if (D0 > 0) {
 D0 = 0;
 }
 }
 */

 }

 /*
 if ((char)receivedData == 'b') {
 // spin
 C0 += CAMERA_STEP;
 C1 += CAMERA_STEP;
 C2 += CAMERA_STEP;
 C3 += CAMERA_STEP;

 os_timeout--;
 if (prev == 'l') {
 D0 -= CAMERA_STEP * 5;
 }
 else if (prev == 'r') {
 D0 += CAMERA_STEP * 5;
 }

 }

 */

 // turn right
 if((char) receivedData == 'r') {

 // turn right

 C0 -= CAMERA_STEP;
 C1 -= CAMERA_STEP;
 C2 -= CAMERA_STEP;
 C3 -= CAMERA_STEP;

 }
 // turn left
 else if((char) receivedData == 'l') {

 // turn left

 C2 += CAMERA_STEP;
 C0 += CAMERA_STEP;

23	
	

 C3 += CAMERA_STEP;
 C1 += CAMERA_STEP;
 }

 // move camera
 // functionality disabled, need a redesign to implement camera
turning on own axis
 //ServoD0((int)D0);

 // servo control update, kill signal if value is less than SERVO_ZERO
to prevent drifting
 /*
 if ((D0 <= CAMERA_SERVO_ZERO) && (D0 >= -CAMERA_SERVO_ZERO)) {
 TCD0_CCA = 0;
 }
 else {
 ServoD0(D0);
 }
 */

 if ((C0 <= SERVO_ZERO) && (C0 >= -SERVO_ZERO)) {
 TCC0_CCA = 0;
 }
 else {
 ServoC0(C0);
 }
 if ((C1 <= SERVO_ZERO) && (C1 >= -SERVO_ZERO)) {
 TCC0_CCB = 0;
 }
 else {
 ServoC1(C1);
 }
 if ((C2 <= SERVO_ZERO) && (C2 >= -SERVO_ZERO)) {
 TCC0_CCC = 0;
 }
 else {
 ServoC2(C2);
 }
 if ((C3 <= SERVO_ZERO) && (C3 >= -SERVO_ZERO)) {
 TCC0_CCD = 0;
 }
 else {
 ServoC3(C3);
 }

 // decay servo control magnitudes
 if (C0 > 0) {
 C0 -= DECAY;
 }

24	
	

 else if (C0 < 0){
 C0 += DECAY;
 }
 if (C1 > 0) {
 C1 -= DECAY;
 }
 else if (C1 < 0){
 C1 += DECAY;
 }
 if (C2 > 0) {
 C2 -= DECAY;
 }
 else if (C2 < 0){
 C2 += DECAY;
 }
 if (C3 > 0) {
 C3 -= DECAY;
 }
 else if (C3 < 0){
 C3 += DECAY;
 }

 // bump sensor check
 switch (PORTH_IN) {
 case 8:
 C0 -= SERVO_STEP;
 C2 += SERVO_STEP;
 break;
 case 4:
 C0 += SERVO_STEP;

 C2 -= SERVO_STEP;
 break;
 case 64:
 C1 -= SERVO_STEP;

 C3 += SERVO_STEP;
 break;
 case 128:
 C1 += SERVO_STEP;
 C3 -= SERVO_STEP;
 break;

 }

 // check IR thresholds and update servos accordingly
 if((ADCA0() < IR_THRESH_HIGH) && (ADCA0() > IR_THRESH_LOW)) {
 C1 -= SERVO_STEP;
 C2 += SERVO_STEP;
 C3 += SERVO_STEP;

25	
	

 C0 -= SERVO_STEP;
 }

 if((ADCA1() < IR_THRESH_HIGH) && (ADCA1() > IR_THRESH_LOW)) {
 C1 -= SERVO_STEP;
 C3 += SERVO_STEP;
 }

 if((ADCA2() < IR_THRESH_HIGH) && (ADCA2() > IR_THRESH_LOW)) {
 C2 -= SERVO_STEP;
 C3 += SERVO_STEP;
 C1 -= SERVO_STEP;
 C0 += SERVO_STEP;
 }
 if((ADCA3() < IR_THRESH_HIGH) && (ADCA3() > IR_THRESH_LOW)) {
 C0 += SERVO_STEP;
 C2 -= SERVO_STEP;

 }
 if((ADCA4() < IR_THRESH_HIGH) && (ADCA4() > IR_THRESH_LOW)) {
 C3 -= SERVO_STEP;
 C0 += SERVO_STEP;
 C1 += SERVO_STEP;
 C2 -= SERVO_STEP;
 }
 if((ADCA5() < IR_THRESH_HIGH) && (ADCA5() > IR_THRESH_LOW)) {
 C1 += SERVO_STEP;
 C3 -= SERVO_STEP;
 }
 if((ADCA6() < IR_THRESH_HIGH) && (ADCA6() > IR_THRESH_LOW)) {
 C1 += SERVO_STEP;
 C0 -= SERVO_STEP;
 C2 += SERVO_STEP;
 C3 -= SERVO_STEP;
 }
 if((ADCA7() < IR_THRESH_HIGH) && (ADCA7() > IR_THRESH_LOW)) {
 C0 -= SERVO_STEP;
 C2 += SERVO_STEP;
 }

 // cap servo speeds
 if (D0 > 15) {
 D0 = 15;
 }
 else if (D0 < -15) {
 D0 = -15;
 }
 if (C0 > 100) {

26	
	

 C0 = 100;
 }
 else if (C0 < -100) {
 C0 = -100;
 }
 if (C1 > 100) {
 C1 = 100;
 }
 else if (C1 < -100) {
 C1 = -100;
 }
 if (C2 > 100) {
 C2 = 100;
 }
 else if (C2 < -100) {
 C2 = -100;
 }
 if (C3 > 100) {
 C3 = 100;
 }
 else if (C3 < -100) {
 C3 = -100;
 }

 }

 /* Disable both RX and TX. */

 USART_Rx_Disable(&USART);
 USART_Tx_Disable(&USART);

}

27	
	

Appendix B
Vision Algorithm Code – Roborealm XML
<head><version>2.18.5</version></head>	
<Read_HTTP>
 <is_active>TRUE</is_active>
 <url>http://192.168.1.3:80/img/mjpeg.cgi</url>
 <password>jester44</password>
 <method_index>1</method_index>
 <username>admin</username>
</Read_HTTP>
<Rotate>
 <mode>-180</mode>
 <custom_degree>0.0</custom_degree>
</Rotate>
<Mean disabled>
 <filter_size>20</filter_size>
</Mean>
<Segment_Colors>
 <tolerance>80</tolerance>
 <detail_size>20</detail_size>
</Segment_Colors>
<Color_Filter>
 <colors>#A9DDB4

#90D5A8

</colors>
 <adjust_lighting>FALSE</adjust_lighting>
 <min_distance>5</min_distance>
 <min_value>100</min_value>
</Color_Filter>
<Center_of_Gravity>
 <show_coord>TRUE</show_coord>
 <display_as_annotation>FALSE</display_as_annotation>
 <color_index>2</color_index>
 <connect_line>FALSE</connect_line>
 <size_index>5</size_index>
 <use_subpixel>FALSE</use_subpixel>
 <density>1</density>
 <show_box>TRUE</show_box>
 <box_size>9</box_size>
 <overlay_image>Current</overlay_image>
 <shape_index>1</shape_index>
 <show_cog>TRUE</show_cog>
</Center_of_Gravity>
<If_Statement>
 <comparison_type_1>3</comparison_type_1>

28	
	

 <comparison_1>5</comparison_1>
 <join_1>1</join_1>
 <value_1>200</value_1>
 <variable_1>COG_X</variable_1>
 <comparison_4>-1</comparison_4>
 <comparison_type_4>-1</comparison_type_4>
 <join_2>-1</join_2>
 <value_2>0</value_2>
 <comparison_type_3>-1</comparison_type_3>
 <variable_2>COG_X</variable_2>
 <comparison_3>-1</comparison_3>
 <join_3>-1</join_3>
 <comparison_type_2>3</comparison_type_2>
 <comparison_2>3</comparison_2>
 <has_else>FALSE</has_else>
</If_Statement>
<Serial>
 <enable_send_sequence>TRUE</enable_send_sequence>
 <port>COM3 - USB Serial Port</port>
 <data_bits>7</data_bits>
 <baud>6</baud>
 <flow_control_in_x>FALSE</flow_control_in_x>
 <read_rate_index>-1</read_rate_index>
 <flow_control_dsr>FALSE</flow_control_dsr>
 <flow_control_cts>FALSE</flow_control_cts>
 <send>l</send>
 <send_only_on_change>FALSE</send_only_on_change>
 <flow_control_out_x>FALSE</flow_control_out_x>
</Serial>
<end_if/>
<If_Statement>
 <comparison_type_1>3</comparison_type_1>
 <comparison_1>3</comparison_1>
 <join_1>-1</join_1>
 <value_1>400</value_1>
 <variable_1>COG_X</variable_1>
 <comparison_4>-1</comparison_4>
 <comparison_type_4>-1</comparison_type_4>
 <join_2>-1</join_2>
 <comparison_type_3>-1</comparison_type_3>
 <comparison_3>-1</comparison_3>
 <join_3>-1</join_3>
 <comparison_type_2>-1</comparison_type_2>
 <comparison_2>-1</comparison_2>
 <has_else>FALSE</has_else>
</If_Statement>
<Serial>

29	
	

 <enable_send_sequence>TRUE</enable_send_sequence>
 <port>COM3 - USB Serial Port</port>
 <data_bits>7</data_bits>
 <baud>6</baud>
 <flow_control_in_x>FALSE</flow_control_in_x>
 <read_rate_index>-1</read_rate_index>
 <flow_control_dsr>FALSE</flow_control_dsr>
 <flow_control_cts>FALSE</flow_control_cts>
 <send>r</send>
 <send_only_on_change>FALSE</send_only_on_change>
 <flow_control_out_x>FALSE</flow_control_out_x>
</Serial>
<end_if/>
<If_Statement>
 <comparison_type_1>3</comparison_type_1>
 <comparison_1>5</comparison_1>
 <join_1>1</join_1>
 <value_1>400</value_1>
 <variable_1>COG_X</variable_1>
 <comparison_4>-1</comparison_4>
 <comparison_type_4>-1</comparison_type_4>
 <value_2>200</value_2>
 <comparison_type_3>3</comparison_type_3>
 <variable_2>COG_X</variable_2>
 <comparison_3>1</comparison_3>
 <join_3>-1</join_3>
 <value_3>0</value_3>
 <comparison_type_2>3</comparison_type_2>
 <variable_3>COG_X</variable_3>
 <comparison_2>3</comparison_2>
 <has_else>FALSE</has_else>
</If_Statement>
<Serial>
 <enable_send_sequence>TRUE</enable_send_sequence>
 <port>COM3 - USB Serial Port</port>
 <data_bits>7</data_bits>
 <baud>6</baud>
 <flow_control_in_x>FALSE</flow_control_in_x>
 <read_rate_index>-1</read_rate_index>
 <flow_control_dsr>FALSE</flow_control_dsr>
 <flow_control_cts>FALSE</flow_control_cts>
 <send>s</send>
 <send_only_on_change>FALSE</send_only_on_change>
 <flow_control_out_x>FALSE</flow_control_out_x>
</Serial>
<end_if/>
<If_Statement>

30	
	

 <comparison_type_1>3</comparison_type_1>
 <comparison_1>1</comparison_1>
 <value_1>0</value_1>
 <variable_1>COG_X</variable_1>
 <comparison_4>-1</comparison_4>
 <comparison_type_4>-1</comparison_type_4>
 <join_2>-1</join_2>
 <value_2>630</value_2>
 <comparison_type_3>-1</comparison_type_3>
 <variable_2>COG_X</variable_2>
 <comparison_3>-1</comparison_3>
 <join_3>-1</join_3>
 <comparison_type_2>3</comparison_type_2>
 <comparison_2>4</comparison_2>
 <has_else>FALSE</has_else>
</If_Statement>
<Serial>
 <enable_send_sequence>TRUE</enable_send_sequence>
 <port>COM3 - USB Serial Port</port>
 <data_bits>7</data_bits>
 <baud>6</baud>
 <flow_control_in_x>FALSE</flow_control_in_x>
 <read_rate_index>-1</read_rate_index>
 <flow_control_dsr>FALSE</flow_control_dsr>
 <flow_control_cts>FALSE</flow_control_cts>
 <send>b</send>
 <send_only_on_change>FALSE</send_only_on_change>
 <flow_control_out_x>FALSE</flow_control_out_x>
</Serial>
<end_if/>

