
EEL5666: Intelligent Machines Design Lab Report

"Joe On The Go"

David Dzenitis

Professors Antonio Arroyo and Eric Schwartz

Teaching Assistants Sean Frucht, Devin Hughes, Tim Martin, Ryan Stevens, and Josh Weaver

Table Of Contents

• Abstract

• Executive Summary
• Introduction
• Integrated System Description

• Mobile Platform Specification
• Actuation

• Behaviors
• Experimental Layout and Results
• Conclusion

• Works Cited
• Appendix A: Program Code

• Appendix B: Circuit Diagrams
• Appendix C: Other Supplementary Material

Abstract:

"Joe On The Go" is a full-service, intelligent alarm clock that awakens the user with an alarm
and freshly brewed cup of coffee. The software system is essentially a state machine that
performs random search, obstacle avoidance, beacon seeking, coffee brewing, and finally, alarm
playback. The hardware system consists of two motors, a stabilizing castor, three separate
batteries, a primary microcontroller board, two daughter circuit boards, a motor driver board, a
power inverter, several sensors, and a piezzo buzzer for alarm playback, and of course a coffee
maker.

Executive Summary:

"Joe On The Go" seeks to be the premier wake-up alarm system. Through the use of several
sensors, actuators, motors, and sophisticated software, Joe will wake you up with a freshly
brewed cup of coffee in the morning. The robots operation begins with random search and
obstacle avoidance, using two IR range finders to detect and avoid objects in the robot's path.
The robot continues to randomly travel its environment until coming into view of an IR home
beacon, which is placed at the user's bedside. Using the robot's own IR beacon, the robot is then
able to advance to the user's bedside. Once the range finders again detect something in the
robot's path, it is assumed that the robot has reached the user.

Following discovery and navigation to the user, the robot then initiates a brewing cycle that lasts
5 minutes. In the way, the user will be gently woken up with the fresh aroma of coffee prior to
being blasted with the 90db buzzer. Once the brewing process is complete, the robot disables the
brewing subsystem via a relay, and sounds the buzzer.

Robotic motion is achieved via two, fairly strong DC motors with a castor in the rear for
stability. The motors are controlled via a BasicMicro RoboClaw motor driver, which has two
channels, one for each motor. The motherboard communicates with the motor driver over a
TTL, RS-232 link, which is set-up for one way communication. The speed and direction of each
motor is set with a 1-byte command number.

Obstacle avoidance is accomplished using two Sharp GP2D12 IR range sensors connected to the
motherboard's analog-to-digital converter. The higher the voltage output of the sensor, the closer
an obstacle is to the robot. For purposes of the obstacle avoidance software, any value from
3000 to 4092 (the maximum) is assumed to indicate the presence of a physical obstacle. Once
the presence of the obstacle has been established, the robot decides which way to turn based on
which sensor has the higher value. If the left sensor value is higher, the robot turns right,
navigating the robot further from the obstacle. If the right sensor's value is higher, the robot
turns left.

Finding the user is accomplished using a pair of Pololu IR beacons, with one mounted on the
robot and one mounted on a small piece of wood placed at the user's bedside. The beacon

mounted on the robot will communicate which direction the home beacon is using a 4-bit bus
connected to the motherboard. Each bit corresponds to an cardinal direction: North, South, East,
or West. Because the beacon is constantly sensing, the output can be somewhat erratic and must
be smoothed for graceful navigation. Each time the software system reads the beacon's output,
the result is placed in a ten element array, and the direction most prevalent in that array is taken
to be the direction of the home beacon. The robot will then move or turn accordingly to bring it
closer to the bedside.

Coffee brewing is accomplished using an 800-watt power inverter from Cobra and a 300-watt
coffee maker from Toastess. The brewing subsystem is controlled with a 40-Amp relay
connected to one of the custom circuit daughter boards. The brewing process takes
approximately 5 minutes, with the status of the brewing cycle reported on the robot's LCD
display. Once complete, the alarm sound is achieved using a 90-dB piezzo buzzer from
RadioShack.

Introduction:

Waking up on time is a task that I can find very challenging on occasion. Further, waking up to
a freshly brewed cup of coffee brought to my bedside is something I can only dream of. If past
girlfriends are any indication, it is likely that the only way such a thing could occur is if I built a
robot to bring the coffee to me. This is where the idea of Coffee-Bot was born.

Joe-on-the-go seeks to accomplish its various tasks through the use of a mobile platform,
coupled with a time-telling alarm subsystem, target location subsystem, and finally, a coffee
brewing subsystem. The mobile platform consists of two motorized wheels and a castor,
mounted under a 12" square piece of wood. The time-telling alarm system is maintained in both
hardware and software using a real-time clock chip, along with the cpu's onboard timers, with an
alarm time configurable via an LED screen and keypad. The target location system is built using
two IR beacons, one mounted to the robot and one stationary at the user's bedside. The coffee
brewing system is responsible for actually producing the coffee.

Integrated System:

The system as a whole is built upon the alarm, brewing, and navigation subsystems working in
concert. The system's flow of operations is as follows:

1. Wait for wake-up time, which is currently performed using a countdown system. A real-
time clock system is currently in development.

2. Perform obstacle avoidance while attempting to locate target beacon.
3. Once home beacon has been detected, navigate towards it.
4. Once sufficiently close to target beacon, initiate brewing cycle
5. Once brewing cycle has completed, disable brewing subsystem.
6. Initiate alarm playback.

Mobile Platform:

The mobile platform is to consist of two 12-inch squares, each separated by 4 18-inch square
dowels, which are 3/4" wide. The two motors and stabilizing castor are mounted below the base
square. On top of the base square are the two IR range finders, the large, 12-volt battery, the
power inverter, 40-amp relay, and 30-amp fuse. The four different boards used to control the
robot are mounted on a single piece of wood that hangs beneath the upper platform via four hang
bolts (headless). On top of the upper platform are the IR beacon and coffee maker.

Top View of Robot

Bottom View of Robot

View of Removable Electronics Board

Actuation:

There are two primary types of actuation used in this system. The first is the navigation system,
which will drive the wheel motors and turn the robot using its castor as necessary to avoid
obstacles. The second actuation system is responsible for the brewing process and playing of the
alarm.

The motor system's purpose is to provide mobility to the robot and allow it to move around. The
motors used are two, 12-volt, 152rpm gear head motors from Lynxmotion. These motors were
chosen for their relatively high stall torque of 231.5 oz.-in. Each weighs 7.28 oz. and has an
outside diameter of 37mm.

Image of Motor Used

The two motors are controlled using BasicMicro's RoboClaw motor driver. The motor driver has
two channels allowing it to control both motors almost simultaneously. While the RoboClaw has
several operation modes, the one employed on this robot is the simple RS-232 system, which is

one-way. 1 byte with an additional stop bit are sent to the motor driver with to indicate what
action the driver should perform. A number between 1 and 128 are used to control the first
motor, while a number between 129 and 255 are used to control the second motor. Sending zero
will shutdown both motors at once, though each motor could be shut down individually if
desired.

BasicMicro's RoboClaw Motor Controller

In order to not have to worry about keeping track of which motor is operating in forward vs.
which motor needs to be reversed, I connected one motor in reverse so that the value sent to each
motor would be similar to achieve forward motion. Below is a table of the values used in my
software for controlling the motors:

Operation: Channel 1: Channel 2:
Stop (Individual Motor) 0x40 0xC0
Full Speed Reverse 0x01 0x80
Normal Reverse 0x21 0xA0
Slow Reverse 0x31 0xB0
Full Speed Forward 0x7F 0xFF
Fast Forward 0x60 0xE0
Normal Forward 0x50 0xD1
Slow Forward 0x4C 0xCC
Table of Opcodes for Various Motor Speeds

Turning the robot was accomplished by sending one slow forward and reverse opcode for each
motor. The robot turned when either an obstacle was detected or when the IR beacon was
sensed. For obstacle avoidance, the approach was simply to turn the robot roughly 90 degrees
away from the side of the robot that is closer to the obstacle. Thus, if the left IR range finder had
the higher number, the robot would turn right.

For navigating towards the IR beacon, a slightly more complex algorithm was used. Because the
IR beacon mounted on the robot is constantly sending data, the robot's behavior can be
somewhat erratic if no smoothing is applied to the data. Thus, every time the beacon's data was

read, the value was placed in a circular buffer of ten elements. Afterwards, the buffer was
scanned and the direction reading showing up the most times was taken as the direction the robot
needed to travel. This provided for very graceful movement as the robot was driving up to the
home beacon.

The brewing system was the second method of actuation used on the robot. In order to control
when the inverter and coffee maker would operate, their power was either supplied or cut-off by
a 40-amp automotive relay. The microprocessor board would switch a transistor between cut-off
and saturation modes which in turn controlled the relay.

Another transistor was also used to control when the buzzer would sound. Detailed schematics
of this system are provided in Appexdix B.

Sensors:

There are several different types of sensors that must be used in this project:

• IR Beacon Transceivers for target location detection. I am currently considering using
the Pololu IR Beacon Transceiver Pair (http://www.pololu.com/catalog/product/702).

• IR-range finders mounted down low for obstacle avoidance.

• A Force-Sensitive Resistor to detect the presence or absence of the coffee cup.

The IR beacons were sourced from Pololu.com in Las Vegas, Nevada. They operate at 9-volts
and provide logic output of 5-volts, which were reduced down to 3.3-volts using a voltage
divider comprised of a 1kOhm and 2kOhm resistor in series. Initially, the beacon's output was
read via a GPIO port, but after researching other people who have successfully integrated the
beacons into their robots, I decided to read each of the directional signals via the ADC. This
allowed me to determine which direction had the strongest signal of the directions read. It also
important to note that the beacon uses inverted logic signals, with a "1" corresponding to 0-volts
and a "0" corresponding to 5-volts.

The Pololu IR Beacon

Each time the beacon was read, the direction with the strongest signal was placed into a 10
element circular buffer along with the directions from the previous 9 readings. Whichever
direction is most prevalent in the buffer is taken as the direction of the home beacon.

The IR range finders are Sharp GP2D12 IR Sensors and were sourced from Lynxmotion in
Illinois. They output a voltage corresponding to the proximity of an obstacle in front of the
sensor, which is then read through the ADC. A value of 3000 or higher (4092 max.) is
interpreted by the software to indicate the presence of an obstacle.

Sparkfun SEN-09376 Force Sensitive Resistor

The force sensitive resistor is used to detect the presence of the coffee cup on the robot. It is
connected in series with a 2kOhm resistor to create a variable voltage divider, which is then read
through the ADC. Unfortunately, due to time constraints, this sensor was not yet integrated into
the robot for Demo Day.

Behaviors:

The robot exhibits three primary behaviors as illustrated in the flowchart earlier. The first
behavior is obstacle avoidance while searching for a line of sight with the home IR beacon. So
long as the home IR beacon is not in sight, the robot will continue to move around its
environment, avoiding obstacles, until line-of-sight has been achieved. When an obstace is
encountered, the robot will turn away from it. Thus, if the obstacle is closer to the left side of the
robot, the robot will turn right until it's path is clear, and vice-versa.

Once line-of-sight with the IR beacon is achieved, the robot assumes a clear path to the beacon.
It will first orientate itself to be facing home. It will then proceed towards the beacon. However,
the robot's heading with respect to home is constantly monitored and the robot will re-orientate
itself as necessary during the course of navigating towards the beacon. Once an obstacle is
sensed, it is assumed that the obstacle is the user's bedside.

Finally, the robot initiates the brewing cycle, which is accomplished by first activating the relay
to supply power to the inverter and coffee maker. After extensive timing experiments, it has
been determined that it takes roughly five minutes for the coffee maker to brew a cup of coffee.
Thus, once power is supplied to the brewing subsystem, the processor simply waits for five
minutes, updating the lcd display with the time remaining each minute.

After the coffee has completed brewing, the relay is deactivated, and the buzzer is activated.

Experimental Layout and Results:

First and foremost, prior to any actual experimentation of the robot system as a whole, I tested
each separate component to determine how it worked and set preliminary sensor thresholds, etc.
This way when I was actually testing the robot I would at least be close to correct operation
before perfecting the software further.

The experimental layout I used during development of the robot was the breezeway outside my
apartment using a couple boxes to serve as the obstacles. The robot was developed in an
iterative fashion, where each system was developed and tested before moving on to the next
system. The first task that I developed and corrected was obstacle avoidance. Following that, I
added the beacon sensing and seeking capabilities. Finally, I included the coffee brewing and
alarm system in testing.

The test of each system separately proved to be very valuable in getting correct operation out of
my robot. Through testing obstacle avoidance I was able to better calibrate what value from the
IR range finder should be considered an obstacle. While I started with 3500, I eventually
dropped it to 3000 to give the robot enough room to turn without hitting the obstacle in the
process.

Also, while I started with the beacons initially running through an input port as GPIO, I
eventually switched to using the ADC because it allowed me to better use the beacon's data and
determine which direction to travel in. One pitfall that I encountered while developing the
beacon sensing is that I needed to add delay between each time the robot determined what action
to take. Prior to this, my robot moved only in a circle because it was constantly turning and
never getting a chance to realize it was line up with "home" correctly. It was through this sort of
experimentation that I was able to get the robot operating correctly.

Conclusion:

In conclusion, I'm fairly satisfied with the final result in that the robot performs it tasks well and
does not appear fidgety. However, I would have liked a little more time to include the force
resistor and include a real-time clock for actual time keeping. As far as technical caveats are
concerned, I would say the design and implementation of my custom circuitry was by far the
most difficult and I wish I had more knowledge about circuits to prevent an incident where my
custom circuit caught fire! However, I learned a great deal through the process and in a way that
I'm likely to never forget.

Looking to the future, I'm currently integrating the force resistor and real-time clock. I would
like to eventually enhance the alarm to be some form of music as opposed to the simple piezzo
buzzer. I'm also considering building a custom charger that could charge the three batteries
simultaneously without my having to remove them from the robot.

Documentation:

Atmel:

Doc 8067: Atmel XMega 128 A1 Microprocessor Preliminary
Doc 8077: Atmel Xmega 128 A1 Manual
Doc 8049: Using The XMega USART
Doc 8308: Getting Started Writing C Code For XMega
Doc 8308: XMega Basics
Doc8050: Using the XMega I/O Pins and External Interrupts
Doc 8043: XMega Interrupts and the Programmable Multi-Level Interrupt Controller

Basic Micro:

B0099: Robo Claw 2 Channel 5A Motor Controller Data Sheet

Interlink Electronics:

94-0004: Interlink Electronics FSR™ Force Sensing Resistors™ Integration Guide
94-00009: FSR-406 Datasheet

Pololu IR Beacons:

Hazlett, Christopher. "Beacon Locating Robot - Powered by Arduino and IR Transceiver."
http://www.robotishappy.com/2009/12/beacon-locating-robot-powered-by-arduino-and-ir-
transceiver/. Retrieved 4/18/2010.

Powersonic:

PS-12120 Rechargeable Sealed Lead-Acid Battery Datasheet

Pridgen-Vermeer Robotics:

Pridgen, Mike. "Pridgen Vermeer Robotics XMega 128 Manual." Jan. 2010

Maxim:

19-5339: DS3234 Extremely Accurate SPI Bus with Integrated Crystal and SRAM Datasheet

Xiamen Amotec Display Co. Ltd:

ADM1602K-NSR-FBS: Specifications of LCD Module

Appendix A: Program Code

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.h Wednesday, April 20, 2011 5:42 AM

#define SENSOR_OBSTACLE_THRESHOLD 3000

#define BEACON_DETECT_THRESHOLD 500

#define NUM_BEACON_READINGS 10

#define NO_HEADING 0

#define NORTH_HEADING 1

#define EAST_HEADING 2

#define SOUTH_HEADING 3

#define WEST_HEADING 4

#define PERIPHERALS_OFF 0x00

#define RELAY_ON 0x01

#define BUZZER_ON 0x02

void DetectObstacles(void);

void DetectBeacon(void);

void TurnLeft(void);

void TurnRight(void);

void MoveForward(void);

void StopMoving(void);

void BrewCoffee(void);

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.hD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

#include <avr/io.h>

#include <stdlib.h>

#include <stdbool.h>

#include "PVR.h"

#include "usart.h"

#include "main.h"

bool BeaconDetected ;

bool ObstacleDetected ;

int RightObstacleSensor ;

int LeftObstacleSensor ;

int CurrentBeaconReading ;

uint8_t CurrentBeaconHeading ;

uint8_t BeaconHeadings [NUM_BEACON_READINGS];

int main (void)

{

xmegaInit (); //setup XMega

delayInit (); //setup delay functions

ADCAInit (); //setup PORTA analong readings

lcdInit (); //setup LCD on PORTK

PORTQ_DIR|= 0x01 ; //set Q0 (LED) as output

PORTJ_DIR |= 0xFF;

PORTJ_OUT= 0x00 ;

PORTH_DIR &= 0xF0; //set lower nibble of port H to input

RS232Init ();

RS232Send(DRIVE_FULL_STOP);

lcdGoto (0,0);

lcdString ("Seeking base ");

lcdGoto (1,0);

lcdString ("station...");

BeaconDetected = false ;

ObstacleDetected = false ;

RightObstacleSensor = 0;

LeftObstacleSensor = 0;

CurrentBeaconHeading = NO_HEADING;

CurrentBeaconReading = 0;

for(int x = 0; x < NUM_BEACON_READINGS; x++)

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

{

BeaconHeadings [x] = NO_HEADING;

}

/** *

 * *

 * Phase 1: Obstacle avoidance, seeking beacon *

 * *

 ** */

while(!BeaconDetected)

{

DetectBeacon ();

DetectObstacles ();

if(ObstacleDetected)

{

StopMoving ();

delay_ms (1000);

if(RightObstacleSensor > LeftObstacleSensor)

{

TurnLeft ();

delay_ms (2000);

}

else

{

TurnRight ();

delay_ms (2000);

}

}

else

{

MoveForward ();

}

}

/** ****

 * *

 * PHASE 2: Navigate to beacon *

 * *

 ** ****/

ObstacleDetected = false ;

while(!ObstacleDetected)

{

DetectObstacles ();

DetectBeacon ();

-2-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

switch(CurrentBeaconHeading)

{

case NORTH_HEADING:

MoveForward ();

break;

case EAST_HEADING:

TurnRight ();

delay_ms (1500);

StopMoving ();

DetectBeacon ();

delay_ms (500);

break;

case WEST_HEADING:

TurnLeft ();

delay_ms (1500);

StopMoving ();

DetectBeacon ();

delay_ms (500);

break;

case SOUTH_HEADING:

TurnRight ();

delay_ms (3200); //roughly how long it takes to make a u-turn

StopMoving ();

DetectBeacon ();

delay_ms (500);

break;

default:

MoveForward ();

break;

}

DetectBeacon ();

}

//Obstacle detected, we're at the bedside!! Start b rewing...

StopMoving ();

lcdGoto (0,0);

lcdString ("Brewing Coffee..");

lcdGoto (1,0);

lcdString (" ");

BrewCoffee ();

PORTJ_OUT= BUZZER_ON;

delay_ms (60000);

return 0;

-3-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

/*

PORTJ_OUT = 0x00;

// PORTJ_OUT = 0xFF;

// delay_ms(10000);

// PORTJ_OUT = 0x00;

int rangeFinder = 0;

char rangeString[5];

unsigned char led_flag = 0;

for(int x = 10; x >= 0; x--)

{

lcdGoto(1,0);

itoa(x,rangeString, 10);

lcdString(rangeString);

delay_ms(1000);

}

//initial brewing:

PORTJ_OUT = 0x04;

//delay_ms(7 * 60 * 1000);

delay_ms(5000);

//PORTJ_OUT = 0x0000;

//PORTJ_OUT = 0x0110;

//delay_ms(10000);

*/

}

void DetectObstacles (void)

{

int rightAvgAccum = 0;

int leftAvgAccum = 0;

//note: 8 iterations chosen to prevent overflow of 16-bit signed int

for(int x = 0; x < 8; x++)

{

rightAvgAccum += ADCA0();

leftAvgAccum += ADCA1();

}

RightObstacleSensor = rightAvgAccum / 8;

LeftObstacleSensor = leftAvgAccum / 8;

if((RightObstacleSensor > SENSOR_OBSTACLE_THRESHOLD) || (LeftObstacleSensor >

SENSOR_OBSTACLE_THRESHOLD))

{

-4-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

ObstacleDetected = true ;

}

else

{

ObstacleDetected = false ;

}

return;

}

void DetectBeacon (void)

{

//read port H 10 times to find heading if any...

int nVal = 0;

int eVal = 0;

int sVal = 0;

int wVal = 0;

//read ADC

nVal = ADCA4();

eVal = ADCA5();

sVal = ADCA6();

wVal = ADCA7();

//determine minimum of values read:

int minValue = BEACON_DETECT_THRESHOLD;

uint8_t winningDirection = NO_HEADING;

if(nVal < minValue)

{

minValue = nVal ;

winningDirection = NORTH_HEADING;

}

if(eVal < minValue)

{

minValue = eVal ;

winningDirection = EAST_HEADING;

}

if(sVal < minValue)

{

minValue = sVal ;

winningDirection = SOUTH_HEADING;

}

if(wVal < minValue)

{

-5-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

minValue = wVal ;

winningDirection = WEST_HEADING;

}

//add winning direction to array:

BeaconHeadings [CurrentBeaconReading] = winningDirection ;

CurrentBeaconReading ++;

if(CurrentBeaconReading >= NUM_BEACON_READINGS)

{

CurrentBeaconReading = 0;

}

//scan array and determine overall "official headin g"

short votes [5];

for(int x = 0; x < 5; x++){

votes [x] = 0;

}

for(int x = 0; x < NUM_BEACON_READINGS; x++){

votes [BeaconHeadings [x]] += 1;

}

short mostVotes = 0;

uint8_t currentWinner = NO_HEADING;

if(votes [NO_HEADING] > mostVotes){

mostVotes = votes [NO_HEADING];

currentWinner = NO_HEADING;

}

if(votes [NORTH_HEADING] > mostVotes){

mostVotes = votes [NORTH_HEADING];

currentWinner = NORTH_HEADING;

}

if(votes [EAST_HEADING] > mostVotes){

mostVotes = votes [EAST_HEADING];

currentWinner = EAST_HEADING;

}

if(votes [SOUTH_HEADING] > mostVotes){

mostVotes = votes [SOUTH_HEADING];

currentWinner = SOUTH_HEADING;

}

if(votes [WEST_HEADING] > mostVotes){

mostVotes = votes [WEST_HEADING];

currentWinner = WEST_HEADING;

-6-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

}

CurrentBeaconHeading = currentWinner ;

if(currentWinner != NO_HEADING)

{

BeaconDetected = true ;

}

else

{

BeaconDetected = false ;

}

lcdGoto (1,0);

char tempStr [5];

itoa (CurrentBeaconHeading , tempStr , 10);

lcdString (tempStr);

return;

}

//right motor = ch1, left motor = ch2

//right goes backward, left goes forward

void TurnRight (void)

{

RS232Send(CH1_REVERSE_SLOW);

RS232Send(CH2_FORWARD_SLOW);

return;

}

void TurnLeft (void)

{

RS232Send(CH2_REVERSE_SLOW);

RS232Send(CH1_FORWARD_SLOW);

return;

}

void MoveForward (void)

{

RS232Send(CH1_FORWARD_NORMAL);

RS232Send(CH2_FORWARD_NORMAL);

return;

}

void StopMoving (void)

{

-7-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

RS232Send(DRIVE_FULL_STOP);

}

void BrewCoffee (void)

{

//PORTJ_DIR |= 0xFF;

PORTJ_OUT= RELAY_ON;

lcdGoto (0,0);

lcdString ("Brewing coffee..");

//loop that waits 5 minutes, updating display with status

for(int x = 5; x > 0; x--)

{

lcdGoto (1,0);

char minLeft [2];

itoa (x, minLeft , 10);

lcdString (minLeft);

lcdGoto (1,1);

lcdString (" min. remaining");

delay_ms (60000);

}

PORTJ_OUT= PERIPHERALS_OFF;

return;

}

-8-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.h Wednesday, April 20, 2011 5:43 AM

#ifndef __usart_h__

#define __usart_h__

#include <avr/io.h>

#include <stdbool.h>

#include "usart.h"

#define BAUD 9200L

#define BSCALE_VALUE 0

#define BSEL_VALUE 207 //for baud rate of 9600

#define USART USARTF0

#define USART_PORT PORTF

#define DRIVE_FULL_STOP 0x00

#define CH1_STOP 0x40

#define CH2_STOP 0xC0

#define CH1_FULL_REVERSE 0x01

#define CH1_REVERSE_NORMAL 0x21

#define CH1_REVERSE_SLOW 0x31

#define CH1_FULL_FORWARD 0x7F

#define CH1_FORWARD_FAST 0x60

#define CH1_FORWARD_NORMAL 0x50

#define CH1_FORWARD_SLOW 0x4C

#define CH2_FULL_REVERSE 0x80

#define CH2_REVERSE_NORMAL 0xA0

#define CH2_REVERSE_SLOW 0xB0

#define CH2_FULL_FORWARD 0xFF

#define CH2_FORWARD_FAST 0xE0

#define CH2_FORWARD_NORMAL 0xD1

#define CH2_FORWARD_SLOW 0xCC

void RS232Init(void);

void RS232Send(char);

#endif

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.hD:\mydocs\Docum

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.c Wednesday, April 20, 2011 5:44 AM

#include <avr/io.h>

#include <stdbool.h>

#include "usart.h"

/****************

 * RS-232 USART *

 ****************/

void RS232Init(void)

{

USART_PORT.DIRSET = PIN3_bm; //sets pin 3 as output (bm = bit mask)

USART_PORT.DIRCLR = PIN2_bm; //sets pin 2 as input (even though not used)

//USARTF0: 8 data bits, no parity, 1 stop bit

USART.CTRLC = (uint8_t) USART_CHSIZE_8BIT_gc | USART_PMODE_DISABLED_gc | false;

// set baud //(USARTC0.BAUDCTRLB & 0xF0) |

#ifndef F_CPU

#define F_CPU 32000000L

#endif

USART.BAUDCTRLB = (((F_CPU /BAUD)>>4)-1)>>8;

USART.BAUDCTRLA = ((F_CPU /BAUD)>>4)-1;

USART.CTRLB |= USART_RXEN_bm;

USART.CTRLB |= USART_TXEN_bm;

return;

}

void RS232Send(char data)

{

//wait for any previous data to be sent:

while((USART.STATUS & USART_DREIF_bm) == 0) {}

USART.DATA = data;

return;

}

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.cD:\mydocs\Docum

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.h Wednesday, April 20, 2011 5:45 AM

#ifndef __PVR_h__

#define __PVR_h__

#include <avr/io.h>

#include <avr/interrupt.h>

#include "PVR.h"

#define LCD PORTK_OUT

#define LCDDDR PORTK_DIR

volatile int delaycnt;

void xmegaInit(void);

void delayInit(void);

void delay_ms(int cnt);

void delay_us(int cnt);

void lcdDataWork(unsigned char c);

void lcdData(unsigned char c);

void lcdCharWork(unsigned char c);

void lcdChar(unsigned char c);

void lcdString(unsigned char ca[]);

void lcdInt(int value);

void lcdGoto(int row, int col);

void lcdInit(void);

void ServoCInit(void);

void ServoDInit(void);

void ServoC0(int value);

void ServoC1(int value);

void ServoC2(int value);

void ServoC3(int value);

void ServoC4(int value);

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.h Wednesday, April 20, 2011 5:45 AM

void ServoC5(int value);

void ServoD0(int value);

void ServoD1(int value);

void ServoD2(int value);

void ServoD3(int value);

void ServoD4(int value);

void ServoD5(int value);

void ADCAInit(void);

int ADCA0(void);

int ADCA1(void);

int ADCA2(void);

int ADCA3(void);

int ADCA4(void);

int ADCA5(void);

int ADCA6(void);

int ADCA7(void);

#endif

-2-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

#include <avr/io.h>

#include <avr/interrupt.h>

#include "PVR.h"

/*********

 * Xmega *

 *********/

void xmegaInit (void)

{

CCP = 0xD8;

CLK_PSCTRL= 0x00 ;

PORTQ_DIR= 0x01 ;

//setup oscilllator

OSC_CTRL= 0x02 ; //enable 32MHz internal clock

while ((OSC_STATUS& 0x02) == 0); //wait for oscillator to be ready

CCP = 0xD8; //write signature to CCP

CLK_CTRL = 0x01 ; //select internal 32MHz RC oscillator

}

/*********

 * Delay *

 *********/

void delayInit (void)

{

TCF1_CTRLA = 0x01 ; //set clock/1

TCF1_CTRLB = 0x31 ; //enable COMA and COMB, set to FRQ

TCF1_INTCTRLB = 0x00 ; //turn off interrupts for COMA and COMB

SREG|= CPU_I_bm; //enable all interrupts

PMIC_CTRL |= 0x01 ; //enable all low priority interrupts

}

void delay_ms (int cnt)

{

delaycnt = 0; //set count value

TCF1_CCA = 32000 ; //set COMA to be 1ms delay

TCF1_CNT = 0; //reset counter

TCF1_INTCTRLB = 0x01 ; //enable low priority interrupt for delay

while (cnt != delaycnt); //delay

TCF1_INTCTRLB = 0x00 ; //disable interrupts

}

void delay_us (int cnt)

{

delaycnt = 0; //set counter

TCF1_CCA = 32; //set COMA to be 1us delay

TCF1_CNT = 0; //reset counter

TCF1_INTCTRLB = 0x01 ; //enable low priority interrupt for delay

-1-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

while (cnt != delaycnt); //delay

TCF1_INTCTRLB = 0x00 ; //disable interrupts

}

SIGNAL(TCF1_CCB_vect)

{

delaycnt ++;

}

SIGNAL(TCF1_CCA_vect)

{

delaycnt ++;

}

/*******

 * LCD *

 *******/

#define LCD PORTK_OUT

#define LCDDDR PORTK_DIR

void lcdDataWork (unsigned char c)

{

c &= 0xF0; //keep data bits, clear the rest

c |= 0x08 ; //set E high

LCD = c; //write to LCD

delay_ms (2); //delay

c ^= 0x08 ; //set E low

LCD = c; //write to LCD

delay_ms (2); //delay

c |= 0x08 ; //set E high

LCD = c; //write to LCD

delay_ms (2); //delay

}

void lcdData (unsigned char c)

{

unsigned char cHi = c & 0xF0; //give cHi the high 4 bits of c

unsigned char cLo = c & 0x0F; //give cLo the low 4 bits of c

cLo = cLo * 0x10 ; //shift cLo left 4 bits

lcdDataWork (cHi);

lcdDataWork (cLo);

}

void lcdCharWork (unsigned char c)

{

c &= 0xF0; //keep data bits, clear the rest

c |= 0x0A; //set E and RS high

LCD = c; //write to LCD

-2-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

delay_ms (2); //delay

c ^= 0x08 ; //set E low

LCD = c; //write to LCD

delay_ms (2); //delay

c |= 0x08 ; //set E high

LCD = c; //write to LCD

delay_ms (2); //delay

}

void lcdChar (unsigned char c)

{

unsigned char cHi = c & 0xF0; //give cHi the high 4 bits of c

unsigned char cLo = c & 0x0F; //give cLo the low 4 bits of c

cLo = cLo * 0x10 ; //shift cLo left 4 bits

lcdCharWork (cHi);

lcdCharWork (cLo);

}

void lcdString (unsigned char ca[])

{

int i = 0;

while (ca[i] != '\0')

{

lcdChar (ca[i ++]);

}

}

void lcdInt (int value)

{

int temp_val ;

int x = 10000 ;

int leftZeros =5;

if (value <0)

{

lcdChar ('-');

value *= -1;

}

while (value / x == 0)

{

x/=10;

leftZeros --;

}

while ((value > 0) || (leftZeros >0))

{

-3-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

temp_val = value / x;

value -= temp_val * x;

lcdChar (temp_val + 0x30);

x /= 10;

leftZeros --;

}

while (leftZeros >0)

{

lcdChar (0+ 0x30);

leftZeros --;

}

return;

}

void lcdGoto (int row , int col)

{

unsigned char pos ;

if ((col >= 0 && col <= 19) && (row >= 0 && row <= 3))

{

pos = col ;

if (row == 1)

pos += 0x40 ;

else if (row == 2)

pos += 0x14 ;

else if (row == 3)

pos += 0x54 ;

lcdData (0x80 + pos);

}

}

void lcdInit (void)

{

delayInit (); //set up the delay functions

LCDDDR= 0xFF; //set LCD port to outputs.

delay_ms (20); //wait to ensure LCD powered up

lcdDataWork (0x30); //put in 4 bit mode, part 1

delay_ms (10); //wait for lcd to finish

lcdDataWork (0x30); //put in 4 bit mode, part 2

delay_ms (2); //wait for lcd to finish

lcdData (0x32); //put in 4 bit mode, part 3

lcdData (0x2C); //enable 2 line mode

lcdData (0x0C); //turn everything on

lcdData (0x01); //clear LCD

}

/*********

 * Servo *

-4-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

 *********/

void ServoCInit (void)

{

TCC0_CTRLA= 0x05 ; //set TCC0_CLK to CLK/64

TCC0_CTRLB= 0xF3; //Enable OC A, B, C, and D. Set to Single Slope

PWM

//OCnX = 1 from Bottom to CCx and 0 from CCx to Top

TCC0_PER = 10000 ; //20ms / (1/(32MHz/64)) = 10000. PER = Top

TCC1_CTRLA= 0x05 ; //set TCC1_CLK to CLK/64

TCC1_CTRLB= 0x33 ; //Enable OC A and B. Set to Single Slope PWM

//OCnX = 1 from Bottom to CCx and 0 from CCx to Top

TCC1_PER = 10000 ; //20ms / (1/(32MHz/64)) = 10000. PER = Top

PORTC_DIR = 0x3F; //set PORTC5:0 to output

TCC0_CCA= 0; //PWMC0 off

TCC0_CCB= 0; //PWMC1 off

TCC0_CCC= 0; //PWMC2 off

TCC0_CCD= 0; //PWMC3 off

TCC1_CCA= 0; //PWMC4 off

TCC1_CCB= 0; //PWMC5 off

}

void ServoDInit (void)

{

TCD0_CTRLA= 0x05 ; //set TCC0_CLK to CLK/64

TCD0_CTRLB= 0xF3; //Enable OC A, B, C, and D. Set to Single Slope

PWM

//OCnX = 1 from Bottom to CCx and 0 from CCx to Top

TCD0_PER = 10000 ; //20ms / (1/(32MHz/64)) = 10000. PER = Top

TCD1_CTRLA= 0x05 ; //set TCC1_CLK to CLK/64

TCD1_CTRLB= 0x33 ; //Enable OC A and B. Set to Single Slope PWM

//OCnX = 1 from Bottom to CCx and 0 from CCx to Top

TCD1_PER = 10000 ; //20ms / (1/(32MHz/64)) = 10000. PER = Top

PORTD_DIR = 0x3F; //set PORTC5:0 to output

TCD0_CCA= 0; //PWMC0 off

TCD0_CCB= 0; //PWMC1 off

TCD0_CCC= 0; //PWMC2 off

TCD0_CCD= 0; //PWMC3 off

TCD1_CCA= 0; //PWMC4 off

TCD1_CCB= 0; //PWMC5 off

}

void ServoC0 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

-5-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

value /= 2; // new range +/- 250

TCC0_CCA= (750 + value); //Generate PWM.

}

void ServoC1 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCC0_CCB= (750 + value); //Generate PWM.

}

void ServoC2 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCC0_CCC= (750 + value); //Generate PWM.

}

void ServoC3 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCC0_CCD= (750 + value); //Generate PWM.

}

void ServoC4 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCC1_CCA= (750 + value); //Generate PWM.

}

void ServoC5 (int value)

-6-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCC1_CCB= (750 + value); //Generate PWM.

}

void ServoD0 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD0_CCA= (750 + value); //Generate PWM.

}

void ServoD1 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD0_CCB= (750 + value); //Generate PWM.

}

void ServoD2 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD0_CCC= (750 + value); //Generate PWM.

}

void ServoD3 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

-7-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD0_CCD= (750 + value); //Generate PWM.

}

void ServoD4 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD1_CCA= (750 + value); //Generate PWM.

}

void ServoD5 (int value)

{

if (value > 100) //cap at +/- 100

value = 100; // -100 => 1ms

else if (value < -100) // 0 => 1.5ms

value = -100; // 100 => 2ms

value *= 5; //multiply value by 2.5

value /= 2; // new range +/- 250

TCD1_CCB= (750 + value); //Generate PWM.

}

/********

 * ADCA *

 ********/

void ADCAInit (void)

{

delayInit ();

ADCA_CTRLB= 0x00 ; //12bit, right adjusted

ADCA_REFCTRL= 0x10 ; //set to Vref = Vcc/1.6 = 2.0V (approx)

ADCA_CH0_CTRL= 0x01 ; //set to single-ended

ADCA_CH0_INTCTRL= 0x00 ; //set flag at conversion complete. Disable

interrupt

ADCA_CH0_MUXCTRL= 0x08 ; //set to Channel 1

ADCA_PRESCALER= 0x03 ; //set the speed to slow for higher accuracy

ADCA_CTRLA|= 0x01 ; //Enable ADCA

}

int ADCA0(void)

{

ADCA_CH0_MUXCTRL= 0x00 ; //Set to Pin 0

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

-8-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA1(void)

{

ADCA_CH0_MUXCTRL= 0x08 ; //Set to Pin 1

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA2(void)

{

ADCA_CH0_MUXCTRL= 0x10 ; //Set to Pin 2

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA3(void)

{

ADCA_CH0_MUXCTRL= 0x18 ; //Set to Pin 3

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA4(void)

{

ADCA_CH0_MUXCTRL= 0x20 ; //Set to Pin 4

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA5(void)

{

ADCA_CH0_MUXCTRL= 0x28 ; //Set to Pin 5

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

-9-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA6(void)

{

ADCA_CH0_MUXCTRL= 0x30 ; //Set to Pin 6

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

int ADCA7(void)

{

ADCA_CH0_MUXCTRL= 0x38 ; //Set to Pin 7

ADCA_CTRLA|= 0x04 ; //Start Conversion on ADCA Channel 0

while ((ADCA_CH0_INTFLAGS& 0x01) != 0x01); //wait for conversion to complete

delay_ms (5);

int value = ADCA_CH0_RES; //grab result

return value ; //return result

}

-10-D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

Appendix B: Circuit Schematics

Schematic For Circuit Connected To Processor's I/O Pin to Control Buzzer

Schematic of Darlington Pair Circuit Used to Control Relay and Enable/Disable Inverter and

Coffee Maker

