EEL5666: Intelligent Machines Design Lab Report

"Joe On The Go"

David Dzenitis
Professors Antonio Arroyo and Eric Schwartz

Teaching Assistants Sean Frucht, Devin Hughes,Mariin, Ryan Stevens, and Josh Weaver

Table Of Contents

Abstract

Executive Summary

Introduction

Integrated System Description
Mobile Platform Specification
Actuation

Behaviors

Experimental Layout and Results
Conclusion

Works Cited

Appendix A: Program Code
Appendix B: Circuit Diagrams
Appendix C: Other Supplementary Material

Abstract:

"Joe On The Go" is a full-service, intelligent ataclock that awakens the user with an alarm
and freshly brewed cup of coffee. The softwaretesysis essentially a state machine that
performs random search, obstacle avoidance, beseaking, coffee brewing, and finally, alarm
playback. The hardware system consists of two mapta stabilizing castor, three separate
batteries, a primary microcontroller board, two glater circuit boards, a motor driver board, a
power inverter, several sensors, and a piezzo bdaz@alarm playback, and of course a coffee
maker.

Executive Summary:

"Joe On The Go" seeks to be the premier wake-umagstem. Through the use of several
sensors, actuators, motors, and sophisticated a@woe will wake you up with a freshly
brewed cup of coffee in the morning. The robotsrapon begins with random search and
obstacle avoidance, using two IR range finderstea and avoid objects in the robot's path.
The robot continues to randomly travel its enviremtnuntil coming into view of an IR home
beacon, which is placed at the user's bedsidengubke robot's own IR beacon, the robot is then
able to advance to the user's bedside. Once tige fanders again detect something in the
robot's path, it is assumed that the robot haheshthe user.

Following discovery and navigation to the user,riti@ot then initiates a brewing cycle that lasts
5 minutes. In the way, the user will be gently eokip with the fresh aroma of coffee prior to
being blasted with the 90db buzzer. Once the brgwrocess is complete, the robot disables the
brewing subsystem via a relay, and sounds the buzze

Robotic motion is achieved via two, fairly stron@ Dnotors with a castor in the rear for
stability. The motors are controlled via a Basichi RoboClaw motor driver, which has two
channels, one for each motor. The motherboard aanuates with the motor driver over a

TTL, RS-232 link, which is set-up for one way commiuation. The speed and direction of each
motor is set with a 1-byte command number.

Obstacle avoidance is accomplished using two SB&D12 IR range sensors connected to the
motherboard's analog-to-digital converter. Théaighe voltage output of the sensor, the closer
an obstacle is to the robot. For purposes of bsagle avoidance software, any value from
3000 to 4092 (the maximum) is assumed to indidaetesence of a physical obstacle. Once
the presence of the obstacle has been establigigehbot decides which way to turn based on
which sensor has the higher value. If the lefssewalue is higher, the robot turns right,
navigating the robot further from the obstacleth# right sensor's value is higher, the robot
turns left.

Finding the user is accomplished using a pair dblIBdR beacons, with one mounted on the
robot and one mounted on a small piece of woodeplat the user's bedside. The beacon

mounted on the robot will communicate which directthe home beacon is using a 4-bit bus
connected to the motherboard. Each bit corresptunds cardinal direction: North, South, East,
or West. Because the beacon is constantly sertbi@gutput can be somewhat erratic and must
be smoothed for graceful navigation. Each timesthfevare system reads the beacon's output,
the result is placed in a ten element array, aadlifection most prevalent in that array is taken
to be the direction of the home beacon. The rabibthen move or turn accordingly to bring it
closer to the bedside.

Coffee brewing is accomplished using an 800-wattgranverter from Cobra and a 300-watt
coffee maker from Toastess. The brewing subsysemontrolled with a 40-Amp relay
connected to one of the custom circuit daughterdsoaThe brewing process takes
approximately 5 minutes, with the status of thenlimg cycle reported on the robot's LCD
display. Once complete, the alarm sound is acliergeng a 90-dB piezzo buzzer from
RadioShack.

Introduction:

Waking up on time is a task that | can find verglignging on occasion. Further, waking up to
a freshly brewed cup of coffee brought to my beelsgdsomething | can only dream of. If past
girlfriends are any indication, it is likely thdte only way such a thing could occur is if | bailt
robot to bring the coffee to me. This is whereitlea of Coffee-Bot was born.

Joe-on-the-go seeks to accomplish its various taéisiaugh the use of a mobile platform,
coupled with a time-telling alarm subsystem, targeation subsystem, and finally, a coffee
brewing subsystem. The mobile platform consiststvad motorized wheels and a castor,
mounted under a 12" square piece of wood. The-tatlieg alarm system is maintained in both
hardware and software using a real-time clock dhlipng with the cpu's onboard timers, with an
alarm time configurable via an LED screen and kdyp&he target location system is built using
two IR beacons, one mounted to the robot and cateosary at the user's bedside. The coffee
brewing system is responsible for actually prodgcire coffee.

Integrated System:

The system as a whole is built upon the alarm, imgwand navigation subsystems working in
concert. The system's flow of operations is aeW:

1. Wait for wake-up time, which is currently performeasing a countdown system. A real-
time clock system is currently in development.

Perform obstacle avoidance while attempting totltarget beacon.

Once home beacon has been detected, navigate ®ituard

Once sufficiently close to target beacon, initiatewing cycle

Once brewing cycle has completed, disable brewitggstem.

Initiate alarm playback.

o gk wn

Counidown to Alarm Time

Time Reachad?

Ohstacle Avoidance

Haorming Bescon Detected?

h 4

Mavigate Towards Beacon

Obstacle Detected?

h

Stop Maving, [nitiate Brewing

Brewing Complaia?

Play Afarm

Mobile Platform:

The mobile platform is to consist of two 12-inchuacgs, each separated by 4 18-inch square
dowels, which are 3/4" wide. The two motors arab#izing castor are mounted below the base
square. On top of the base square are the twanBerfinders, the large, 12-volt battery, the
power inverter, 40-amp relay, and 30-amp fuse. fboe different boards used to control the
robot are mounted on a single piece of wood thagsdeneath the upper platform via four hang
bolts (headless). On top of the upper platformtlaeeR beacon and coffee maker.

Bottom View of Robot

View of Removable Electronics Board

Actuation:

There are two primary types of actuation used i slgstem. The first is the navigation system,
which will drive the wheel motors and turn the rohsing its castor as necessary to avoid
obstacles. The second actuation system is redperier the brewing process and playing of the
alarm.

The motor system's purpose is to provide mobibtyhie robot and allow it to move around. The
motors used are two, 12-volt, 152rpm gear head mdtom Lynxmotion. These motors were
chosen for their relatively high stall torque of123 0z.-in. Each weighs 7.28 oz. and has an
outside diameter of 37mm.

Image of Motor Used

The two motors are controlled using BasicMicro'©&0law motor driver. The motor driver has
two channels allowing it to control both motors abhsimultaneously. While the RoboClaw has
several operation modes, the one employed on abist iis the simple RS-232 system, which is

one-way. 1 byte with an additional stop bit aratde the motor driver with to indicate what
action the driver should perform. A number betwéeand 128 are used to control the first
motor, while a number between 129 and 255 are tesedntrol the second motor. Sending zero
will shutdown both motors at once, though each metwuld be shut down individually if

desired.

BasicMicro's RoboClaw Motor Controller

In order to not have to worry about keeping tratkvbich motor is operating in forward vs.
which motor needs to be reversed, | connected aernn reverse so that the value sent to each
motor would be similar to achieve forward motioBelow is a table of the values used in my
software for controlling the motors:

Operation: Channel 1: Channel 2:
Stop (Individual Motor) 0x40 0xCO0
Full Speed Reverse 0x01 0x80
Normal Reverse 0Ox21 OxAO
Slow Reverse 0x31 0xBO
Full Speed Forward Ox7F OxFF
Fast Forward 0x60 OxEO
Normal Forward 0x50 OxD1
Slow Forward 0x4C OxCC

Table of Opcodes for Various Motor Speeds

Turning the robot was accomplished by sending dow forward and reverse opcode for each
motor. The robot turned when either an obstacle detected or when the IR beacon was
sensed. For obstacle avoidance, the approachimasydo turn the robot roughly 90 degrees
away from the side of the robot that is closeh®abstacle. Thus, if the left IR range finder had
the higher number, the robot would turn right.

For navigating towards the IR beacon, a slightlyenaomplex algorithm was used. Because the
IR beacon mounted on the robot is constantly sendiata, the robot's behavior can be
somewhat erratic if no smoothing is applied todaé. Thus, every time the beacon's data was

read, the value was placed in a circular buffetesf elements. Afterwards, the buffer was
scanned and the direction reading showing up th&t times was taken as the direction the robot
needed to travel. This provided for very gracefwlvement as the robot was driving up to the
home beacon.

The brewing system was the second method of actuased on the robot. In order to control
when the inverter and coffee maker would operéigy power was either supplied or cut-off by
a 40-amp automotive relay. The microprocessordaauld switch a transistor between cut-off
and saturation modes which in turn controlled tay.

Another transistor was also used to control whenbihzzer would sound. Detailed schematics
of this system are provided in Appexdix B.

Sensors:
There are several different types of sensors thet fme used in this project:

* IR Beacon Transceivers for target location detectid am currently considering using
the Pololu IR Beacon Transceiver Pair (http://mwwsotu.com/catalog/product/702).

* IR-range finders mounted down low for obstacle dsoce.

» A Force-Sensitive Resistor to detect the presenadsence of the coffee cup.

The IR beacons were sourced from Pololu.com in\l&gas, Nevada. They operate at 9-volts
and provide logic output of 5-volts, which were wedd down to 3.3-volts using a voltage
divider comprised of a 1kOhm and 2kOhm resistosenes. Initially, the beacon's output was
read via a GPIO port, but after researching otlempfe who have successfully integrated the
beacons into their robots, | decided to read eddheodirectional signals via the ADC. This

allowed me to determine which direction had thergjest signal of the directions read. It also
important to note that the beacon uses inverteid kignals, with a "1" corresponding to 0-volts

and a "0" corresponding to 5-volts.

The Pololu IR Beacon

Each time the beacon was read, the direction wighstrongest signal was placed into a 10
element circular buffer along with the directiomsnh the previous 9 readings. Whichever
direction is most prevalent in the buffer is talkenthe direction of the home beacon.

The IR range finders are Sharp GP2D12 IR Sensaiswaare sourced from Lynxmotion in
lllinois. They output a voltage corresponding e tproximity of an obstacle in front of the
sensor, which is then read through the ADC. A eati 3000 or higher (4092 max.) is
interpreted by the software to indicate the presexi@an obstacle.

Sparkfun SEN-09376 Force Sensitive Resistor

The force sensitive resistor is used to detectptiesence of the coffee cup on the robot. It is
connected in series with a 2kOhm resistor to craatariable voltage divider, which is then read
through the ADC. Unfortunately, due to time coastts, this sensor was not yet integrated into
the robot for Demo Day.

Behaviors:

The robot exhibits three primary behaviors as tithted in the flowchart earlier. The first
behavior is obstacle avoidance while searchingfiame of sight with the home IR beacon. So
long as the home IR beacon is not in sight, thetralll continue to move around its
environment, avoiding obstacles, until line-of-gighas been achieved. When an obstace is
encountered, the robot will turn away from it. Ehif the obstacle is closer to the left side @f th
robot, the robot will turn right until it's path ctear, and vice-versa.

Once line-of-sight with the IR beacon is achiewbé, robot assumes a clear path to the beacon.
It will first orientate itself to be facing homet will then proceed towards the beacon. However,
the robot's heading with respect to home is cotigtaronitored and the robot will re-orientate
itself as necessary during the course of navigatngrds the beacon. Once an obstacle is
sensed, it is assumed that the obstacle is thés msstside.

Finally, the robot initiates the brewing cycle, aiiis accomplished by first activating the relay
to supply power to the inverter and coffee mal&iter extensive timing experiments, it has
been determined that it takes roughly five mindéeghe coffee maker to brew a cup of coffee.
Thus, once power is supplied to the brewing sulksysthe processor simply waits for five
minutes, updating the Icd display with the time agmng each minute.

After the coffee has completed brewing, the retagieactivated, and the buzzer is activated.

Experimental Layout and Results:

First and foremost, prior to any actual experimgoitaof the robot system as a whole, | tested
each separate component to determine how it waakddset preliminary sensor thresholds, etc.
This way when | was actually testing the robot dbat least be close to correct operation
before perfecting the software further.

The experimental layout | used during developmétii@ robot was the breezeway outside my
apartment using a couple boxes to serve as thaakest The robot was developed in an
iterative fashion, where each system was develapddested before moving on to the next
system. The first task that | developed and cterbwas obstacle avoidance. Following that, |
added the beacon sensing and seeking capabiliiasally, | included the coffee brewing and
alarm system in testing.

The test of each system separately proved to hewatuable in getting correct operation out of
my robot. Through testing obstacle avoidance | &las to better calibrate what value from the
IR range finder should be considered an obstaslkile | started with 3500, | eventually
dropped it to 3000 to give the robot enough roonuto without hitting the obstacle in the
process.

Also, while | started with the beacons initiallynning through an input port as GPIO, |
eventually switched to using the ADC because dvedid me to better use the beacon's data and
determine which direction to travel in. One pitthlat | encountered while developing the
beacon sensing is that | needed to add delay beteaszh time the robot determined what action
to take. Prior to this, my robot moved only iniecle because it was constantly turning and
never getting a chance to realize it was line upWiome" correctly. It was through this sort of
experimentation that | was able to get the robetrajing correctly.

Conclusion:

In conclusion, I'm fairly satisfied with the finedsult in that the robot performs it tasks well and
does not appear fidgety. However, | would havedik little more time to include the force
resistor and include a real-time clock for actiuaktkeeping. As far as technical caveats are
concerned, | would say the design and implememtatfony custom circuitry was by far the

most difficult and | wish | had more knowledge aboucuits to prevent an incident where my
custom circuit caught firel However, | learnedraag deal through the process and in a way that
I'm likely to never forget.

Looking to the future, I'm currently integratingetforce resistor and real-time clock. | would
like to eventually enhance the alarm to be somm foirmusic as opposed to the simple piezzo
buzzer. I'm also considering building a custonrglathat could charge the three batteries
simultaneously without my having to remove themnfrine robot.

Documentation:
Atmel;

Doc 8067: Atmel XMega 128 A1 Microprocessor Pratfiany

Doc 8077: Atmel Xmega 128 A1 Manual

Doc 8049: Using The XMega USART

Doc 8308: Getting Started Writing C Code For XMega

Doc 8308: XMega Basics

DocB8050: Using the XMega I/O Pins and Externadinipts

Doc 8043: XMega Interrupts and the ProgrammabléiMevel Interrupt Controller

Basic Micro:
B0099: Robo Claw 2 Channel 5A Motor Controller ®&heet
Interlink Electronics:

94-0004: Interlink Electronics FSR™ Force Sen$tagistors™ Integration Guide
94-00009: FSR-406 Datasheet

Pololu IR Beacons;

Hazlett, Christopher. "Beacon Locating Robot - Bed by Arduino and IR Transceiver."
http://www.robotishappy.com/2009/12/beacon-locatiogot-powered-by-arduino-and-ir-
transceiver/. Retrieved 4/18/2010.

Power sonic:
PS-12120 Rechargeable Sealed Lead-Acid Batterysbe¢h

Pridgen-Vermeer Robotics:

Pridgen, Mike. "Pridgen Vermeer Robotics XMega Meghual." Jan. 2010

Maxim:

19-5339: DS3234 Extremely Accurate SPI Bus witednated Crystal and SRAM Datasheet
Xiamen Amotec Display Co. Ltd:

ADM1602K-NSR-FBS: Specifications of LCD Module

Appendix A: Program Code

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.h

Wednesday, April 20, 2011 5:42 AM

#def i ne SENSOR_OBSTACLE_THRESHOLD 3000
#def i ne BEACON DETECT THRESHOLD 500

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
voi d
voi d
voi d
voi d
voi d

voi d

voi d

ne

ne
ne
ne
ne
ne

ne
ne
ne

NUM_BEACON_READI NGS 10

NO_HEADI NG 0
NORTH_HEADI NG 1
EAST_HEADI NG 2
SOUTH_HEADI NG 3
WEST_HEADI NG 4

PERI PHERALS_OFF 0x00
RELAY_ON 0x01
BUZZER ON 0x02

Det ect st acl es(voi d);

Det ect Beacon(voi d) ;

TurnLeft (void);

Tur nRi ght (voi d);

MoveFor war d(voi d) ;

St opMovi ng(voi d);

Br ewCof f ee(voi d) ;

JL\AvrStudio\LearningAvrStudio\main.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.hD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

#include <avr/io.h>
#include <stdlib.h>
#include <stdbool.h>
#include "PVR.h"
#include "usart.h"
#include "main.h"

bool BeaconDetected ;
bool ObstacleDetected ;

int RightObstacleSensor ;
int LeftObstacleSensor ;
int CurrentBeaconReading

uint8_t CurrentBeaconHeading ;

uint8_t BeaconHeadings [NUM_BEACON_READINGS

int main (void)

{
xmegalnit () ; /Isetup XMega
delaylnit () ; /Isetup delay functions
ADCAInit (); /Isetup PORTA analong readings
lcdinit () ; /I[setup LCD on PORTK
PORTQ_DIR| = ; /Iset QO (LED) as output
PORTJ_DIR | = ;
PORTJ_OUT= ;
PORTH_DIR &= ; /Iset lower nibble of port H to input
RS232Init () ;

RS232Send(DRIVE_FULL_STOR ;

lcdGoto (0, 0);

lcdString ("Seeking base ");
lcdGoto (1, 0);

lcdString ("station...”);

BeaconDetected = false ;
ObstacleDetected = false ;

RightObstacleSensor =0
LeftObstacleSensor = 0
CurrentBeaconHeading = NO_HEADING

CurrentBeaconReading = 0;
for(int x = 0; x < NUM_BEACON_READINGS«++)

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

{

BeaconHeadings [x] = NO_HEADING

JEFFRRR Rk ke dkk ki kdkokkkodokkk *

* *

* Phase 1: Obstacle avoidance, seeking beacon *

* *

kkkkkhkhkkkhhkkkkkkkkkkkkkkkkhkkhhhhhhhhhhhhhrrrkkxxkx */

whi | e(! BeaconDetected)

{
DetectBeacon ();
DetectObstacles () ;
i f (ObstacleDetected)
{
StopMoving () ;
delay_ms ();
i f (RightObstacleSensor > LeftObstacleSensor)
{
TurnLeft ();
delay_ms ();
}
el se
{
TurnRight () ;
delay_ms ();
}
}
el se
{
MoveForward () ;
}
}
/'7(**k **k **k **k **k **k *%k **k **k **k **k **k *kkk
* *
* PHASE 2: Navigate to beacon *
* *
* **k **k **k **k **k **k **k **k **k **k **k **k ****/
ObstacleDetected = false ;
whi | e(! ObstacleDetected)
{

DetectObstacles () ;
DetectBeacon ();

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

swi t ch(CurrentBeaconHeading)

{
case NORTH_HEADING
MoveForward () ;
br eak;
case EAST_HEADING
TurnRight () ;
delay_ms ();
StopMoving () ;
DetectBeacon ();
delay_ms ();
br eak;
case WEST_HEADING
TurnLeft ();
delay_ms ();
StopMoving () ;
DetectBeacon ();
delay_ms ();
br eak;
case SOUTH_HEADING
TurnRight () ;
delay_ms (); /lroughly how long it takes to make a u-turn
StopMoving () ;
DetectBeacon ();
delay_ms ();
br eak;
defaul t:
MoveForward () ;
br eak;
}
DetectBeacon ();
}
/IObstacle detected, we're at the bedside!! Start b rewing...
StopMoving () ;
lcdGoto (0, 0);
lcdString ("Brewing Coffee..");
lcdGoto (1, 0);
lcdString (" :);

BrewCoffee ();

PORTJ_OUT= BUZZER_ON
delay_ms ();

return 0O;

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM
%

PORTJ_OUT = 0x00;
/I PORTJ_OUT = OxFF;
/I delay_ms(10000);
/I PORTJ_OUT = 0x00;
int rangeFinder = 0O;
char rangeString[5];

unsigned char led_flag = 0;

for(int x = 10; x >= 0; x--)

{
lcdGoto(1,0);
itoa(x,rangeString, 10);
lcdString(rangeString);
delay_ms(1000);

}

/initial brewing:
PORTJ_OUT = 0x04;
/ldelay_ms(7 * 60 * 1000);
delay_ms(5000);
//IPORTJ_OUT = 0x0000;
//IPORTJ_OUT = 0x0110;
/ldelay_ms(10000);

*/
}
void DetectObstacles (void)
{
int rightAvgAccum = O;
int leftAvgAccum = 0O;
/Inote: 8 iterations chosen to prevent overflow of 16-bit signed int
for(int x = 0; x < 8; X++)
{

rightAvgAccum += ADCA(Q);
leftAvgAccum += ADCAX);

RightObstacleSensor
LeftObstacleSensor

rightAvgAccum / 8;
leftAvgAccum [/ 8;

i f((RightObstacleSensor > SENSOR_OBSTACLE_THRESHQLP| (LeftObstacleSensor >
SENSOR_OBSTACLE_THRESHQLD

{

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

ObstacleDetected = true ;

}

el se

{

ObstacleDetected = false ;

return;

void DetectBeacon (void)

/Iread port H 10 times to find heading if any...
int nvVal = 0;
int eVal ;
int sVal ;
int wVal ;

/lread ADC

nVal ADCA4) ;
eVal ADCAYR) ;
sVal ADCAR) ;
wVal ADCATY);

/ldetermine minimum of values read:
int minValue = BEACON_DETECT THRESHOLD
uint8_t winningDirection = NO_HEADING

i f(nval < minValue)

{ minValue = nVal ;

winningDirection = NORTH_HEADING
}
i f(eval < minValue)
{

minValue = eVal ;

winningDirection = EAST_HEADING
}
i f(sval < minValue)
{

minValue = sVal ;

winningDirection = SOUTH_HEADING
}

i f(wVval < minValue)

{

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM

minValue = wVal;
winningDirection = WEST_HEADING

/ladd winning direction to array:

BeaconHeadings [CurrentBeaconReading] = winningDirection
CurrentBeaconReading ++;

i f (CurrentBeaconReading >= NUM_BEACON_READINES

{

CurrentBeaconReading = 0

/Iscan array and determine overall "official headin g"
short votes [5] ;
for(int x = 0; x < 5; x++){

votes [x] = O;

for(int x = 0; x < NUM_BEACON_READINGS«++) {
votes [BeaconHeadings [x]] +=

short mostVotes = 0;
uint8_t currentWinner = NO_HEADING

i f(votes [NO_HEADING > mostVotes) {
mostVotes = votes [NO_HEADING;
currentWinner = NO_HEADING

i f(votes [NORTH_HEADING > mostVotes) {
mostVotes = votes [NORTH_HEADING
currentWinner = NORTH_HEADING

i f(votes [EAST_HEADING > mostVotes){
mostVotes = votes [EAST_HEADING;
currentWinner = EAST_HEADING

i f(votes [SOUTH_HEADINEG > mostVotes) {
mostVotes = votes [SOUTH_HEADIN[G
currentWinner = SOUTH_HEADING

i f(votes [WEST_HEADIN{G > mostVotes) {
mostVotes = votes [WEST_HEADING
currentWinner = WEST_HEADING

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c

Wednesday, April 20, 2011 5:43 AM

}

CurrentBeaconHeading = currentWinner ;
i f(currentWinner I = NO_HEADING

{

BeaconDetected true ;

}

el se

{

BeaconDetected = false ;

lcdGoto (1, 0);

char tempStr [5];

itoa (CurrentBeaconHeading , tempStr ,);
lcdString (tempStr) ;

return;

/Iright motor = chl, left motor = ch2
/Iright goes backward, left goes forward

void

{

void

void

void

{

TurnRight (void)

RS232Send(CH1_REVERSE_SLQW
RS232Send(CH2_FORWARD_SLOW

return;

TurnLeft (void)

RS232Send(CH2_REVERSE_SLQW
RS232Send(CH1_FORWARD_SLOW

return;

MoveForward (void)

RS232Send(CH1_FORWARD_NORNIAL
RS232Send(CH2_FORWARD_NORNIAL

return;

StopMoving (void)

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.c Wednesday, April 20, 2011 5:43 AM
RS232Send(DRIVE_FULL_STOB ;

}
void BrewCoffee (void)
{
/IPORTJ_DIR |= OxFF;
PORTJ_OUT= RELAY_ON
lcdGoto (0, 0);
lcdString ("Brewing coffee..");
/Noop that waits 5 minutes, updating display with status
for(int x =5; x >0; x--)
{
lcdGoto (1, 0);
char minLeft [2];
itoa (x, minLeft ,);
lcdString (minLeft) ;
lcdGoto (1, 1);
lcdString (" min. remaining”);
delay_ms ();
}
PORTJ_OUT= PERIPHERALS_OFF
return;
}

JOL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\main.cD:\mydocs\Document

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.h

Wednesday, April 20, 2011 5:43 AM

#i f ndef

#def i

ne

__usart_h_
__usart_h_

#i ncl ude <avr/io. h>
#i ncl ude <st dbool . h>

#i ncl

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i

voi d

voi d

ude

ne
ne
ne
ne
ne

ne
ne
ne

ne
ne
ne

ne
ne
ne
ne

ne
ne
ne

ne
ne
ne
ne

"usart.h"

BAUD 9200L

BSCALE VALUE 0

BSEL VALUE 207 //for baud rate of 9600
USART USARTFO

USART_PORT PORTF

DRI VE_FULL_STOP 0x00
CH1_STOP 0x40
CH2_STOP 0x(0

CH1_FULL_REVERSE 0x01
CH1_REVERSE_NORMAL 0x21
CH1_REVERSE_SLOW 0x31

CH1_FULL_FORWARD Ox7F
CH1_FORWARD_FAST 0x60
CH1_FORWARD NORMAL 0x50
CH1_FORWARD SLOW 0x4C

CH2_FULL_REVERSE 0x80
CH2_REVERSE_NORMAL 0xAO
CH2_REVERSE_SLOW 0xBO

CH2_FULL_FORWARD OxFF
CH2_FORWARD_FAST OXEO
CH2_FORWARD NORMAL 0xD1
CH2_FORWARD_SLOW 0xCC

RS2321 ni t (voi d);

RS232Send(char);

#endi f

IMDL\AvrStudio\LearningAvrStudio\usart.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.nD:\mydocs\Docum

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.c Wednesday, April 20, 2011 5:44 AM

#i ncl ude <avr/io. h>
#i ncl ude <stdbool . h>
#i ncl ude "usart. h"

/****************

* RS-232 USART *

****************/

voi d RS232I nit (void)

{
USART_PORT. DI RSET = PI N3_bm /lsets pin 3 as output (bm = bit mask)
USART_PORT. DI RCLR = PI N2_bm /lsets pin 2 as input (even though not used)
/1 USARTFO: 8 data bits, no parity, 1 stop bit
USART. CTRLC = (uint8_t) USART_CHSI ZE 8BI T_gc | USART_PMODE_DI SABLED gc | fal se;
/1 set baud //(USARTCO. BAUDCTRLB & 0xFO)
#i f ndef F_CPU
#define F_CPU 32000000L
#endi f
USART. BAUDCTRLB = (((F_CPU / BAUD) >>4) - 1) >>
USART. BAUDCTRLA = ((F_CPU / BAUD) >>4) - 1;
USART. CTRLB | = USART_RXEN_bm
USART. CTRLB | = USART_TXEN_bm
return;
}
voi d RS232Send(char dat a)
{
//wait for any previous data to be sent:
whi | e((USART. STATUS & USART_DREIF_bm) == 0) {}
USART. DATA = dat a;
return;
}

IMDL\AvrStudio\LearningAvrStudio\usart.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\usart.cD:\mydocs\Docum

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.h

Wednesday, April 20, 2011 5:45 AM

#ifndef _ PVR h
#define _ PVR h

#i ncl ude <avr/io. h>
#i ncl ude <avr/interrupt.h>
#i ncl ude "PVR h"

#define LCD PORTK_OUT
#defi ne LCDDDR PORTK_DI R

volatile int delaycnt;

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

xmegal ni t (voi d);

del ayl nit (void);

delay_ms(int cnt);
delay_us(int cnt);

| cdDat awor k(unsi gned char c);
| cdDat a(unsi gned char c);

| cdChar Wr k(unsi gned char c);
| cdChar (unsi gned char c);

[cdString(unsigned char ca[]);
[cdlnt (int val ue);

| cdGoto(int row, int col);

[cdlnit(void);

ServoCl nit(void);
ServoDI nit (voi d);

ServoCO(i nt val ue);
ServoCl(int val ue);
ServoC2(int val ue);
ServoC3(int val ue);

ServoCA(int val ue);

AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.h Wednesday, April 20, 2011 5:45 AM

voi d ServoC5(int val ue);
voi d ServoDO(int val ue);
voi d ServoDl(int val ue);
voi d ServoD2(int val ue);
voi d ServoD3(int val ue);
voi d ServoD4(int val ue);
voi d ServoD5(int val ue);
voi d ADCAI nit (void);

i nt ADCAO(voi d);

i nt ADCAL(void);

i nt ADCA2(void);

i nt ADCA3(void);

i nt ADCA4(void);

i nt ADCA5(voi d);

i nt ADCA6(void);

i nt ADCA7(void);

#endi f

AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.hD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR.h"

/*********

* Xmega *

*********/

void xmegalnit (void)

{
CCP = 0xD8;
CLK_PSCTRL= 0x00;
PORTQ_DIR= 0x01;
/Isetup oscilllator
OSC_CTRL= 0x02; /lenable 32MHz internal clock
whil e ((OSC_STATUS& 0x02) == 0); /Iwait for oscillator to be ready
CCP = 0xDs8; /Iwrite signature to CCP
CLK_CTRL = 0x01; /Iselect internal 32MHz RC oscillator
}
/*********
* Delay *
*********/

void delaylnit (void)

{
TCF1 _CTRLA = 0x01; /Iset clock/1
TCF1 _CTRLB = 0x31; /lenable COMA and COMB, set to FRQ
TCF1_INTCTRLB = 0x00; [/Iturn off interrupts for COMA and COMB
SREG| = CPU_I_bm; /lenable all interrupts
PMIC_CTRL | = 0x01; /lenable all low priority interrupts
}
void delay_ms (int cnt)
{
delaycnt = 0O; /Iset count value
TCF1_CCA= 32000; /Iset COMA to be 1ms delay
TCF1 CNT = 0; /Ireset counter
TCF1_INTCTRLB = 0x01; /lenable low priority interrupt for delay
while (cnt != delaycnt); /ldelay
TCF1_INTCTRLB = 0x00; /[disable interrupts
}
void delay us (int cnt)
{
delaycnt = 0O; /[set counter
TCF1_CCA= 32; /Iset COMA to be 1us delay
TCF1 CNT = 0; /Ireset counter
TCF1_INTCTRLB = 0x01; /lenable low priority interrupt for delay

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

while (cnt != delaycnt);
TCF1_INTCTRLB = 0x00;
}
SIGNAL(TCF1_CCB_vect)
{
delaycnt ++;
}
SIGNAL(TCF1_CCA_vect)
{
delaycnt ++;
}
/*******
LCD
*******/
#define LCD PORTK_OUT
#define LCDDDR PORTK_DIR

void IlcdDataWork (unsigned char c)
{
c &= OxFO;
c | = 0x08;
LCD = c;
delay_ms (2);
c "= 0x08;
LCD = c;
delay_ms (2);
c | = 0x08;
LCD = c;
delay_ms (2);

void IcdData (unsigned char c)

c & OxFO;
c & OxOF;

unsigned char cHi
unsigned char clLo
cLo = cLo * 0x10;
IcdDataWork (cHi);
IcdDataWork (cLo);

void lcdCharWork (unsigned char c)

c &= OxFO;
c | = Ox0A;
LCD = c;

/ldelay
/[disable interrupts

/Ikeep data bits, clear the rest
/Iset E high

[hwrite to LCD

/ldelay

/Iset E low

[hwrite to LCD

/ldelay

/Iset E high

[hwrite to LCD

/ldelay

/Igive cHi the high 4 bits of ¢
/Igive cLo the low 4 bits of ¢
/Ishift cLo left 4 bits

/Ikeep data bits, clear the rest
/Iset E and RS high
[hwrite to LCD

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

delay_ms (2);
c "= ;
LCD = c;
delay _ms (2);
c|= ;
LCD = c;
delay _ms (2);

void lcdChar (unsigned char

unsigned char cHi
unsigned char clLo

cLo = cLo *

lcdCharWork (cHi);
lcdCharWork (cLo);

void ledString (unsigned char

{
int i = 0;
while (ca[i] !="
{
lcdChar (ca[i ++]);
}
}

void ledint (int value)

int temp_val ;
int x = ;
int leftZeros =5;

i f (value <0)

{ lcdChar ('
value *= -
}
while (value / x ==
{
x/ =10;
leftZeros - -;
}

while ((value >

{

)

/ldelay

/Iset E low
/lwrite to LCD
/ldelay

/Iset E high
/lwrite to LCD
/ldelay

/Igive cHi the high 4 bits of ¢
/lgive cLo the low 4 bits of ¢

/Ishift cLo left 4 bits

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

temp_val = value / x;
value -= temp_val * x;
lcdChar (temp_val +);
X /= ;
leftZzeros - -;
}
whi |l e (leftZzeros >0)
{
lcdChar (0+);
leftZeros - -;
}
return;
}
void lcdGoto (int row, int col)
{
unsigned char pos;
if ((col >= && col <=) && (row >= && row <= 3))
{
pos = col ;
if (row ==
pos += ;
else if (row == 2)
pos += ;
else if (row == 3)
pos += ;
IcdData (+ pos);
}
}
void ledinit (void)
{
delaylnit (); /Iset up the delay functions
LCDDDR= ; /Iset LCD port to outputs.
delay_ms (20); /Iwait to ensure LCD powered up
lcdDataWork (); /Iput in 4 bit mode, part 1
delay_ms (10); /Iwait for Icd to finish
lcdDataWork (); /Iput in 4 bit mode, part 2
delay_ms (2); /Iwait for Icd to finish
lcdData (); /Iput in 4 bit mode, part 3
lcdData (); /lenable 2 line mode
lcdData (); [/Iturn everything on
lcdData (); /[clear LCD
}
/*********
* Servo *

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

*********/

void ServoClnit (void)

{
TCCO_CTRLA= 0x05; /Iset TCCO_CLK to CLK/64
TCCO_CTRLB= 0xF3; /[Enable OC A, B, C, and D. Set to Single Slope
PWM
/IOCnX =1 from Bottom to CCx and 0 from CCx to Top
TCCO_PER= 10000; /[20ms / (1/(32MHz/64)) = 10000. PER = Top
TCC1_CTRLA= 0x05; /Iset TCC1_CLK to CLK/64
TCC1_CTRLB= 0x33; /[Enable OC A and B. Set to Single Slope PWM
/IOCnX =1 from Bottom to CCx and 0 from CCx to Top
TCC1_PER= 10000; /[20ms / (1/(32MHz/64)) = 10000. PER = Top
PORTC_DIR = 0x3F; /Iset PORTCS5:0 to output
TCCO_CCA= 0; /IPWMCO off
TCCO_CCB= 0; /IPWMC1 off
TCCO_CCC= 0; [IPWMC?2 off
TCCO_CCD= 0; [IPWMC3 off
TCC1_CCA= 0; [IPWMCA4 off
TCC1_CCB= 0; /IPWMCS off
}
void ServoDInit (void)
{
TCDO_CTRLA= 0x05; /Iset TCCO_CLK to CLK/64
TCDO_CTRLB= 0xF3; /[Enable OC A, B, C, and D. Set to Single Slope
PWM
/IOCnX =1 from Bottom to CCx and 0 from CCx to Top
TCDO_PER= 10000; /[20ms / (1/(32MHz/64)) = 10000. PER = Top
TCD1_CTRLA= 0x05; /Iset TCC1_CLK to CLK/64
TCD1_CTRLB= 0x33; /[Enable OC A and B. Set to Single Slope PWM
/IOCnX =1 from Bottom to CCx and 0 from CCx to Top
TCD1_PER= 10000; /[20ms / (1/(32MHz/64)) = 10000. PER = Top
PORTD_DIR = 0x3F; /Iset PORTCS5:0 to output
TCDO_CCA= 0; /IPWMCO off
TCDO_CCB= 0; /IPWMC1 off
TCDO_CCC= 0; [IPWMC?2 off
TCDO_CCD= 0; [IPWMC3 off
TCD1_CCA= 0; [IPWMCA4 off
TCD1_CCB= 0; /IPWMCS off
}
void ServoCO (int value)
{
if (value > 100) /[cap at +/- 100
value = 100; /Il -100 => 1ms
else if (value < -100) /I 0 =>1.5ms
value = -100; /I 100 =>2ms
value *= 5; /Imultiply value by 2.5

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

void

void

void

void

void

value /= 2;

TCCO_CCA= (750 + value);

ServoCl (int value)

if (value > 100)
value = 100;

else if (value < -100)

value = -100;
value *= 5;
value /= 2;

TCCO_CCB= (750 + value);

ServoC2 (int value)

if (value > 100)
value = 100;

else if (value < -100)

value = -100;
value *= 5;
value /= 2;

TCCO_CCC= (750 + value);

ServoC3 (int value)

if (value > 100)
value = 100;

else if (value < -100)

value = -100;
value *= 5;
value /= 2;

TCCO_CCD= (750 + value);

ServoC4 (int value)

if (value > 100)
value = 100;

else if (value < -100)

value = -100;
value *= 5;
value /= 2;

TCC1_CCA= (750 + value);

ServoC5 (int value)

/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

{

void

void

void

void

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCC1_CCB= (750 + value);

ServoDO (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCDO_CCA= (750 + value);

ServoD1 (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCDO_CCB= (750 + value);

ServoD2 (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCDO_CCC= (750 + value);

ServoD3 (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

Wednesday, April 20, 2011 5:45 AM

value *= 5;
value /= 2;
TCDO_CCD= (750 + value);

void ServoD4 (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCD1_CCA= (750 + value);

void ServoD5 (int value)

if (value > 100)

value = 100;
else if (value < -100)
value = -100;

value *= 5;
value /= 2;
TCD1_CCB= (750 + value);

/********

* ADCA *

********/

void ADCAInit (void)

{
delaylnit () ;
ADCA_CTRLB= 0x00;
ADCA_REFCTRL= 0x10;
ADCA_CHO_CTRL= 0x01;
ADCA_CHO_INTCTRL= 0x00;

interrupt
ADCA_CHO_MUXCTRE 0x08;
ADCA_PRESCALER: 0x03;
ADCA_CTRLA| = 0x01;

int ADCA(void)

ADCA_CHO_MUXCTRE 0x00;
ADCA_CTRLA| = 0x04;

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

/[cap at +/- 100

/l -100 => 1ms
/I 0 =>1.5ms
/I 100 =>2ms

/Imultiply value by 2.5
/I new range +/- 250
/IGenerate PWM.

//12bit, right adjusted

/Iset to Vref = Vcce/1.6 = 2.0V (approx)

/Iset to single-ended

/Iset flag at conversion complete. Disable

/Iset to Channel 1

/Iset the speed to slow for higher accuracy

/IEnable ADCA

/ISetto Pin 0

/IStart Conversion on ADCA Channel 0

whil e ((ADCA_CHO_INTFLAGS& 0x01) I'= 0x01); /lwaitfor conversion to complete

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c Wednesday, April 20, 2011 5:45 AM

delay_ms (5);
int value = ADCA CHO RES /Igrab result
return value ; [Ireturn result
}
int ADCAX void)
{
ADCA_CHO_MUXCTRE 0x08; /[Set to Pin 1
ADCA_CTRLA| = 0x04 ; /[Start Conversion on ADCA Channel 0
whil e ((ADCA_CHO_INTFLAGS& 0x01) I'= 0x01); //waitfor conversion to complete
delay_ms (5);
int value = ADCA CHO RES /Igrab result
return value ; [Ireturn result
}
int ADCAZ void)
{
ADCA_CHO_MUXCTRE 0x10; //Set to Pin 2
ADCA_CTRLA| = 0x04 ; /[Start Conversion on ADCA Channel 0
whil e ((ADCA_CHO_INTFLAGS& 0x01) I'= 0x01); /l/waitfor conversion to complete
delay_ms (5);
int value = ADCA CHO RES /Igrab result
return value ; [Ireturn result
}
int ADCAZ void)
{
ADCA_CHO_MUXCTRE 0x18; /ISet to Pin 3
ADCA_CTRLA| = 0x04 ; /[Start Conversion on ADCA Channel 0
whil e ((ADCA_CHO_INTFLAGS& 0x01) I'= 0x01); //waitfor conversion to complete
delay_ms (5);
int value = ADCA CHO RES /Igrab result
return value ; [Ireturn result
}
int ADCA4 void)
{
ADCA_CHO_MUXCTRE 0x20; /[Set to Pin 4
ADCA_CTRLA| = 0x04 ; /[Start Conversion on ADCA Channel 0
whil e ((ADCA_CHO_INTFLAGS& 0x01) I'= 0x01); /l/waitfor conversion to complete
delay_ms (5);
int value = ADCA CHO RES /Igrab result
return value ; [Ireturn result
}
int ADCAR void)
{
ADCA_CHO_MUXCTRE 0x28; /[Set to Pin 5
ADCA_CTRLA| = 0x04 ; /[Start Conversion on ADCA Channel 0

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

D:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.c

whil e ((ADCA_CHO_INTFLAGS&
delay_ms (5);

int value = ADCA CHO RES
return value ;

int ADCAR void)

ADCA_CHO_MUXCTRE ;
ADCA_CTRLA| = ;

whil e ((ADCA_CHO_INTFLAGS&
delay_ms (5);

int value = ADCA CHO RES
return value ;

int ADCAY void)

ADCA_CHO_MUXCTRE ;
ADCA_CTRLA| = ;

whil e ((ADCA_CHO_INTFLAGS&
delay_ms (5);

int value = ADCA CHO RES
return value ;

) I'=); /lwait for conversion to complete

/Igrab result
/Ireturn result

/[Set to Pin 6
/[Start Conversion on ADCA Channel 0
) I'=); /lwait for conversion to complete

/Igrab result
/Ireturn result

/[Set to Pin 7
/[Start Conversion on ADCA Channel 0
) I'=); /lwait for conversion to complete

/Igrab result
[/Ireturn result

AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\My Dropbox\Projects\IMDL\AvrStudio\LearningAvrStudio\PVR.cD:\mydocs\Documents\M

Wednesday, April 20, 2011 5:45 AM

Appendix B: Circuit Schematics

+9V Battery

Piazzo Buzzar
To procassor
GRO Chm

LA

Schematic For Circuit Connected To I;rocessor'sPliﬂo Control Buzzer

I +13y GMD
Ry
T,
00 D pr_iﬂ Ill:ll-.-ﬂr-‘":er
Fzaz2 ;

Goffea Makar

Schematic of Darlington Pair Circuit Used to Control Relay and Enable/Disable Inverter and
Coffee M aker

