
Intelligent Machines Design Laboratory - EEL 5666C: Final Formal Written Report

The Baseball inator

Prepared by: Eric Bennett

April 18, 2011

Instructors:

Dr. Arroyo & Dr. Schwartz

TAs:

Sean Frucht

Ryan Stevens

Tim Martin

Josh Weaver

Devin Hughes

Opening
 2

Abstract
 2

Executive Summary
 2

Introduction
 2

Main Body
 3

Integrated System
 3

Mobile Platform
 4

Actuation
 5

Sensors
 6

Behaviors
 8

Experimental Layouts & Results
 9

Closing
 9

Conclusion
 9

Documentation
 10

Appendices
 10

 1

Opening
Abstract	
The Baseballinator is a small, autonomous, game-playing robot. This report will outline the
design and operation of the robot. The Baseballinator locates a ball, travels toward it, picks the
ball up, and bats the ball with a small baseball bat. The robot was successful in completing these
tasks.

Executive Summary
To accomplish the task of finding a ball, The Baseballinator uses an IP Webcam to send video to
a computer. The computer analyzes the video using OpenCV software. The computer sends out
the ball direction to the robot via XBee modules. The robot homes in on the ball by adjusting its
motor commands. Once the ball is close enough, the robot lowers its arm and attempts to pick
up the ball. After this is done, a strong servo pulls the bat against a strong elastic force. The arm
lines the ball up for batting and the servo releases the bat. The ball is then hit and the cycle
repeats itself.

Introduction
To accomplish the tasks associated with finding a ball, picking it up, and batting it, while
displaying obstacle avoidance behavior, many systems had to be integrated to work together.

This report will detail The Baseballinator’s design. This report starts with a high level
description of the entire integrated system. It will move on to the specifics about the mobile
platform. After this, there are sections describing the methods of actuation and sensing including
circuit diagrams, justification for design decisions, and part characteristics.

Background and Similar Work: Autonomous toys are an attractive product. They allow kids to
play in an interactive way with their toy while exposing them to the capabilities of technology
for producing intelligent behavior. The Baseballinator allows kids to play the role of outfielder
while the robot plays the role of batter and ball fetcher. There have been robots built to do
similar things. For instance, Frank Barnes has created the Headless Batter which is a human
sized construction of motors and arms. His device detects a high speed pitch of a real baseball
and bats it. However, the Headless Batter cannot move anywhere, and has very high power
requirements. Another robot built by researchers at Tokyo University have developed a robot
that can bat slow pitches and direct the ball to land in a basket with high accuracy. This robot is
also immobile. The Baseballinator is different in a few key aspects. Firstly, The Baseballinator
is mobile. Therefore, it can be placed near the playing area and it will find its way to where it
needs to go. Secondly, The Baseballinator can fetch the ball. Thirdly, this is meant to be a
playmate for kids. And lastly, The Baseballinator has lower power requirements and is
completely wireless - running off of the onboard batteries.

The Baseballinator: Final Formal Report
 2

Main Body
Integrated System

The total integrated system consists of sensors, actuators, batteries, the LCD, and the XBees - all
centered around the microcontroller as seen in the diagram below.

The six batteries used to power the PVR microcontroller were 1.2V AA batteries (connected in
series). The LCD, each servo, each motor, each sensor, the webcam and XBee 2 were all
powered from the microcontroller outputs.

The IR and sonar sensors were used for obstacle avoidance. The sonar sensor was also used to
detect the proximity of the ball. The webcam was powered by the board, and sent its video to the
computer. The computer analyzes the video and sends a character through XBee 1 to XBee 2
informing the robot to either move left or right. The LCD was used to display what part of the
algorithm the robot was in for help in debugging.

The Baseballinator: Final Formal Report
 3

Mobile Platform

The final mobile platform with all components looked like the picture below. The platform is
made of one single piece of thin wood. The gripper is made of the same wood. All of the wood
was spray painted black. The LCD, bat support, camera support, and servo support are all

screwed into place. The gripper servos were jammed into place to allow quick changes in
positioning during prototyping (to save the time required for screwing and unscrewing them).
The robot has 2 wheels with motors screwed into place near the front of the robot. There is a ball
caster on the rear end of the robot with its height adapted for use with the robot.

The bat is angled at 45 degrees. When it comes time to hit the ball out of the gripper, the gripper
arm also moves to 45 degrees as well.

The wood platform was first designed in AutoDesk Inventor and later cut with the T-Tech
machine in the IMDL room. The gripper and many mounting holes were cut later as needed.
Most of the electronic hardware was fit on the underside of the platform as seen in the picture
below. The LCD, sonar, and motors can be seen on the left. The microcontroller and XBee
module can be seen in the middle of the picture. The battery pack, motor driver, and caster can

The Baseballinator: Final Formal Report
 4

be seen on the right. The IR sensors are on the top side of the figure on either side of the LCD
and can be seen in the previous picture.

Actuation
Many actuators were used for motion required for the robot.

Two DC motors (controlled with a motor driver) were
used to rotate the wheels. The DC motors were part of the
EZR1 kit from Solutions Cubed. The motor driver was
the Roboblock Dual DC
Motor Controller featuring
the L298H Bridge motor
driver.

The Baseballinator: Final Formal Report
 5

For the gripper arm, 2 servos were needed. The servo used to move the arm from the ground to
batting position was a 180 degree servo. The second servo was a 90 degree servo needed to pull
a string to open the gripper arm. Both of these servos were HiTEC’s HS-311 servo.

For gripping, once the ball is found and is in close proximity
in front of the robot, the arm sequence is as follows. First,
the arm is lowered to an angle above ground. Then the
string servo pulls the gripper’s string to open the grippers
arm. Then the gripper lowers itself to ground level while the
robot makes a turn to the right (in order to ensure the ball is
picked up in the right position on the left of the gripper).
The gripper closes and quickly raises the ball above the
camera. The bat servo pulls the bat back and the gripper
moves to 45 degrees. The bat servo pulls the bat even further
after this point and once it goes “too far” the bat is released and bats the ball. The servos then go

to default positions.

The HS-805BB servo was used to pull the bat back. This servo was chosen
for its high torque enabling it to pull the bat back against a stronger elastic
force. This servo was also 180 degrees enabled.

Although not an actuator, for the sake of completeness, the LCD that was
used was the Basic 16x2 Character LCD.

Sensors
Many sensors were needed in order for the robot to successfully implement the desired tasks.

The Cisco Wireless IP Webcam (by Linksys) was used for video feed.
The Ad-Hoc mode allowed the camera to send its video to the
computer directly, but the signal was far too weak. Because of this,
the video was first sent to a router, then to the computer.

The computer was a 2.4 GHz Intel Core i5 MacBook Pro running
Windows 7. Video was processed in Visual Express 2010 (C++) and
utilized OpenCV software for video analysis. The software was made
to convert the RGB frames from the video to HSV. After this, the
frame would be thresholded in the saturation and value fields. The
Hue value was also thresholded, but was able to be adjusted by the
user in real-time as the video is being processed to allow for quick
testing to see what values work best to new environments. For demo

The Baseballinator: Final Formal Report
 6

day in NEB, orange seemed to work best. The Hue minimum and maximum threshold values
were set to 2 and 14 (orange) respectively for the demo.

The C++ code then uses moments to detect the position of the thresholded binary image (which
would contain only the orange ball in the receptive field). The x coordinate (in terms of pixels)
was used to determine whether the robot should turn left or right to adjust itself to move towards
the ball. If no ball was detected, the robot was meant to just stay in obstacle avoidance mode.
To implement this, 4 characters were needed to be sent from the computer to the robot. The first
indicates standby mode. The second and third indicate motion to the left and right, respectively.
The fourth indicated movement forward. The XBee modules were used to send and receive
these characters.

The image above shows the software detecting color. Orange is not shown, but is what ended up
working best.

The Baseballinator: Final Formal Report
 7

Information is sent from the computer to the robot via RF
XBee Modules. These devices were chosen due to their
simplicity in setup and functionality. Two XBee 1mW
Chip Antenna were used in conjunction with a USB dongle
and Explorer Regulated breakout board.

Two Sharp GP2D120 IR Range
Sensors were used to assist in
obstacle avoidance. These
sensors had a range of 4 to 30
centimeters. Precise calibration and characterization of these was not
necessary since all that was needed from these was to detect if an
object was within 10 cm. If the threshold output voltage was reached,
the microcontroller simply sent a command to turn away from that
direction for a small amount of time.

The Ultrasonic Range Finer - XL-Maxsonar EZ3 was used for
obstacle avoidance and for detecting the proximity of the ball to be
picked up. The analog output voltage was used to transmit the
proximity data. This particular sonar sensor has a smaller beam
width than similar sonar sensors. This was chosen since the robot
needed to know the precise location of the ball to be picked up.

Behaviors
The robot is required to perform a variety of tasks. The flow
diagram below shows these tasks and the way they are chosen to be executed.

The Baseballinator: Final Formal Report
 8

In the above diagram, obstacle avoidance consists of driving in a straight line while monitoring
the IR and sonar sensors. Once an orange ball is detected in the field of view, the robot adjusts
its motors to center the orange object to the center of the camera’s view. The robot would grip
the ball and bat it once the sonar detected the ball was within a certain distance and the cycle
would repeat itself.

Experimental Layouts & Results
The robot was successful in obstacle avoidance and the task of homing in on an orange ball,
picking it up and batting it. A few minor details made it less efficient. For instance, there existed
a delay in the video feed. Because of this delay, the robot would oscillate left and right at a
frequency equal to the inverse of the delay while homing in on the ball. This is because once the
camera has centered itself on the orange ball, the robot keeps on turning because it still sees the
need to rotate because the computer is still processing old frames in which the ball is still not
centered. This caused the ball to fall out of sight initially. A quick fix was to slow the motors
down keeping the amplitude of the oscillations low.

Another drawback was that the main batting servo was not strong enough to pull the bat back
when battery power was not at its maximum (when the batteries had just been charged). To
remedy this, the gripper servo was made to push the gripper into the batting servo’s arm to assist
in pushing the bat backwards. The elastics were also loosened resulting in the ball not being
batted as far as could be on fresh batteries. The batteries could only supply enough power for a
few minutes - after that, everything would still work fine, but the batting servo would not be able
to be pulled all the way back against the elastics by itself. When it could, the ball could be batted
to eye-level height.

For ball recognition, the code depended on the color of the ball and not the shape. This meant
that the orange ball had to be the only orange object in the field of view - or at least represent
80% of the pixels in the camera’s field of view. The robot would sometimes try to home in on
some far away object, such as an orange juice container (like in the demo). The camera was
angled downwards to minimize cases where students would be wearing an orange shirt. In the
end, this was not much of a problem.

Closing
Conclusion
The Baseballinator was a successful robot prototype. Obstacle avoidance, as well as finding,
gripping, and batting balls were performed well. A few drawbacks such as delay, and the way
balls were recognized made the robot’s sequence of actions less robust, however, under demo
conditions, the robot executed its tasks reasonably.

The Baseballinator: Final Formal Report
 9

Future work would include building a robot that can bat a real baseball ball pitched to it, throw/
pitch a baseball, and to also catch a ball thrown to it in uncontrolled conditions seen in real
baseball.

Documentation

Please see the website (https://sites.google.com/site/imdlautomatedrobotproject/) for datasheets
and resources used.

Appendices

Send me an email if you have any questions about this project. ericbennett@ufl.edu

Code for PVR (C code):

#include <avr/io.h>
#include "avr_compiler.h"
#include "usart_driver.h"
#include "PVR.h"
#include <stdio.h>
#include "stdlib.h"

#define USART USARTF0
#define USART_BAUD 11500
#define SERIAL_UBBRVAL(baud) ((((F_CPU / 16) + (baud / 2)) / (baud)) - 1)

#define SAMPLE_SIZE 32
USART_data_t USART_data;

// Global Variables!
int sonarThresh = 70;
int countThresh = 2;
int forward = 0b11000011;
int backward = 0b11000000;
int rotateL = 0b11000010;
int rotateR = 0b11000001;
int crawlR = 0b10000001;
int crawlL = 0b01000010;
int stop = 0b00000000;
	
	 // Servo Assignments//
	 // C0 is ARM
	 // C1 is CAMERA
	 // C2 is STRING
	 // C3 is bat mover

int initialdelay = 2000;
int servodelay = 25;
int servodelaydown = 6;
int servodelayopen = 5;
int servodelaybat = 10;

The Baseballinator: Final Formal Report
 10

mailto:ericbennett@ufl.edu
mailto:ericbennett@ufl.edu

int flag = 1;
int batservoinitial = 0;
int battingangle = 45;
int zeroangle = 0;

////////////// FUNCTIONS ////////////

// Note: should have made a servodelay(int delay) function
void arm_ground_to_batting()
{
	 int k = 0 ;
	
	 for (k=-90; k<40; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_ground_to_zero()
{
	 int k = 0 ;
	
	 for (k=-90; k<zeroangle; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_zero_to_batting()
{
	 int k = 0 ;
	
	 for (k=zeroangle; k<battingangle; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_zero_to_ground()
{
	 int k = 0 ;
	 for (k=zeroangle; k>-89; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelay);
	 }
}

void arm_batting_to_almost_ground()
{
	 int k = 0 ;

The Baseballinator: Final Formal Report
 11

	 for (k=24; k>-60; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_batting_to_zero()
{
	 int k = 0 ;
	 for (k=24; k>zeroangle; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_almost_ground_to_ground()
{
	 int k = 0 ;
	 for (k=-60; k>-100; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_zero_to_almost_ground()
{
	 int k = 0 ;
	 for (k=zeroangle; k>-60; k=k-1)
	 {
	 ServoC0(k);
	 delay_ms(servodelaydown);
	 }
}

void bat_zero_to_minus()
{
	 int k = 0 ;
	 for (k=0; k>-100; k=k-1)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_minus_to_plus()
{
	 int k = 0 ;
	 for (k=-100; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_minus_to_zero()

The Baseballinator: Final Formal Report
 12

{
	 int k = 0 ;
	 for (k=-100; k<0; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_zero_to_half_plus()
{
	 int k = 0 ;
	 for (k=0; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_zero_to_plus()
{
	 int k = 0 ;
	 for (k=0; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_half_plus_to_plus()
{
	 int k = 0 ;
	 for (k=80; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_plus_to_zero()
{
	 int k = 0 ;
	 for (k=100; k>0; k=k-1)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void arm_open()
{
	 int k = 0 ;
	 for (k=100; k>-100; k=k-1)
	 {
	 	 ServoC2(k);

The Baseballinator: Final Formal Report
 13

	 	 delay_ms(servodelayopen);
	 }
}
	

void arm_close()
{	
	 PORTJ_OUT = forward;
	 delay_ms(200);
	 PORTJ_OUT = crawlR;
	 delay_ms(200);
	 int k = 0 ;
	 for (k=-100; k<100; k++)
	 {
	 	 ServoC2(k);
	 	 delay_ms(servodelayopen);
	 }
	 PORTJ_OUT = stop;
}

void backup()
{
	 	 PORTJ_OUT = backward;
	 	 delay_ms(400);
}

void rotateLeft()
{
	 	 PORTJ_OUT = rotateL;
	 	 delay_ms(700);
}

 // Compares sonar reading to threshold. Reacts if triggered more than ‘count’
int checksonar(int sonar,int count)
{
	 if (sonar < sonarThresh)
	 	 count=count+1;

	 lcdGoto(1,1);
	 lcdInt(count);

	 if (count > countThresh)
	 {
	 	 backup();
	 	 rotateLeft();
	 	 count=0;
	 }

	 return(count);
}

void pickupball2() ///This is the algorithm to pick up a ball with the arm and bat it
{
	 	 arm_zero_to_almost_ground();
	 	 arm_open(); // maybe open arm while going down.
	 	 ServoC3(30);

The Baseballinator: Final Formal Report
 14

	 	
	 	 arm_almost_ground_to_ground();
	 	 arm_close();
	 	 ServoC3(-10);
	 	
	 	 arm_ground_to_zero();
	 	 delay_ms(400);
	 	 ServoC0(-100); //To help Batter pull back
	 	
	 	 ServoC3(-45);
	 	 arm_zero_to_batting();
	 	 delay_ms(1000);

	 //	 PORTJ_OUT = rotateR;
	 //	 delay_ms(1500);
	 //	 PORTJ_OUT = stop;

	 	 ServoC3(-100);
	 	 delay_ms(400);
	
	 	 arm_batting_to_zero();
	 	 ServoC3(0);
}

/////// Serial Code Stuff (Thanks Steven + Internet)

void usart_initialize(void)
{
	 //pin 3 output
	 PORTF.DIRSET = PIN3_bm;
	 //pin2 input
	 PORTF.DIRCLR = PIN2_bm;
//	 USART_InterruptDriver_Initialize(&USART_data, &USART, USART_DREINTLVL(3));
	 //usartc0, 8 data bits, no parity, 1 stop bit
	 USART_Format_Set(&USART, USART_CHSIZE_8BIT_gc, USART_PMODE_DISABLED_gc, false);
	 //ENABLE INTERRUPT
//	 USART_RxdInterruptLevel_Set(USART_data.usart, USART_RXCINTLVL(3));
	 //set baud rate
	 USART_Baudrate_Set(&USART, 17, 0);

	 //ENABLE RX AND TX
	 USART_Rx_Enable(&USART);
	 USART_Tx_Enable(&USART);
	 //Enabel PMIC Interrupt level low
	 //PMIC.CTRL |= PCMIC_LOLVLEX_bm;

	 //enable global interrupts
	 //sei();
}

inline void usart_tx_byte(char DataByte)
{
	 int txrxVal = 0;

	 while(1)
	 {
	 	 txrxVal = USARTF0_STATUS;

The Baseballinator: Final Formal Report
 15

	 	 txrxVal &= 0x20;;
	 	 if(txrxVal == 0x20)
	 	 {
	 	 	 USARTF0_DATA = DataByte;
	 	 	 break;
	 	 }
	 }
}

inline void usart_tx_string(char *StringPtr)
{
	 int i = 0;
	 while(StringPtr[i] != 0) //while not null terminator
	 {
	 	 usart_tx_byte(StringPtr[i]);
	 	 i++;
	 }
}

inline char usart_rx_byte(void)	 	 	
{
	 	 int txrxVal = USARTF0_STATUS;
	 	 txrxVal &= 0x80;
	 	 char data;
	 if(txrxVal == 0x80)
	 	 {
	 	 	 data = USARTF0_DATA;
	 	 }
	 	 else
	 	 {
	 	 	 data = 0;
	 	 }
	 	 return data;
}

///////////////////////////////// !!! MAIN LOOP MAIN LOOP !!! //////////////////////////
int main(void)
{
	 xmegaInit();	 //setup XMega
	 delayInit();	 //setup delay functions
	 ServoCInit();	 //setup PORTC Servos
	 ServoDInit();	 //setup PORTD Servos
	 ADCAInit();	 	 //setup PORTA analong readings
	 lcdInit();	 	 	 //setup LCD on PORTK
	 lcdString("PV Robotics");	 //display "PV Robotics" on top line (Line 0) of LCD
	 lcdGoto(1,0);	 	 //move LCD cursor to the second line (Line 1) of LCD
	 lcdString("Board Demo");	 //display "Board Demo" on second line
	 PORTQ_DIR |= 0xFF;	 //set Q0 (LED) as output
	 PORTJ_DIR |= 0xFF;	 //set port F as output
	
// variables for main loop
	 int i = -100;
	 int value = 0;
	 int sonar = 0;
	 int count = 0;
	 int ob_avoid = 0;

The Baseballinator: Final Formal Report
 16

	
// Set initial conditions
 PORTJ_OUT = stop;
	 ServoC0(0);
	 //ServoC0(45);
	 ServoC2(100);
	 ServoC3(batservoinitial);
	 delay_ms(initialdelay);
	 usart_initialize(); //

	 delay_ms(3000);
//	 pickupball(); // for testing

char avalue;
//int avalue = 0;
int intvalue;
int posx = 0;

int addthis = 4;
int kk=22;

//while(1) // for testing
//{
//lcdData(0x01);	 //Clear LCD

//lcdInt(kk);
//ServoC0(kk);
//kk=kk+1;
//delay_ms(3000);
//}

//// Make sure batting arm and grabber don't interfere with eachother
ServoC0(-45);
ServoC3(45);
delay_ms(500);
ServoC3(10);
delay_ms(200);
ServoC0(0);

int ir = 0;
int irr = 0;

// while(1) // test the IR sensors
{
	 lcdData(0x01);
//	 lcdString("IR: ");
	 ir = ADCA1();
	 irr = ADCA2();
	 ir = (ir-300)/1;
	 irr = (irr-300)/1;

	 lcdInt(ir);
	 lcdString(" ");
	 lcdInt(irr);

	 delay_ms(300);

}

The Baseballinator: Final Formal Report
 17

// pickupball2(); // for testing

while(1)
{
// uncomment and loop to test xbee communication and character display
 // lcdInt(i);
//	 i++;
	
	 lcdData(0x01);	 	 	 //Clear LCD
//	 lcdInt(i);
//	 delay_ms(500);
	 avalue = usart_rx_byte();
//	 lcdChar(avalue);
//	 delay_ms(500);
//	 if (avalue == 'g' || avalue == 'G')	
//	 {	 lcdString(avalue);	 	 // testing the output - displaying it to the LCD
//	 }
//	 delay_ms(500);
///	 lcdInt(avalue);
//	 delay_ms(500);
//	 intvalue = atoi(avalue); // atoi seems to mess things up. results in no output to LCD
	 intvalue = avalue - '0';
//	 intvalue = intvalue + addthis;
//	 lcdData(0x01);	 	 	 //Clear LCD
	 lcdInt(intvalue);
//	 delay_ms(500);

	 sonar = ADCA0(); 		 	 //Read A/D value from PortA,
	 sonar = (sonar-300)/1;	 //normalize its reading (like in obstacleavoid())

// if (sonar > 40)
	 {
	 	 if (intvalue == 9) // If ball is on the right of field of camera view, then...
	 	 	 {	 PORTJ_OUT = crawlR;
	 	 	 	 sonar = ADCA0(); 		 //Read A/D value from PortA, Pin0 (between 0-4096)
	 	 	 	 sonar = (sonar-300)/1;	 //Sonar's smallest value was -84 at closest distance
	 	 	 	
	 	 	 	 	 if (sonar < 25) // If ball is near, then...
	 	 	 	 	 {	
	 	 	 	 	 	 PORTJ_OUT = forward;
	 	 	 	 	 	 delay_ms(120);	 	 // move forward a little bit first
	 	 	 	 	 	 PORTJ_OUT = stop;
	 	 	 	 	 	 pickupball2();
	 	 	 	 	 }
	 	 	 	
	 	 	 }

	 	 if (intvalue == 1)
	 	 	 {
	 	 	 	 PORTJ_OUT = crawlL;
	 	
	 	 	 	 sonar = ADCA0(); 		 	 //Read A/D value from PortA, Pin0 (between
0-4096)
	 	 	 	 sonar = (sonar-300)/1;	 	 	 	 	
	 	 	 	 	 if (sonar < 25)

The Baseballinator: Final Formal Report
 18

	 	 	 	 	 {	
	 	 	 	 	 	 PORTJ_OUT = forward;
	 	 	 	 	 	 delay_ms(120);	 	 // move forward a little bit first
	 	 	 	 	 	 PORTJ_OUT = stop;
	 	 	 	 	 	 	
	 	 	 	 	 	 pickupball2();
	 	 	 	 	 }
	 	 	 }

	 	 ///// " if ball is not in view, then do obstacle avoidance
	 	 if (intvalue == 2)
	 	 	 {
	 	 	 	 //// LOOK FOR BALL / OBSTACLE AVOIDANCE
	 	 	 	 PORTJ_OUT = forward;	 //initial movement is forward

	 	 	 	 sonar = ADCA0(); 	//Read A/D value from PortA, Pin0 (between 0-4096)
	 	 	 	 sonar = (sonar-300)/1;
	 	 	 	 lcdData(0x01);	 	 	 //Clear LCD
	 	 	 	 lcdString("Sonar: ");
	 	 	 	 lcdInt(sonar);

	 	 	 	 count = checksonar(sonar,count); // goes backwards and ends with rotateL

	 	 	 	 delay_ms(15);
	 	
	 	 // IR sensor code. go right if somethings on the left, go left if somethings on the right
	 	 	 	 	 ir = ADCA1();
	 	 	 	 	 ir = (ir-300)/1;
	 	 	 	 	 irr = ADCA2();
	 	 	 	 	 irr = (irr-300)/1;
	 	 	 	 	 if (ir > 2000)	 	 	 	 ///// must test value!!!
	 	 	 	 	 	 PORTJ_OUT = crawlR;

	 	 	 	 	 if (irr > 2000)
	 	 	 	 	 	 PORTJ_OUT = crawlL;
	 	
	 	 	 	 	 delay_ms(500);
	 	 	 }
	 }
}
}

Code for Computer (C++ Code in Visual Studio Express 2010):
(See the online links to see how to set up the libraries and dependencies, etc...)
/**

////	
 restart	
 computer	
 /	
 visual	
 studio
////	
 CONNECT	
 TO	
 NETWORK
////	
 PLUG	
 IN	
 XBEE	
 USB
////	
 TURN	
 ON	
 ROBOT
////	
 RUN	
 CPP	
 CODE	
 WHEN	
 BLUE	
 LIGHT	
 ON	
 CAMERA	
 STOPS	
 BLINKING

//	
 If	
 not	
 working,	
 go	
 to	
 cam	
 website,	
 user	
 password	
 might	
 be	
 admin	
 admin.	
 fixed	
 ip	
 address.	
 	
 same	
 wep	
 and	

//	
 key	
 1	
 passwordd,	
 same	
 ssid	
 (2WIRE323)

NOTES	
 on	
 IP	
 WEBCAM:	
 TopLeft	
 is	
 (0,0),	
 BottomRight	
 is	
 (318,239)ish.	
 	
 Biggest	
 Xvalue	
 is	
 318	
 on	
 the	
 far	
 right
Delay	
 Exists	
 when	
 displaying	
 video.	
 	
 Don't	
 display	
 video	
 for	
 real	
 thing!

The Baseballinator: Final Formal Report
 19

//	
 Do	
 not	
 use	
 pre-­‐compiled	
 headers!	
 	
 right	
 click	
 on	
 videoWorking

	
 *	
 Display	
 video	
 from	
 webcam,	
 filter	
 image...
	
 *	
 The	
 OpenCV	
 color	
 tracking	
 portion	
 of	
 this	
 code	
 was	
 taken	
 heavily	
 from	
 a	
 tutorial	
 online	
 at	
 aishack.com
	
 *	
 Other	
 online	
 sources	
 were	
 used	
 as	
 well...	
 see	
 website	
 for	
 details
	
 */
#include	
 "stdafx.h"
#include	
 <stdio.h>
#include	
 "cv.h"
#include	
 "highgui.h"
#include	
 "Serial.h"

using	
 namespace	
 cv;
using	
 namespace	
 std;
	

//	
 HSV	
 -­‐	
 HUE	
 (color),	
 SATURATION	
 (0	
 grey,	
 255	
 color),	
 VALUE	
 (0	
 black,	
 255	
 white)
int	
 sut=255;	
 //	
 original	
 is	
 255
int	
 slt	
 =150;	
 //	
 original	
 is	
 100
int	
 vut	
 =	
 255;	
 //	
 original	
 is	
 255
int	
 vlt=100;	
 //	
 original	
 is	
 100

int	
 hl1	
 =	
 25;
int	
 hl2	
 =	
 10;
int	
 hl3	
 =	
 15;
int	
 hl4	
 =	
 20;
int	
 hl5	
 =	
 25;
int	
 hl6	
 =	
 30;
int	
 hl7	
 =	
 35;
int	
 r	
 =	
 10;
//	
 The	
 above	
 values	
 were	
 for	
 testing	
 initially
//	
 Became	
 obsolete	
 with	
 the	
 trackbar	
 function

//	
 FOR	
 YELLOW
//	
 SO	
 FAR	
 hue	
 from	
 25	
 to	
 35	
 works	
 best	
 ...	
 sat,	
 150	
 to	
 255,	
 val	
 100	
 to	
 255	
 	
 (WINDOW	
 5)
//

//	
 FOR	
 GREEN
//	
 H(60,100),	
 S(50,255),	
 V(50,255)

int	
 g_switch_value	
 =	
 0;
int	
 filterInt	
 =	
 0;
int	
 filterInt2	
 =	
 0;
int	
 lastfilterInt	
 =	
 -­‐1;

void	
 switch_callback(
 int	
 position	
){
	
 filterInt	
 =	
 position;
}
void	
 switch_callback2(
 int	
 position	
){
	
 filterInt2	
 =	
 position;
}

////	
 Thresholding	
 Function
IplImage*	
 GetThresholdedImage1(IplImage*	
 img)
{
	
 //	
 Convert	
 the	
 image	
 into	
 an	
 HSV	
 image
	
 	
 	
 	
 IplImage*	
 imgHSV	
 =	
 cvCreateImage(cvGetSize(img),	
 8,	
 3);
	
 	
 	
 	
 cvCvtColor(img,	
 imgHSV,	
 CV_BGR2HSV);

	
 //	
 Create	
 new	
 image	
 to	
 hold	
 thresholded	
 image
	
 IplImage*	
 imgThreshed	
 =	
 cvCreateImage(cvGetSize(img),	
 8,	
 1);
	
 //	
 cvInRangeS(imgHSV,	
 cvScalar(22,	
 100,	
 100),	
 cvScalar(32,	
 255,	
 255),	
 imgThreshed);	
 //	
 apply	

//threshold	
 absolute
//	
 cvInRangeS(imgHSV,	
 cvScalar(filterInt2,	
 slt,	
 vlt),	
 cvScalar(filterInt,	
 sut,	
 vut),	
 imgThreshed);	
 //	

//apply	
 threshold	
 with	
 trackbar
	
 cvInRangeS(imgHSV,	
 cvScalar(2,	
 slt,	
 vlt),	
 cvScalar(14,	
 sut,	
 vut),	
 imgThreshed);	
 //	
 apply	
 threshold	

//ORANGE

	
 cvReleaseImage(&imgHSV);
	
 	
 	
 	
 return	
 imgThreshed;
}

The Baseballinator: Final Formal Report
 20

	
 	
 int	
 dir	
 =	
 0;

int	
 main(
 int	
 argc,	
 char	
 **argv	
)
{
	
 fprintf(
 stderr,	
 "Starting..."	
);

	
 ///////////////////////	
 Serial	
 stuff
	
 CSerial	
 serial;

	
 	
 	
 	
 //	
 Attempt	
 to	
 open	
 the	
 serial	
 port	
 (COM1)

	
 	
 	
 	
 serial.Open(_T("COM3"));
	
 fprintf(
 stderr,	
 "COM3	
 Opened..."	
);
	
 	
 	
 	
 //	
 Setup	
 the	
 serial	
 port	
 (9600,N81)	
 using	
 hardware	
 handshaking

	
 	
 	
 	
 serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1);	
 //	
 BAUD	
 RATE	

//CHANGE	
 HERE
	
 	
 	
 	
 serial.SetupHandshaking(CSerial::EHandshakeOff);
	
 fprintf(
 stderr,	
 "serial	
 has	
 been	
 set	
 up..."	
);
	
 	
 	
 	
 //	
 The	
 serial	
 port	
 is	
 now	
 ready	
 and	
 we	
 can	
 send/receive	
 data.	
 If
	
 	
 	
 	
 //	
 the	
 following	
 call	
 blocks,	
 then	
 the	
 other	
 side	
 doesn't	
 support
	
 	
 	
 	
 //	
 hardware	
 handshaking.
	
 	
 	
 	
 //	
 serial.Write("Hello	
 world");

	
 const	
 char*	
 name	
 =	
 "Filters	
 Window";
	
 	
 	
 	
 CvCapture	
 *capture	
 =	
 0;
	
 	
 	
 	
 IplImage	
 	
 *frame	
 =	
 0;
	
 	
 	
 	
 int	
 	
 	
 	
 	
 	
 	
 key	
 =	
 0;

	
 //	
 Loop	
 to	
 test	
 serial
/*	
 int	
 test	
 =	
 4;
	
 while(1)
	
 {
	
 	
 serial.Write(test);
	
 }
*/

	
 /*	
 initialize	
 camera	
 */
	
 	
 	
 	
 capture	
 =	
 cvCreateFileCapture("http://192.168.1.67/img/video.mjpeg");
	
 	
 //capture	
 =	
 cvCaptureFromCAM("http://192.168.1.67/img/video.mjpeg");	
 //	
 didn't	
 work
	

	
 	
 	
 	
 /*	
 always	
 check	
 if	
 camera	
 was	
 opened/initialized	
 */
	
 	
 	
 	
 if	
 (
 !capture	
)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 fprintf(
 stderr,	
 "Cannot!!!!!!!!!!!!!!	
 open/initialize	
 webcam!\n"	
);
	
 	
 	
 	
 	
 	
 	
 	
 return	
 1;
	
 	
 	
 	
 }
	
 fprintf(
 stderr,	
 "Camera	
 opened."	
);
	
 	
 	
 	
 /*	
 create	
 a	
 window	
 for	
 the	
 video	
 and	
 threshed	
 video*/
	
 	
 	
 	
 cvNamedWindow(
 "Video",	
 CV_WINDOW_AUTOSIZE	
);
	
 	
 	
 	
 cvNamedWindow(
 "Threshed1",	
 CV_WINDOW_AUTOSIZE	
);

	
 //	
 This	
 image	
 holds	
 the	
 "scribble"	
 data...
	
 	
 	
 	
 //	
 the	
 tracked	
 positions	
 of	
 the	
 ball
	
 	
 	
 	
 IplImage*	
 imgScribble	
 =	
 NULL;
	
 //	
 Anything	
 to	
 do	
 with	
 "scribble"	
 is	
 now	
 vestigial

	
 cvNamedWindow(
 name,	
 1	
);	
 //	
 Create	
 Trackbar	
 Window

	
 //	
 Create	
 trackbar,	
 use	
 callbacks
	
 cvCreateTrackbar(
 "MaxValHue",	
 name,	
 &g_switch_value,	
 179,	
 switch_callback	
);
	
 cvCreateTrackbar(
 "MinValHue",	
 name,	
 &g_switch_value,	
 179,	
 switch_callback2	
);	

	
 	
 	
 	
 while(
 key	
 !=	
 'q'	
)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 /*	
 get	
 a	
 frame	
 */
	
 	
 	
 	
 	
 	
 	
 	
 frame	
 =	
 cvQueryFrame(
 capture	
);
	
 	
 	
 	
 	
 	
 	
 	
 if(
 !frame	
)	
 break;	
 //	
 End	
 if	
 frame	
 not	
 found
	
 	
 	
 	
 	
 	
 	

	
 	
 	
 //	
 cvSmooth(
 frame,	
 frame,	
 CV_BLUR,	
 4,	
 4	
);	
 	
 //	
 Smooth	
 image	
 if	
 needed	
 (apply	

//blurring	
 filter	
 (moving	
 average))

The Baseballinator: Final Formal Report
 21

http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg

	
 	
 //	
 	
 cvErode(frame,	
 frame,	
 0,	
 2);	
 	
 	
 	
 //	
 Erode	
 filter	
 -­‐	
 not	
 necessary

	
 	
 //	
 If	
 this	
 is	
 the	
 first	
 frame,	
 we	
 need	
 to	
 initialize	
 it
	
 	
 	
 	
 	
 	
 	
 	
 if(imgScribble	
 ==	
 NULL)
	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 imgScribble	
 =	
 cvCreateImage(cvGetSize(frame),	
 8,	
 3);
	
 	
 	
 	
 	
 	
 	
 	
 }

	
 	
 //	
 Holds	
 the	
 yellow	
 thresholded	
 image	
 (yellow	
 =	
 white,	
 rest	
 =	
 black)
	
 	
 	
 	
 	
 	
 	
 	
 IplImage*	
 imgYellowThresh1	
 =	
 GetThresholdedImage1(frame);

	
 	

	
 	
 ////	
 Calc	
 position	
 assuming	
 its	
 the	
 only	
 thing	
 that	
 is	
 that	
 color!

	
 	
 //	
 Calculate	
 the	
 moments	
 to	
 estimate	
 the	
 position	
 of	
 the	
 ball
	
 	
 	
 	
 	
 	
 	
 	
 CvMoments	
 *moments	
 =	
 (CvMoments*)malloc(sizeof(CvMoments));
	
 	
 	
 	
 	
 	
 	
 	
 cvMoments(imgYellowThresh1,	
 moments,	
 1);
	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 The	
 actual	
 moment	
 values
	
 	
 	
 	
 	
 	
 	
 	
 double	
 moment10	
 =	
 cvGetSpatialMoment(moments,	
 1,	
 0);
	
 	
 	
 	
 	
 	
 	
 	
 double	
 moment01	
 =	
 cvGetSpatialMoment(moments,	
 0,	
 1);
	
 	
 	
 	
 	
 	
 	
 	
 double	
 area	
 =	
 cvGetCentralMoment(moments,	
 0,	
 0);

	
 	
 //	
 Holding	
 the	
 last	
 and	
 current	
 ball	
 positions	

	
 	
 	
 	
 	
 	
 	
 	
 static	
 int	
 posX	
 =	
 0;
	
 	
 	
 	
 	
 	
 	
 	
 static	
 int	
 posY	
 =	
 0;
	

	
 //	
 	
 	
 	
 	
 	
 	
 int	
 lastX	
 =	
 posX;
	
 //	
 	
 	
 	
 	
 	
 	
 int	
 lastY	
 =	
 posY;
	

	
 	
 	
 	
 	
 	
 	
 	
 posX	
 =	
 moment10/area;
	
 	
 	
 	
 	
 	
 	
 	
 posY	
 =	
 moment01/area;

	
 	
 if	
 (posX	
 >	
 160)
	
 	
 	
 dir	
 =	
 9;	
 //	
 turn	
 right

	
 	
 if	
 ((posX	
 <	
 160)	
 &	
 (posX	
 >	
 0))
	
 	
 	
 dir	
 =	
 1;	
 //	
 turn	
 left

	
 	
 if	
 (posX	
 <	
 1)
	
 	
 	
 dir	
 =	
 2;	
 //	
 don't	
 turn	
 left	
 or	
 right,	
 just	
 obstacle	
 avoid

	
 	
 serial.Write(dir);	
 //	
 Send	
 command	
 through	
 XBees	
 to	
 robot

	
 	
 //	
 Print	
 out	
 positions	
 for	
 debugging	
 purposes
	
 	
 	
 	
 	
 	
 	
 	
 printf("position	
 (%d,%d)\n",	
 posX,	
 posY);
/*	
 	

	
 	
 ////	
 Vestigial	
 line	
 drawing	
 for	
 ball	
 tracking
	
 	
 //	
 We	
 want	
 to	
 draw	
 a	
 line	
 only	
 if	
 its	
 a	
 valid	
 position
	
 	
 	
 	
 	
 	
 	
 	
 if(lastX>0	
 &&	
 lastY>0	
 &&	
 posX>0	
 &&	
 posY>0)
	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 Draw	
 a	
 yellow	
 line	
 from	
 the	
 previous	
 point	
 to	
 the	
 current	
 point
	
 	
 	
 	
 	
 	
 	
 //	
 	
 	
 	
 	
 cvLine(imgScribble,	
 cvPoint(posX,	
 posY),	
 cvPoint(lastX,	
 lastY),	
 cvScalar(0,255,255),	
 5);
	
 	
 	
 	
 	
 	
 	
 	
 }

	
 	
 //	
 Add	
 the	
 scribbling	
 image	
 and	
 the	
 frame...
	
 	
 //	
 cvAdd(frame,	
 imgScribble,	
 frame);
*/
	
 	
 	
 	
 	
 	
 	
 	
 cvShowImage("Threshed1",	
 imgYellowThresh1);
	
 	
 	
 	
 	
 	
 	
 	
 cvShowImage("Video",	
 frame);

	
 	
 	
 //	
 Wait	
 for	
 a	
 keypress
	
 	
 	
 	
 	
 	
 	
 	
 int	
 c	
 =	
 cvWaitKey(10);
	
 	
 	
 	
 	
 	
 	
 	
 if(c!=-­‐1)
	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 If	
 pressed,	
 break	
 out	
 of	
 the	
 loop
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;
	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 //	
 Release	
 the	
 thresholded	
 image+moments...	
 we	
 need	
 no	
 memory	
 leaks..	
 please
	
 	
 	
 	
 	
 	
 	
 	
 cvReleaseImage(&imgYellowThresh1);

The Baseballinator: Final Formal Report
 22

	
 	
 	
 	
 	
 	
 	
 	
 delete	
 moments;
	
 	
 	
 	
 }

	
 //	
 We're	
 done	
 using	
 the	
 camera.	
 Other	
 applications	
 can	
 now	
 use	
 it
	
 	
 	
 	
 cvReleaseCapture(&capture);
	
 	
 	
 	

	
 serial.Close();
	
 	
 	
 	
 return	
 0;
}

The Baseballinator: Final Formal Report
 23

