
Intelligent Machines Design Laboratory - EEL 5666C: Final Formal Written Report

The Baseball inator

Prepared by: Eric Bennett

April 18, 2011

Instructors:

Dr. Arroyo & Dr. Schwartz

TAs:

Sean Frucht

Ryan Stevens

Tim Martin

Josh Weaver

Devin Hughes

Opening 2

Abstract 2

Executive Summary 2

Introduction 2

Main Body 3

Integrated System 3

Mobile Platform 4

Actuation 5

Sensors 6

Behaviors 8

Experimental Layouts & Results 9

Closing 9

Conclusion 9

Documentation 10

Appendices 10

 1

Opening
Abstract	
The Baseballinator is a small, autonomous, game-playing robot. This report will outline the
design and operation of the robot. The Baseballinator locates a ball, travels toward it, picks the
ball up, and bats the ball with a small baseball bat. The robot was successful in completing these
tasks.

Executive Summary
To accomplish the task of finding a ball, The Baseballinator uses an IP Webcam to send video to
a computer. The computer analyzes the video using OpenCV software. The computer sends out
the ball direction to the robot via XBee modules. The robot homes in on the ball by adjusting its
motor commands. Once the ball is close enough, the robot lowers its arm and attempts to pick
up the ball. After this is done, a strong servo pulls the bat against a strong elastic force. The arm
lines the ball up for batting and the servo releases the bat. The ball is then hit and the cycle
repeats itself.

Introduction
To accomplish the tasks associated with finding a ball, picking it up, and batting it, while
displaying obstacle avoidance behavior, many systems had to be integrated to work together.

This report will detail The Baseballinator’s design. This report starts with a high level
description of the entire integrated system. It will move on to the specifics about the mobile
platform. After this, there are sections describing the methods of actuation and sensing including
circuit diagrams, justification for design decisions, and part characteristics.

Background and Similar Work: Autonomous toys are an attractive product. They allow kids to
play in an interactive way with their toy while exposing them to the capabilities of technology
for producing intelligent behavior. The Baseballinator allows kids to play the role of outfielder
while the robot plays the role of batter and ball fetcher. There have been robots built to do
similar things. For instance, Frank Barnes has created the Headless Batter which is a human
sized construction of motors and arms. His device detects a high speed pitch of a real baseball
and bats it. However, the Headless Batter cannot move anywhere, and has very high power
requirements. Another robot built by researchers at Tokyo University have developed a robot
that can bat slow pitches and direct the ball to land in a basket with high accuracy. This robot is
also immobile. The Baseballinator is different in a few key aspects. Firstly, The Baseballinator
is mobile. Therefore, it can be placed near the playing area and it will find its way to where it
needs to go. Secondly, The Baseballinator can fetch the ball. Thirdly, this is meant to be a
playmate for kids. And lastly, The Baseballinator has lower power requirements and is
completely wireless - running off of the onboard batteries.

The Baseballinator: Final Formal Report 2

Main Body
Integrated System

The total integrated system consists of sensors, actuators, batteries, the LCD, and the XBees - all
centered around the microcontroller as seen in the diagram below.

The six batteries used to power the PVR microcontroller were 1.2V AA batteries (connected in
series). The LCD, each servo, each motor, each sensor, the webcam and XBee 2 were all
powered from the microcontroller outputs.

The IR and sonar sensors were used for obstacle avoidance. The sonar sensor was also used to
detect the proximity of the ball. The webcam was powered by the board, and sent its video to the
computer. The computer analyzes the video and sends a character through XBee 1 to XBee 2
informing the robot to either move left or right. The LCD was used to display what part of the
algorithm the robot was in for help in debugging.

The Baseballinator: Final Formal Report 3

Mobile Platform

The final mobile platform with all components looked like the picture below. The platform is
made of one single piece of thin wood. The gripper is made of the same wood. All of the wood
was spray painted black. The LCD, bat support, camera support, and servo support are all

screwed into place. The gripper servos were jammed into place to allow quick changes in
positioning during prototyping (to save the time required for screwing and unscrewing them).
The robot has 2 wheels with motors screwed into place near the front of the robot. There is a ball
caster on the rear end of the robot with its height adapted for use with the robot.

The bat is angled at 45 degrees. When it comes time to hit the ball out of the gripper, the gripper
arm also moves to 45 degrees as well.

The wood platform was first designed in AutoDesk Inventor and later cut with the T-Tech
machine in the IMDL room. The gripper and many mounting holes were cut later as needed.
Most of the electronic hardware was fit on the underside of the platform as seen in the picture
below. The LCD, sonar, and motors can be seen on the left. The microcontroller and XBee
module can be seen in the middle of the picture. The battery pack, motor driver, and caster can

The Baseballinator: Final Formal Report 4

be seen on the right. The IR sensors are on the top side of the figure on either side of the LCD
and can be seen in the previous picture.

Actuation
Many actuators were used for motion required for the robot.

Two DC motors (controlled with a motor driver) were
used to rotate the wheels. The DC motors were part of the
EZR1 kit from Solutions Cubed. The motor driver was
the Roboblock Dual DC
Motor Controller featuring
the L298H Bridge motor
driver.

The Baseballinator: Final Formal Report 5

For the gripper arm, 2 servos were needed. The servo used to move the arm from the ground to
batting position was a 180 degree servo. The second servo was a 90 degree servo needed to pull
a string to open the gripper arm. Both of these servos were HiTEC’s HS-311 servo.

For gripping, once the ball is found and is in close proximity
in front of the robot, the arm sequence is as follows. First,
the arm is lowered to an angle above ground. Then the
string servo pulls the gripper’s string to open the grippers
arm. Then the gripper lowers itself to ground level while the
robot makes a turn to the right (in order to ensure the ball is
picked up in the right position on the left of the gripper).
The gripper closes and quickly raises the ball above the
camera. The bat servo pulls the bat back and the gripper
moves to 45 degrees. The bat servo pulls the bat even further
after this point and once it goes “too far” the bat is released and bats the ball. The servos then go

to default positions.

The HS-805BB servo was used to pull the bat back. This servo was chosen
for its high torque enabling it to pull the bat back against a stronger elastic
force. This servo was also 180 degrees enabled.

Although not an actuator, for the sake of completeness, the LCD that was
used was the Basic 16x2 Character LCD.

Sensors
Many sensors were needed in order for the robot to successfully implement the desired tasks.

The Cisco Wireless IP Webcam (by Linksys) was used for video feed.
The Ad-Hoc mode allowed the camera to send its video to the
computer directly, but the signal was far too weak. Because of this,
the video was first sent to a router, then to the computer.

The computer was a 2.4 GHz Intel Core i5 MacBook Pro running
Windows 7. Video was processed in Visual Express 2010 (C++) and
utilized OpenCV software for video analysis. The software was made
to convert the RGB frames from the video to HSV. After this, the
frame would be thresholded in the saturation and value fields. The
Hue value was also thresholded, but was able to be adjusted by the
user in real-time as the video is being processed to allow for quick
testing to see what values work best to new environments. For demo

The Baseballinator: Final Formal Report 6

day in NEB, orange seemed to work best. The Hue minimum and maximum threshold values
were set to 2 and 14 (orange) respectively for the demo.

The C++ code then uses moments to detect the position of the thresholded binary image (which
would contain only the orange ball in the receptive field). The x coordinate (in terms of pixels)
was used to determine whether the robot should turn left or right to adjust itself to move towards
the ball. If no ball was detected, the robot was meant to just stay in obstacle avoidance mode.
To implement this, 4 characters were needed to be sent from the computer to the robot. The first
indicates standby mode. The second and third indicate motion to the left and right, respectively.
The fourth indicated movement forward. The XBee modules were used to send and receive
these characters.

The image above shows the software detecting color. Orange is not shown, but is what ended up
working best.

The Baseballinator: Final Formal Report 7

Information is sent from the computer to the robot via RF
XBee Modules. These devices were chosen due to their
simplicity in setup and functionality. Two XBee 1mW
Chip Antenna were used in conjunction with a USB dongle
and Explorer Regulated breakout board.

Two Sharp GP2D120 IR Range
Sensors were used to assist in
obstacle avoidance. These
sensors had a range of 4 to 30
centimeters. Precise calibration and characterization of these was not
necessary since all that was needed from these was to detect if an
object was within 10 cm. If the threshold output voltage was reached,
the microcontroller simply sent a command to turn away from that
direction for a small amount of time.

The Ultrasonic Range Finer - XL-Maxsonar EZ3 was used for
obstacle avoidance and for detecting the proximity of the ball to be
picked up. The analog output voltage was used to transmit the
proximity data. This particular sonar sensor has a smaller beam
width than similar sonar sensors. This was chosen since the robot
needed to know the precise location of the ball to be picked up.

Behaviors
The robot is required to perform a variety of tasks. The flow
diagram below shows these tasks and the way they are chosen to be executed.

The Baseballinator: Final Formal Report 8

In the above diagram, obstacle avoidance consists of driving in a straight line while monitoring
the IR and sonar sensors. Once an orange ball is detected in the field of view, the robot adjusts
its motors to center the orange object to the center of the camera’s view. The robot would grip
the ball and bat it once the sonar detected the ball was within a certain distance and the cycle
would repeat itself.

Experimental Layouts & Results
The robot was successful in obstacle avoidance and the task of homing in on an orange ball,
picking it up and batting it. A few minor details made it less efficient. For instance, there existed
a delay in the video feed. Because of this delay, the robot would oscillate left and right at a
frequency equal to the inverse of the delay while homing in on the ball. This is because once the
camera has centered itself on the orange ball, the robot keeps on turning because it still sees the
need to rotate because the computer is still processing old frames in which the ball is still not
centered. This caused the ball to fall out of sight initially. A quick fix was to slow the motors
down keeping the amplitude of the oscillations low.

Another drawback was that the main batting servo was not strong enough to pull the bat back
when battery power was not at its maximum (when the batteries had just been charged). To
remedy this, the gripper servo was made to push the gripper into the batting servo’s arm to assist
in pushing the bat backwards. The elastics were also loosened resulting in the ball not being
batted as far as could be on fresh batteries. The batteries could only supply enough power for a
few minutes - after that, everything would still work fine, but the batting servo would not be able
to be pulled all the way back against the elastics by itself. When it could, the ball could be batted
to eye-level height.

For ball recognition, the code depended on the color of the ball and not the shape. This meant
that the orange ball had to be the only orange object in the field of view - or at least represent
80% of the pixels in the camera’s field of view. The robot would sometimes try to home in on
some far away object, such as an orange juice container (like in the demo). The camera was
angled downwards to minimize cases where students would be wearing an orange shirt. In the
end, this was not much of a problem.

Closing
Conclusion
The Baseballinator was a successful robot prototype. Obstacle avoidance, as well as finding,
gripping, and batting balls were performed well. A few drawbacks such as delay, and the way
balls were recognized made the robot’s sequence of actions less robust, however, under demo
conditions, the robot executed its tasks reasonably.

The Baseballinator: Final Formal Report 9

Future work would include building a robot that can bat a real baseball ball pitched to it, throw/
pitch a baseball, and to also catch a ball thrown to it in uncontrolled conditions seen in real
baseball.

Documentation

Please see the website (https://sites.google.com/site/imdlautomatedrobotproject/) for datasheets
and resources used.

Appendices

Send me an email if you have any questions about this project. ericbennett@ufl.edu

Code for PVR (C code):

#include <avr/io.h>
#include "avr_compiler.h"
#include "usart_driver.h"
#include "PVR.h"
#include <stdio.h>
#include "stdlib.h"

#define USART USARTF0
#define USART_BAUD 11500
#define SERIAL_UBBRVAL(baud) ((((F_CPU / 16) + (baud / 2)) / (baud)) - 1)

#define SAMPLE_SIZE 32
USART_data_t USART_data;

// Global Variables!
int sonarThresh = 70;
int countThresh = 2;
int forward = 0b11000011;
int backward = 0b11000000;
int rotateL = 0b11000010;
int rotateR = 0b11000001;
int crawlR = 0b10000001;
int crawlL = 0b01000010;
int stop = 0b00000000;
	
	 // Servo Assignments//
	 // C0 is ARM
	 // C1 is CAMERA
	 // C2 is STRING
	 // C3 is bat mover

int initialdelay = 2000;
int servodelay = 25;
int servodelaydown = 6;
int servodelayopen = 5;
int servodelaybat = 10;

The Baseballinator: Final Formal Report 10

mailto:ericbennett@ufl.edu
mailto:ericbennett@ufl.edu

int flag = 1;
int batservoinitial = 0;
int battingangle = 45;
int zeroangle = 0;

////////////// FUNCTIONS ////////////

// Note: should have made a servodelay(int delay) function
void arm_ground_to_batting()
{
	 int k = 0 ;
	
	 for (k=-90; k<40; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_ground_to_zero()
{
	 int k = 0 ;
	
	 for (k=-90; k<zeroangle; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_zero_to_batting()
{
	 int k = 0 ;
	
	 for (k=zeroangle; k<battingangle; k++)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }

}

void arm_zero_to_ground()
{
	 int k = 0 ;
	 for (k=zeroangle; k>-89; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelay);
	 }
}

void arm_batting_to_almost_ground()
{
	 int k = 0 ;

The Baseballinator: Final Formal Report 11

	 for (k=24; k>-60; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_batting_to_zero()
{
	 int k = 0 ;
	 for (k=24; k>zeroangle; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_almost_ground_to_ground()
{
	 int k = 0 ;
	 for (k=-60; k>-100; k=k-1)
	 {
	 	 ServoC0(k);
	 	 delay_ms(servodelaydown);
	 }
}

void arm_zero_to_almost_ground()
{
	 int k = 0 ;
	 for (k=zeroangle; k>-60; k=k-1)
	 {
	 ServoC0(k);
	 delay_ms(servodelaydown);
	 }
}

void bat_zero_to_minus()
{
	 int k = 0 ;
	 for (k=0; k>-100; k=k-1)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_minus_to_plus()
{
	 int k = 0 ;
	 for (k=-100; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_minus_to_zero()

The Baseballinator: Final Formal Report 12

{
	 int k = 0 ;
	 for (k=-100; k<0; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_zero_to_half_plus()
{
	 int k = 0 ;
	 for (k=0; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_zero_to_plus()
{
	 int k = 0 ;
	 for (k=0; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_half_plus_to_plus()
{
	 int k = 0 ;
	 for (k=80; k<100; k++)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void bat_plus_to_zero()
{
	 int k = 0 ;
	 for (k=100; k>0; k=k-1)
	 {
	 	 ServoC3(k);
	 	 delay_ms(servodelaybat);
	 }
}

void arm_open()
{
	 int k = 0 ;
	 for (k=100; k>-100; k=k-1)
	 {
	 	 ServoC2(k);

The Baseballinator: Final Formal Report 13

	 	 delay_ms(servodelayopen);
	 }
}
	

void arm_close()
{	
	 PORTJ_OUT = forward;
	 delay_ms(200);
	 PORTJ_OUT = crawlR;
	 delay_ms(200);
	 int k = 0 ;
	 for (k=-100; k<100; k++)
	 {
	 	 ServoC2(k);
	 	 delay_ms(servodelayopen);
	 }
	 PORTJ_OUT = stop;
}

void backup()
{
	 	 PORTJ_OUT = backward;
	 	 delay_ms(400);
}

void rotateLeft()
{
	 	 PORTJ_OUT = rotateL;
	 	 delay_ms(700);
}

 // Compares sonar reading to threshold. Reacts if triggered more than ‘count’
int checksonar(int sonar,int count)
{
	 if (sonar < sonarThresh)
	 	 count=count+1;

	 lcdGoto(1,1);
	 lcdInt(count);

	 if (count > countThresh)
	 {
	 	 backup();
	 	 rotateLeft();
	 	 count=0;
	 }

	 return(count);
}

void pickupball2() ///This is the algorithm to pick up a ball with the arm and bat it
{
	 	 arm_zero_to_almost_ground();
	 	 arm_open(); // maybe open arm while going down.
	 	 ServoC3(30);

The Baseballinator: Final Formal Report 14

	 	
	 	 arm_almost_ground_to_ground();
	 	 arm_close();
	 	 ServoC3(-10);
	 	
	 	 arm_ground_to_zero();
	 	 delay_ms(400);
	 	 ServoC0(-100); //To help Batter pull back
	 	
	 	 ServoC3(-45);
	 	 arm_zero_to_batting();
	 	 delay_ms(1000);

	 //	 PORTJ_OUT = rotateR;
	 //	 delay_ms(1500);
	 //	 PORTJ_OUT = stop;

	 	 ServoC3(-100);
	 	 delay_ms(400);
	
	 	 arm_batting_to_zero();
	 	 ServoC3(0);
}

/////// Serial Code Stuff (Thanks Steven + Internet)

void usart_initialize(void)
{
	 //pin 3 output
	 PORTF.DIRSET = PIN3_bm;
	 //pin2 input
	 PORTF.DIRCLR = PIN2_bm;
//	 USART_InterruptDriver_Initialize(&USART_data, &USART, USART_DREINTLVL(3));
	 //usartc0, 8 data bits, no parity, 1 stop bit
	 USART_Format_Set(&USART, USART_CHSIZE_8BIT_gc, USART_PMODE_DISABLED_gc, false);
	 //ENABLE INTERRUPT
//	 USART_RxdInterruptLevel_Set(USART_data.usart, USART_RXCINTLVL(3));
	 //set baud rate
	 USART_Baudrate_Set(&USART, 17, 0);

	 //ENABLE RX AND TX
	 USART_Rx_Enable(&USART);
	 USART_Tx_Enable(&USART);
	 //Enabel PMIC Interrupt level low
	 //PMIC.CTRL |= PCMIC_LOLVLEX_bm;

	 //enable global interrupts
	 //sei();
}

inline void usart_tx_byte(char DataByte)
{
	 int txrxVal = 0;

	 while(1)
	 {
	 	 txrxVal = USARTF0_STATUS;

The Baseballinator: Final Formal Report 15

	 	 txrxVal &= 0x20;;
	 	 if(txrxVal == 0x20)
	 	 {
	 	 	 USARTF0_DATA = DataByte;
	 	 	 break;
	 	 }
	 }
}

inline void usart_tx_string(char *StringPtr)
{
	 int i = 0;
	 while(StringPtr[i] != 0) //while not null terminator
	 {
	 	 usart_tx_byte(StringPtr[i]);
	 	 i++;
	 }
}

inline char usart_rx_byte(void)	 	 	
{
	 	 int txrxVal = USARTF0_STATUS;
	 	 txrxVal &= 0x80;
	 	 char data;
	 if(txrxVal == 0x80)
	 	 {
	 	 	 data = USARTF0_DATA;
	 	 }
	 	 else
	 	 {
	 	 	 data = 0;
	 	 }
	 	 return data;
}

///////////////////////////////// !!! MAIN LOOP MAIN LOOP !!! //////////////////////////
int main(void)
{
	 xmegaInit();	 //setup XMega
	 delayInit();	 //setup delay functions
	 ServoCInit();	 //setup PORTC Servos
	 ServoDInit();	 //setup PORTD Servos
	 ADCAInit();	 	 //setup PORTA analong readings
	 lcdInit();	 	 	 //setup LCD on PORTK
	 lcdString("PV Robotics");	 //display "PV Robotics" on top line (Line 0) of LCD
	 lcdGoto(1,0);	 	 //move LCD cursor to the second line (Line 1) of LCD
	 lcdString("Board Demo");	 //display "Board Demo" on second line
	 PORTQ_DIR |= 0xFF;	 //set Q0 (LED) as output
	 PORTJ_DIR |= 0xFF;	 //set port F as output
	
// variables for main loop
	 int i = -100;
	 int value = 0;
	 int sonar = 0;
	 int count = 0;
	 int ob_avoid = 0;

The Baseballinator: Final Formal Report 16

	
// Set initial conditions
 PORTJ_OUT = stop;
	 ServoC0(0);
	 //ServoC0(45);
	 ServoC2(100);
	 ServoC3(batservoinitial);
	 delay_ms(initialdelay);
	 usart_initialize(); //

	 delay_ms(3000);
//	 pickupball(); // for testing

char avalue;
//int avalue = 0;
int intvalue;
int posx = 0;

int addthis = 4;
int kk=22;

//while(1) // for testing
//{
//lcdData(0x01);	 //Clear LCD

//lcdInt(kk);
//ServoC0(kk);
//kk=kk+1;
//delay_ms(3000);
//}

//// Make sure batting arm and grabber don't interfere with eachother
ServoC0(-45);
ServoC3(45);
delay_ms(500);
ServoC3(10);
delay_ms(200);
ServoC0(0);

int ir = 0;
int irr = 0;

// while(1) // test the IR sensors
{
	 lcdData(0x01);
//	 lcdString("IR: ");
	 ir = ADCA1();
	 irr = ADCA2();
	 ir = (ir-300)/1;
	 irr = (irr-300)/1;

	 lcdInt(ir);
	 lcdString(" ");
	 lcdInt(irr);

	 delay_ms(300);

}

The Baseballinator: Final Formal Report 17

// pickupball2(); // for testing

while(1)
{
// uncomment and loop to test xbee communication and character display
 // lcdInt(i);
//	 i++;
	
	 lcdData(0x01);	 	 	 //Clear LCD
//	 lcdInt(i);
//	 delay_ms(500);
	 avalue = usart_rx_byte();
//	 lcdChar(avalue);
//	 delay_ms(500);
//	 if (avalue == 'g' || avalue == 'G')	
//	 {	 lcdString(avalue);	 	 // testing the output - displaying it to the LCD
//	 }
//	 delay_ms(500);
///	 lcdInt(avalue);
//	 delay_ms(500);
//	 intvalue = atoi(avalue); // atoi seems to mess things up. results in no output to LCD
	 intvalue = avalue - '0';
//	 intvalue = intvalue + addthis;
//	 lcdData(0x01);	 	 	 //Clear LCD
	 lcdInt(intvalue);
//	 delay_ms(500);

	 sonar = ADCA0(); 		 	 //Read A/D value from PortA,
	 sonar = (sonar-300)/1;	 //normalize its reading (like in obstacleavoid())

// if (sonar > 40)
	 {
	 	 if (intvalue == 9) // If ball is on the right of field of camera view, then...
	 	 	 {	 PORTJ_OUT = crawlR;
	 	 	 	 sonar = ADCA0(); 		 //Read A/D value from PortA, Pin0 (between 0-4096)
	 	 	 	 sonar = (sonar-300)/1;	 //Sonar's smallest value was -84 at closest distance
	 	 	 	
	 	 	 	 	 if (sonar < 25) // If ball is near, then...
	 	 	 	 	 {	
	 	 	 	 	 	 PORTJ_OUT = forward;
	 	 	 	 	 	 delay_ms(120);	 	 // move forward a little bit first
	 	 	 	 	 	 PORTJ_OUT = stop;
	 	 	 	 	 	 pickupball2();
	 	 	 	 	 }
	 	 	 	
	 	 	 }

	 	 if (intvalue == 1)
	 	 	 {
	 	 	 	 PORTJ_OUT = crawlL;
	 	
	 	 	 	 sonar = ADCA0(); 		 	 //Read A/D value from PortA, Pin0 (between
0-4096)
	 	 	 	 sonar = (sonar-300)/1;	 	 	 	 	
	 	 	 	 	 if (sonar < 25)

The Baseballinator: Final Formal Report 18

	 	 	 	 	 {	
	 	 	 	 	 	 PORTJ_OUT = forward;
	 	 	 	 	 	 delay_ms(120);	 	 // move forward a little bit first
	 	 	 	 	 	 PORTJ_OUT = stop;
	 	 	 	 	 	 	
	 	 	 	 	 	 pickupball2();
	 	 	 	 	 }
	 	 	 }

	 	 ///// " if ball is not in view, then do obstacle avoidance
	 	 if (intvalue == 2)
	 	 	 {
	 	 	 	 //// LOOK FOR BALL / OBSTACLE AVOIDANCE
	 	 	 	 PORTJ_OUT = forward;	 //initial movement is forward

	 	 	 	 sonar = ADCA0(); 	//Read A/D value from PortA, Pin0 (between 0-4096)
	 	 	 	 sonar = (sonar-300)/1;
	 	 	 	 lcdData(0x01);	 	 	 //Clear LCD
	 	 	 	 lcdString("Sonar: ");
	 	 	 	 lcdInt(sonar);

	 	 	 	 count = checksonar(sonar,count); // goes backwards and ends with rotateL

	 	 	 	 delay_ms(15);
	 	
	 	 // IR sensor code. go right if somethings on the left, go left if somethings on the right
	 	 	 	 	 ir = ADCA1();
	 	 	 	 	 ir = (ir-300)/1;
	 	 	 	 	 irr = ADCA2();
	 	 	 	 	 irr = (irr-300)/1;
	 	 	 	 	 if (ir > 2000)	 	 	 	 ///// must test value!!!
	 	 	 	 	 	 PORTJ_OUT = crawlR;

	 	 	 	 	 if (irr > 2000)
	 	 	 	 	 	 PORTJ_OUT = crawlL;
	 	
	 	 	 	 	 delay_ms(500);
	 	 	 }
	 }
}
}

Code for Computer (C++ Code in Visual Studio Express 2010):
(See the online links to see how to set up the libraries and dependencies, etc...)
/**

////	 restart	 computer	 /	 visual	 studio
////	 CONNECT	 TO	 NETWORK
////	 PLUG	 IN	 XBEE	 USB
////	 TURN	 ON	 ROBOT
////	 RUN	 CPP	 CODE	 WHEN	 BLUE	 LIGHT	 ON	 CAMERA	 STOPS	 BLINKING

//	 If	 not	 working,	 go	 to	 cam	 website,	 user	 password	 might	 be	 admin	 admin.	 fixed	 ip	 address.	 	 same	 wep	 and	
//	 key	 1	 passwordd,	 same	 ssid	 (2WIRE323)

NOTES	 on	 IP	 WEBCAM:	 TopLeft	 is	 (0,0),	 BottomRight	 is	 (318,239)ish.	 	 Biggest	 Xvalue	 is	 318	 on	 the	 far	 right
Delay	 Exists	 when	 displaying	 video.	 	 Don't	 display	 video	 for	 real	 thing!

The Baseballinator: Final Formal Report 19

//	 Do	 not	 use	 pre-‐compiled	 headers!	 	 right	 click	 on	 videoWorking

	 *	 Display	 video	 from	 webcam,	 filter	 image...
	 *	 The	 OpenCV	 color	 tracking	 portion	 of	 this	 code	 was	 taken	 heavily	 from	 a	 tutorial	 online	 at	 aishack.com
	 *	 Other	 online	 sources	 were	 used	 as	 well...	 see	 website	 for	 details
	 */
#include	 "stdafx.h"
#include	 <stdio.h>
#include	 "cv.h"
#include	 "highgui.h"
#include	 "Serial.h"

using	 namespace	 cv;
using	 namespace	 std;
	
//	 HSV	 -‐	 HUE	 (color),	 SATURATION	 (0	 grey,	 255	 color),	 VALUE	 (0	 black,	 255	 white)
int	 sut=255;	 //	 original	 is	 255
int	 slt	 =150;	 //	 original	 is	 100
int	 vut	 =	 255;	 //	 original	 is	 255
int	 vlt=100;	 //	 original	 is	 100

int	 hl1	 =	 25;
int	 hl2	 =	 10;
int	 hl3	 =	 15;
int	 hl4	 =	 20;
int	 hl5	 =	 25;
int	 hl6	 =	 30;
int	 hl7	 =	 35;
int	 r	 =	 10;
//	 The	 above	 values	 were	 for	 testing	 initially
//	 Became	 obsolete	 with	 the	 trackbar	 function

//	 FOR	 YELLOW
//	 SO	 FAR	 hue	 from	 25	 to	 35	 works	 best	 ...	 sat,	 150	 to	 255,	 val	 100	 to	 255	 	 (WINDOW	 5)
//

//	 FOR	 GREEN
//	 H(60,100),	 S(50,255),	 V(50,255)

int	 g_switch_value	 =	 0;
int	 filterInt	 =	 0;
int	 filterInt2	 =	 0;
int	 lastfilterInt	 =	 -‐1;

void	 switch_callback(int	 position){
	 filterInt	 =	 position;
}
void	 switch_callback2(int	 position){
	 filterInt2	 =	 position;
}

////	 Thresholding	 Function
IplImage*	 GetThresholdedImage1(IplImage*	 img)
{
	 //	 Convert	 the	 image	 into	 an	 HSV	 image
	 	 	 	 IplImage*	 imgHSV	 =	 cvCreateImage(cvGetSize(img),	 8,	 3);
	 	 	 	 cvCvtColor(img,	 imgHSV,	 CV_BGR2HSV);

	 //	 Create	 new	 image	 to	 hold	 thresholded	 image
	 IplImage*	 imgThreshed	 =	 cvCreateImage(cvGetSize(img),	 8,	 1);
	 //	 cvInRangeS(imgHSV,	 cvScalar(22,	 100,	 100),	 cvScalar(32,	 255,	 255),	 imgThreshed);	 //	 apply	
//threshold	 absolute
//	 cvInRangeS(imgHSV,	 cvScalar(filterInt2,	 slt,	 vlt),	 cvScalar(filterInt,	 sut,	 vut),	 imgThreshed);	 //	
//apply	 threshold	 with	 trackbar
	 cvInRangeS(imgHSV,	 cvScalar(2,	 slt,	 vlt),	 cvScalar(14,	 sut,	 vut),	 imgThreshed);	 //	 apply	 threshold	
//ORANGE

	 cvReleaseImage(&imgHSV);
	 	 	 	 return	 imgThreshed;
}

The Baseballinator: Final Formal Report 20

	 	 int	 dir	 =	 0;

int	 main(int	 argc,	 char	 **argv)
{
	 fprintf(stderr,	 "Starting...");

	 ///////////////////////	 Serial	 stuff
	 CSerial	 serial;

	 	 	 	 //	 Attempt	 to	 open	 the	 serial	 port	 (COM1)

	 	 	 	 serial.Open(_T("COM3"));
	 fprintf(stderr,	 "COM3	 Opened...");
	 	 	 	 //	 Setup	 the	 serial	 port	 (9600,N81)	 using	 hardware	 handshaking

	 	 	 	 serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1);	 //	 BAUD	 RATE	
//CHANGE	 HERE
	 	 	 	 serial.SetupHandshaking(CSerial::EHandshakeOff);
	 fprintf(stderr,	 "serial	 has	 been	 set	 up...");
	 	 	 	 //	 The	 serial	 port	 is	 now	 ready	 and	 we	 can	 send/receive	 data.	 If
	 	 	 	 //	 the	 following	 call	 blocks,	 then	 the	 other	 side	 doesn't	 support
	 	 	 	 //	 hardware	 handshaking.
	 	 	 	 //	 serial.Write("Hello	 world");

	 const	 char*	 name	 =	 "Filters	 Window";
	 	 	 	 CvCapture	 *capture	 =	 0;
	 	 	 	 IplImage	 	 *frame	 =	 0;
	 	 	 	 int	 	 	 	 	 	 	 key	 =	 0;

	 //	 Loop	 to	 test	 serial
/*	 int	 test	 =	 4;
	 while(1)
	 {
	 	 serial.Write(test);
	 }
*/

	 /*	 initialize	 camera	 */
	 	 	 	 capture	 =	 cvCreateFileCapture("http://192.168.1.67/img/video.mjpeg");
	 	 //capture	 =	 cvCaptureFromCAM("http://192.168.1.67/img/video.mjpeg");	 //	 didn't	 work
	
	 	 	 	 /*	 always	 check	 if	 camera	 was	 opened/initialized	 */
	 	 	 	 if	 (!capture)	 {
	 	 	 	 	 	 	 	 fprintf(stderr,	 "Cannot!!!!!!!!!!!!!!	 open/initialize	 webcam!\n");
	 	 	 	 	 	 	 	 return	 1;
	 	 	 	 }
	 fprintf(stderr,	 "Camera	 opened.");
	 	 	 	 /*	 create	 a	 window	 for	 the	 video	 and	 threshed	 video*/
	 	 	 	 cvNamedWindow("Video",	 CV_WINDOW_AUTOSIZE);
	 	 	 	 cvNamedWindow("Threshed1",	 CV_WINDOW_AUTOSIZE);

	 //	 This	 image	 holds	 the	 "scribble"	 data...
	 	 	 	 //	 the	 tracked	 positions	 of	 the	 ball
	 	 	 	 IplImage*	 imgScribble	 =	 NULL;
	 //	 Anything	 to	 do	 with	 "scribble"	 is	 now	 vestigial

	 cvNamedWindow(name,	 1);	 //	 Create	 Trackbar	 Window

	 //	 Create	 trackbar,	 use	 callbacks
	 cvCreateTrackbar("MaxValHue",	 name,	 &g_switch_value,	 179,	 switch_callback);
	 cvCreateTrackbar("MinValHue",	 name,	 &g_switch_value,	 179,	 switch_callback2);	

	 	 	 	 while(key	 !=	 'q')	 {
	 	 	 	 	 	 	 	 /*	 get	 a	 frame	 */
	 	 	 	 	 	 	 	 frame	 =	 cvQueryFrame(capture);
	 	 	 	 	 	 	 	 if(!frame)	 break;	 //	 End	 if	 frame	 not	 found
	 	 	 	 	 	 	
	 	 	 //	 cvSmooth(frame,	 frame,	 CV_BLUR,	 4,	 4);	 	 //	 Smooth	 image	 if	 needed	 (apply	
//blurring	 filter	 (moving	 average))

The Baseballinator: Final Formal Report 21

http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg
http://192.168.1.67/img/video.mjpeg

	 	 //	 	 cvErode(frame,	 frame,	 0,	 2);	 	 	 	 //	 Erode	 filter	 -‐	 not	 necessary

	 	 //	 If	 this	 is	 the	 first	 frame,	 we	 need	 to	 initialize	 it
	 	 	 	 	 	 	 	 if(imgScribble	 ==	 NULL)
	 	 	 	 	 	 	 	 {
	 	 	 	 	 	 	 	 	 	 	 	 imgScribble	 =	 cvCreateImage(cvGetSize(frame),	 8,	 3);
	 	 	 	 	 	 	 	 }

	 	 //	 Holds	 the	 yellow	 thresholded	 image	 (yellow	 =	 white,	 rest	 =	 black)
	 	 	 	 	 	 	 	 IplImage*	 imgYellowThresh1	 =	 GetThresholdedImage1(frame);

	 	
	 	 ////	 Calc	 position	 assuming	 its	 the	 only	 thing	 that	 is	 that	 color!

	 	 //	 Calculate	 the	 moments	 to	 estimate	 the	 position	 of	 the	 ball
	 	 	 	 	 	 	 	 CvMoments	 *moments	 =	 (CvMoments*)malloc(sizeof(CvMoments));
	 	 	 	 	 	 	 	 cvMoments(imgYellowThresh1,	 moments,	 1);
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 //	 The	 actual	 moment	 values
	 	 	 	 	 	 	 	 double	 moment10	 =	 cvGetSpatialMoment(moments,	 1,	 0);
	 	 	 	 	 	 	 	 double	 moment01	 =	 cvGetSpatialMoment(moments,	 0,	 1);
	 	 	 	 	 	 	 	 double	 area	 =	 cvGetCentralMoment(moments,	 0,	 0);

	 	 //	 Holding	 the	 last	 and	 current	 ball	 positions	
	 	 	 	 	 	 	 	 static	 int	 posX	 =	 0;
	 	 	 	 	 	 	 	 static	 int	 posY	 =	 0;
	
	 //	 	 	 	 	 	 	 int	 lastX	 =	 posX;
	 //	 	 	 	 	 	 	 int	 lastY	 =	 posY;
	
	 	 	 	 	 	 	 	 posX	 =	 moment10/area;
	 	 	 	 	 	 	 	 posY	 =	 moment01/area;

	 	 if	 (posX	 >	 160)
	 	 	 dir	 =	 9;	 //	 turn	 right

	 	 if	 ((posX	 <	 160)	 &	 (posX	 >	 0))
	 	 	 dir	 =	 1;	 //	 turn	 left

	 	 if	 (posX	 <	 1)
	 	 	 dir	 =	 2;	 //	 don't	 turn	 left	 or	 right,	 just	 obstacle	 avoid

	 	 serial.Write(dir);	 //	 Send	 command	 through	 XBees	 to	 robot

	 	 //	 Print	 out	 positions	 for	 debugging	 purposes
	 	 	 	 	 	 	 	 printf("position	 (%d,%d)\n",	 posX,	 posY);
/*	 	
	 	 ////	 Vestigial	 line	 drawing	 for	 ball	 tracking
	 	 //	 We	 want	 to	 draw	 a	 line	 only	 if	 its	 a	 valid	 position
	 	 	 	 	 	 	 	 if(lastX>0	 &&	 lastY>0	 &&	 posX>0	 &&	 posY>0)
	 	 	 	 	 	 	 	 {
	 	 	 	 	 	 	 	 	 	 	 	 //	 Draw	 a	 yellow	 line	 from	 the	 previous	 point	 to	 the	 current	 point
	 	 	 	 	 	 	 //	 	 	 	 	 cvLine(imgScribble,	 cvPoint(posX,	 posY),	 cvPoint(lastX,	 lastY),	 cvScalar(0,255,255),	 5);
	 	 	 	 	 	 	 	 }

	 	 //	 Add	 the	 scribbling	 image	 and	 the	 frame...
	 	 //	 cvAdd(frame,	 imgScribble,	 frame);
*/
	 	 	 	 	 	 	 	 cvShowImage("Threshed1",	 imgYellowThresh1);
	 	 	 	 	 	 	 	 cvShowImage("Video",	 frame);

	 	 	 //	 Wait	 for	 a	 keypress
	 	 	 	 	 	 	 	 int	 c	 =	 cvWaitKey(10);
	 	 	 	 	 	 	 	 if(c!=-‐1)
	 	 	 	 	 	 	 	 {
	 	 	 	 	 	 	 	 	 	 	 	 //	 If	 pressed,	 break	 out	 of	 the	 loop
	 	 	 	 	 	 	 	 	 	 	 	 break;
	 	 	 	 	 	 	 	 }
	 	 //	 Release	 the	 thresholded	 image+moments...	 we	 need	 no	 memory	 leaks..	 please
	 	 	 	 	 	 	 	 cvReleaseImage(&imgYellowThresh1);

The Baseballinator: Final Formal Report 22

	 	 	 	 	 	 	 	 delete	 moments;
	 	 	 	 }

	 //	 We're	 done	 using	 the	 camera.	 Other	 applications	 can	 now	 use	 it
	 	 	 	 cvReleaseCapture(&capture);
	 	 	 	
	 serial.Close();
	 	 	 	 return	 0;
}

The Baseballinator: Final Formal Report 23

