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Abstract: 

 

 PME is a fully-autonomous, mobile robot designed to transport an empty bottle to the kitchen 

and dispose of the bottle in the garbage. Its functions include understanding and responding to being 

summoned, gripping objects, line following, obstacle avoidance, and mechanical lifting. Upon being 

summoned, PME will locate the summoner by following a line to predetermined destination. The 

summoner will then load an empty 12 ounce bottle in the gripper of the robot and instruct a command 

for disposal. PME will then search for a line on the floor which it will follow to the kitchen. Upon 

detecting the garbage can with reflectivity sensors, the robot will stop, lift and extend its arm, dumping 

the bottle into the can. After a delay, PME will return to its starting location. 
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Executive Summary: 

 

 The process begins with a pile of small metal pieces of various shapes and sizes, along with a 

few thousand screws, nuts, and washers. The erector set parts are rigid and fully customizable, allowing 

for the construction of stable bodies of virtually any shape and size. For this reason they seemed like an 

ideal candidate for a robot. These parts were used to construct the entire body of PME. They allowed a 

vision of a functional system to be brought into physical existence, and allowed for a construction 

process that could be modified along the way and adapted to the needs of the system, without having to 

redesign the entire frame. Extensions, hinges, and reinforcements were added as needed while 

maintaining overall design. The final Body uses over 200 parts and 400 screws. 

 At the front of the body are 2 bump sensors and 3 infrared sensors. One bump sensor, made 

from a free floating wire within a spring, checks the front and left side, while the other checks the front 

and right side. The IR sensors point middle, 45 degrees right, and 45 degrees left. They are calibrated 

for response to detection at approximately 6 inches. Behind these sensors are 2 light sensors facing 

upward. These are designed to receive a light activation signal.  

 Moving from front to back, the front axle is arrived at next. A servo motor centered about 5 

inches up controls the motion of a bar extending vertically downward to a horizontal axle connecting 

the front wheels. This allows for a range of steering limited only by the range of the servo. Seated 

above the steering mechanism is our driver, an erector set construction worker who is always on duty. 

 Behind the steer servo, in the heart of the robot, is the PVR Xmega board, with all electrical 

components connected to it. From here, wires extend in all directions. Outside signals are received and 

processed, and motor control signals are sent out. Above this board is an LCD mounted for real time 

feedback and debugging purposes.  

 Below the controller board, mounted about ¼” up from the floor, are the 4 line-following 

sensors. These are spaced apart by slightly less than the width of a line of electrical tape, allowing 2 

sensors to simultaneously detect the line. Behind The controller is another board for the motor drivers. 

Mounted on the rear of the bot is a final board interfacing the 4 line sensors and the feedback LEDs. 

 Underneath the motor driver board is the drive motor. The shaft of this motor is rear-facing, 

extending out to a worm gear which steps down the RPMs for more torque on the rear axle. Above the 

rear axle is the power station: 2 battery cases holding a combined 8 batteries for a total of 12 volts.  

 From the top of the robot cab extend 4 bars, a pair on each of 2 axles, which create a dual, 4-bar 

linkage system. Near the front axle, the linkage arms rest on springs which ease the initial torque 

demands of the arm. Connected to the rear linkage axle is a gear to interface with the stepper motor. 

The stepper motor is mounted as close as possible to this rear axle, and provides the actuation to lift the 

linkage arm from its resting position to its upright position. Stops have been put into place to prevent 

the arm from moving too far forward. 

 The linkage arm is used to lift and extend the bottle containing unit at the foremost part of the 

arm. This unit has a grip arm with a wire extending from the gripper, back through the body. This 

arrangement allows the lowering of the linkage to contract the gripper. The bottle containment unit 

consists of this grip and a base platform which is connected to another servo. This servo drops the 

platform, allowing and contents of the unit to be released into a collection area below.  

 Total body weight is approximately 8 pounds. The vehicle is 16 inches long with an 18 inch 

long linkage arm. The body is 6 inches wide, 17 inches tall with the linkage retracted, and 

approximately 20 inches tall with the linkage fully extended.  
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Introduction: 

 

 To set the mood, imagine yourself sitting on the couch and enjoying a few beverages. Perhaps 

the Gator game is very exciting, or maybe laziness has just set in. Either way, an autonomous robot 

could be desirable for a number of functions. Among the more useful are fetching a new beverage or 

food or answering the door. However, all those pesky empty cans will begin to pile up. An autonomous 

bot named PME has the capability to dispose of your waste for you, once you have conveniently placed 

into it a used beverage container. PME won't prevent you from ever having to get up off the couch, but 

at the least he will allow you to stay seated for a few more hours.  

 Although PME carries out a highly specialized task, its behaviors to can be adapted to fit many 

daily needs, depending on the programming. Its initial behavior is one of responding to an operator 

summoning it for duty. This may be referred to as the clap-on effect. The operator will use a visual 

method of alerting the robot that its services are in need. This will be a signal with a light. When PME 

is resting in a dark area, shining a flashlight will alert him. Upon activation, PME will follow a dark 

line to locate the summoner and then advance that direction. Arrival at the subject will be determined 

by either a change in light or a change in color of the line.  

 Once the bot arrives at the operator, it will stop and wait for a continue command. The operator 

will place a container in the grip arm of the machine and give it a signal to proceed. This signal could 

be a button on the surface of the bot, a button on a wireless controller, or another visual signal. Once 

this signal is received, using an array of IR reflective sensors to detect the line, the machine will then 

exhibit line-following behavior which will take it into the kitchen and up to the edge of the garbage can. 

While line-following, PME will be awaiting a signal from its line sensors that the target has been 

reached. Correct identification of the target is vital! The bot will then cease translational movement and 

begin to raise its mechanical arm. When the arm has been raised to sufficient height, it will extend 

forward and release the stabilizing platform. In the process, the bottle will be dumped into the can. The 

arm will then be retracted. The task being complete, PME will then resume line-following behavior as 

it returns to its resting location. It will then wait until being summoned again.  

 

The following report includes detailed information on the logistics and implementation of the 

above behaviors. Sensors, mechanics, and programming are covered in detail. All part requirements, 

parts used, schematics, measurements, and code are provided below 
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Integrated System: 

 

 The most apparent part of PME is its body.  Although the compact, circular platforms with two 

drive wheels and a caster seem reasonable for most applications, the lifting demands of this particular 

application make this design unreasonable. The design has been modified to only require the lifting of 

an empty container. The torque demands are much more significant for lifting a full bottle. To provide 

appropriate stability, PME has been given an elongated, rectangular base. The materials for the base 

include a variety of shapes and sizes of small, steel construction parts from erector set. These pieces 

provide a rigid body for the needed stability and are versatile enough for most any application. The 

lifting mechanism has also been modified. The initial plan was to use a crane style arm with a motor 

and pulley system to lift the arm and a second system to extend it. The new design involves a 4 bar 

linkage system. This design reduces hardware requirements by eliminating the need for any pulley 

systems. Lifting and extending will be performed all in one motion. The torque requirement will also be 

reduced.  

 PME will be equipped with several different sensors. The base will be surrounded with bump 

sensors. The surface of the platform also provides ample mounting space for infrared sensors. A 

microphone may also been fitted on the surface. The Circuit board will be secured inside the base with 

wires extending out to sensors and motors. The base also provides ample mounting opportunities for 

battery packs, an LCD for debugging and feedback purposes, and LED's for behavior indication. A 

block diagram of the complete system is shown in figure A. The flowchart for the controlling program 

is in figure B.  

  

 
Figure A: System Block Diagram 
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Figure B: System Flowchart 

 

Mobile Platform: 

 

 The drive train consists of a two-wheel system driven by one motors. The front wheels are 

independently connected to a servo motor for steering. The rear wheels are being used for propulsion. 

Wheels for this vehicle are erector set pieces(figure C). The platform is approximately 14 inches long 

and 6 inches wide. These dimensions allow for adequate spacing between all sensors and electronic and 

moving pieces. Rising vertically from the platform are four legs of steel construction totaling between 

three and four inches in width and 7 inches in length. These legs attach to an elevated 4 bar linkage 

system. It will rise to a maximum height of 20 inches. It has been set back 6 inches from the nose of the 

platform for clearance while lifting. The linkage system raises the arm about 4 inches and extends it 

forward 4 inches past the nose of the platform. This allows enough clearance for dumping. It also ends 

in a grip arm. Rather than connecting the gripper to a servo with a high torque requirement, a cable has 

been run through the robot that contracts when the arm is lowered and loosens when it is raised. The 

bottle will be secured during transportation and released for dumping. The small platform directly 

underneath the grip arm is used for resting the bottle. This base will by tilted by another servo when the 

grip is released, allowing the bottle to slide out of the grip. A reversal of the linkage servo retracts the 

whole arm to a stable position for driving.  

 On the front edge of the platform are 3 infrared sensors and 2 bump sensors. The IR sensors are 

facing forward-left, middle, and forward-right. The bump sensors are on the left and right corners. 

Another bump sensor is also mounted in the back for obstacle detection while backing up. Underneath 

the bot is an array of QTI IR sensors facing the ground. This is positioned less than 1/2 inch from the 

floor. The last sensor is the pair of Photoresistors mounted upward facing on the front of the bot. These 

will be used to detect when a shady area has been reached. The platform is shown in figures D and E. 
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Figure C 

 

 
Figure D    Figure E 

 

Actuation: 

 

 PME is a 4-wheeled robot. The front wheels are used for steering by a separate servo (TowerPro 

MG995). This motor was rated at 13kg/cm but tests have shown this to be an overestimate. The design 

of the steering servo allows for a turning range limited only by the servo. The servo is shown in figure 

F. 

 
Figure F     Figure G 
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The rear wheels are operated jointly by one dc motor (figure G). A gear-down system has been 

installed, consisting of a worm gear connected to the shaft of the motor connected to a 30 tooth gear on 

the drive axle. Due to the weight of the body, the first two motors used were insufficient to produce 

motion. The body also had to be reinforced multiple times around the drive train to prevent the gears 

from slipping past each other. The current motor is a 300mA free-run (5A stall) gearmotor from Pololu 

with a 19:1 gear ratio resulting in 500rpms. This was the fastest motor in this family. Unfortunately the 

geardown reduces the speed of the robot greatly. PME won’t win any races, but that just gives him more 

time to avoid obstacles and detect destinations. The motor operates on a maximum of 12v which will 

be supplied from the alkaline batteries. Graphical data was unavailable for this motor. The motor is 

being driven by a 5A max Pololu motor driver carrier MC33926(figure H). The schematic for 

connections between the driver and the driver board is shown in figure I. 

 
Figure H    Figure I 

 

One stepper motor (Minebea PM55L-048) in the linkage system will be moving and lifting a 

load greater than one pound. The motor takes 384 microsteps to complete a revolution. The linkage arm 

moves approximately 90 degrees, or 96 steps.  The stepper and its torque output are shown in figures J 

and K respectively.  

 
Figure J      Figure K 
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The stepper is mounted within the linkage arm. This area of the platform also had to be 

reinforced to prevent gear slippage. Torque calculations have only been approximated and direct 

experimentation was necessary to verify operability, but PME has passed all tests. The stepper motor is 

being driven by an Easy stepper motor driver from sparkfun. The driver is shown in figure L. Figure M 

shows the schematic for connections from the driver chip to the driver board. Figure N shows a graph 

of the function of microstepping as related to full steps. Once fully extended, the stabilizing platform 

under the bottle will be rotated by a servo. This action will dump any contents of the grip arm. The 

robot will then back up, turn to the side, relocate the line, and continue following it. Figure O depicts a 

block diagram/schematic of the motor and driver connections. 

 
Figure L 
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Figure M 

 

 
Figure N     Figure O 

 

Sensors: 

 

 PME is equipped with several different styles of sensors. All sensors are interfaced with the 

Xmega 128 PVR board from Pridgen/Vermeer Robotics(Figure P).  

 
Figure P 

 

The first sensor needed in order of function is one which will receive an activation signal. PME 

will be waiting in a dark area. Once a flashlight has targeted the Photoresistors mounted on the surface, 

it will begin line following mode. Two SEN-09085 photoresistors (figure Q) are wired in parallel, 

resulting in a received signal only when both resistors receive light. This will prevent false data from 

triggering behavior. A series of data points of photoresistor response was plotted in figure R. This data 

was taken in a well lit room as an obstruction was placed between the receiver and the light at varying 

distances. The distance is measured in inches.  
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Figure Q       Figure R 

 

 Upon receiving this light signal, the bot will begin line following mode until it reaches the first 

of its predetermined locations. Line following is achieved via an array of QTI IR reflective sensors 

mounted on the bottom of the platform. The sensors emit an infrared light and then measure the 

reflected light in an infrared transistor. A white or reflective surface will return a low voltage while a 

black or non-reflective surface will return a high voltage. A line of black masking tape is placed on 

sheets of white poster board in order to control the environment. The array of QTI sensors will then be 

able to determine which sensor is over top of the black line. Steering can then be determined 

accordingly. A picture of the line-following kit and a schematic of the sensor are shown in figures S and 

T respectively. These sensors return a value of approximately 4.3v when over a black surface, and 0.5 

volts when over a white surface. To be effective, the sensors need to be less than ½” from the surface, 

or else all sensors will return non-reflective values. 

 
Figure S      Figure T 
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Once it reaches its first destination, it will pause and wait for another signal. Another activation 

signal, pressing one of the bump sensors as a button, will cause the bot to go into line-following and 

obstacle avoidance mode.  

 Obstacle avoidance will be achieved through a combination of close-range infrared and bump 

detectors. Proximity warnings will alert the bot, but since the current task is not to deviate from the 

line, avoidance is challenging. The bot must be able to relocate the line after avoidance. The physical 

design of the machine also makes avoidance tedious. This should be accomplished with as little change 

in speed and direction as possible. Avoidance testing while not line-following has been successful. The 

bot can steer away from objects detected by infrared. It is also programmed to stop, back up, and 

continue in a new direction if a bump sensor is activated. Sharp 2D120X infrared sensors(figure U) 

have been placed on the front middle, front left, and front right of the platform. The sensitivity of the 

sensor has been tested under typical lighting conditions. The output voltage was measured as an 

obstruction was placed at varying distances from the sensor. The data is plotted in figure V, with the 

distance measured in inches. Bump sensors were constructed by mounting outward-facing springs on 

the platform and placing a wire within the spring. Contact between the spring and wire completes a 

circuit, through a pull-down resistor, and sends a value of high to the PVR board, indicating a bump. 

 
Figure U       Figure V 

 

 To signal the machine that it has arrived at the designated disposal destination, a similar scheme 

will be employed as described in the initial line-following phase. When all QTI sensors detect a non-

reflective service, the machine will know its destination has been reached. The motion stops and at this 

point no further sensors are required. The movement of the mechanical arm has been set by 

predetermined motor parameters. Once the cargo is disposed of, line-following will resume as the bot 

returns home. The bot will detect its home again by light recognition. When it finds itself in the shade, 

it will loop to the beginning of the program and wait. 

 

Behaviors: 

 

 The behaviors of PME include understanding and responding to being summoned, gripping 

objects, line following, obstacle avoidance, and mechanical lifting. Initiating tasks will be signaled by 

sensor input. The bot will execute an endless loop waiting for a light sensory input. Once this input is 

detected, the bot will commence locating mode. Line sensors will provide feedback on the location of a 

person who will be advanced upon. The bot will know to stop when it has detected a certain surface. 
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 Object gripping was to be performed by connecting a servo motor to the wire controlling a 

gripper arm. Turning the motor would tighten or loosen the grip. This design has been modified to 

eliminate the need for this servo. Instead, the wire from the gripper is attached to the platform in such a 

way that the wire becomes tightened when the arm is down and loosened when the line is up. As a 

bonus, this tension in the wire also assists in arm raising, reducing the torque requirements at the 

rotation point. Line following is made possible by photo sensors mounted on the bottom of the 

machine. A feedback system has been implemented so that the machine may modify its direction of 

travel while moving, corresponding to the direction of the line it is tracking. A flowchart for line-

following behavior is shown in figure W. The abbreviations in the flowchart are as follows: NR=near 

right sensor, NL=near left sensor, FR=far right, FL=far left. 

 
Figure W 

 

 Obstacle avoidance is very basic since the focus of the motion is line following. Infrared and 

bump sensors are used in parallel to notify the bot of any impending obstacles. Course will then be 

corrected accordingly. A simple back-up and turn will be executed if any bumps are detected. A turn 

while continuing forward will be executed when any objects are detected by the infrared. Relocation of 

the line, and determination of proper direction after avoidance, is challenging and has not yet been 

implemented. Perhaps avoidance will include wall following behavior as the bot navigates its way 

around an object until it relocates the line. A flowchart describing obstacle preliminary avoidance 

behavior is depicted in figure X. 

 Lastly, lifting will be achieved by a 4 bar linkage arm with a single stepper motor. This single 

motor accomplishes both horizontal and vertical movement. When fully extended, the support platform 

under the bottle and grip arm will be lowered by an additional servo, thereby dropping the contents of 

the claw in the container underneath. After a timed delay, the platform will revert to its upright position 

and the linkage arm will be lowered. The bot will then back up and turn and relocate the line in order to 

reinstate its line-following behavior. Lift and dump behavior is described in the flowchart in figure Y. 
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Figure Y 

 

Experimental layout 

 

 Experimentation was necessary for the electrical, mechanical, and coding aspects of this project. 

The first experimenting encountered was the debugging of code. The code was written to accomplish 

several tasks. The first is to recognize its input signals. These signals include activation and all sensor 

data. When data is written to a port, the code then needs to properly recognize and process that data. 

This is the behavior step. All code was tested to ensure that, based on every conceivable combination of 

input parameters, the program responds optimally by sending the proper signals to the outputs, the final 

task. Data sent to the outputs needs to be in a form recognizable by the receiver of the signal. 

Experimentation here includes checking proper timing. 

 Once code was functioning as desired, the sensors and motors were attached and tested. When 

the sensors were connected, a variety of inputs was given to measure the relative response from the 

sensor. This information was used to calibrate the code. Motors needed to be checked for proper speed 

and power delivery.  

 When all inputs and outputs were properly functioning, the last stage of experimenting was real-

world testing. The electric components were installed on the body and the code was run to see how well 

the sensors and motors correspond to projected results. For the most part, this was extensive calibration 

as it became apparent the most efficient way of capturing data. For line following mode, 

experimentation was based on steady observation. Once improper function was observed, the cause of 

that error had to be determined based solely on the physical response of the robot. This was tedious 

because the thought process leading to the bad decision is not observable.  
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Conclusion 

 

 PME strings together a series of relatively simple individual tasks while capturing input data 

with several relatively simple methods. However, the integration of these methods yields the 

accomplishment of a much more demanding task. 

 To date, the physical work on this machine is complete. The most pressing obstacle is obtaining 

usable feedback from the line-following sensors. Body construction is complete with sensors mounted 

and a controller board was purchased fully assembled. The body is fully assembled, all torque 

requirements have been verified, all motors, gear boxes, drivers, and all other necessary equipment has 

been mounted. Behavior algorithms have been considered at length and all code is now complete. Some 

behavioral modification may still take place if consistent behavioral errors are identified.  

 Some progress was limited by space. The line course designed for this machine was a circle 

approximately 10 feet in diameter. The bot needs at least another foot outside the turns in order to not to 

hit walls. This much space turned out to be elusive, and the quantity of testing was limited by 

inadequate space. Small scale behaviors on course sections were used to simulate integrated behavior. 

But the pieces don’t always integrate flawlessly. Several other limitations were based on power needs. 

Initially, only 9 volts were being used. But the DC motor driver drops to half power and half speed 

when the voltage falls under 8v. This meant that the batteries had to be changed frequently. The drive 

motor was considerably harder to instantiate then was predicted. A motor was tested when the first 

skeleton of the frame was completed and functioned properly. However, when body construction was 

complete, the torque output was no longer sufficient to move the bot. Two other motors were installed 

before an adequate one was found. Each motor replacement came with significant body modifications. 

Time lost here could have been used for behavioral modification.  

 The stepper motor was very difficult to integrate. The first design was not sturdy enough and 

allowed the motor to push away from the other gear and slip past it. The motor was then more firmly 

locked into place and stopped working entirely. I thought this indicated insufficient torque. It turns out 

that it was not locked to firmly into place and the shaft was not able to overcome the torque 

requirement that the assembly placed on it. Finally a middle ground was found that prevented the gears 

from slip while still maintaining motor actuation.  

 Line-following proved very difficult to achieve success consistently. In the end, relatively few 

lines of code were needed to implement this behavior. More elaborate code was attempted but ended up 

causing more problems than it fixed. It was discovered that its actually easier to change the course to 

meet the current behaviors of the vehicle than to change the behaviors to meet the course. By softening 

some sharp turns and understanding how the bot seemed to react in certain parts of the course, the 

course was modified until completion was successful.  

 In retrospect, many things could have been designed differently. Firstly, Erector Set parts may 

not have been the best choice for this job. They look pleasing and create a rigid frame, but that frame 

adds significant weight which demands a stronger motor. The parts are infinitely versatile when 

interacting with other erector set parts. The problem is that non-erector set parts are incredibly difficult 

to interface. The body was assembled with the thought that it would be easy to mount anything 

anywhere. However, this turned out not to be the case. A more thoroughly thought out initial design 

would have saved significant heartache. The system also needs more supply power. The alkaline 

batteries should be replaced with rechargeables capable of delivering significant current. The motor 

driver boards should also be redesigned to give 12 volts to the dc motor driver and up to 28 volts to the 

stepper motor driver. With more voltage, it may have been able to lift a heavier load.  

 It would also be nice to be able to move the line-following sensors farther toward the front of 

the bot. The current design places them behind the steering axle. There is no room on the body to move 
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these sensors where they will not interfere with steering. Perhaps the steering axle could be moved 

farther back to allow clearance while turning. Although the bot still successfully follows lines, it would 

be smoother and more visually appealing if the sensors were moved forward.  
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Appendix 

 
Hardware + Dcumentation: 

 
Motor drivers:   MC33926 Pololu 5A dc driver 

http://www.pololu.com/file/download/MC33926.pdf?file_id=0J233 

http://www.pololu.com/catalog/product/1212 

 

    Easy stepper motor driver 

http://www.sparkfun.com/datasheets/Robotics/A3967.pdf 

http://schmalzhaus.com/EasyDriver/ 

 
Infrared sensors:  Sharp 2D120X - F – 04 

http://www.sparkfun.com/datasheets/Sensors/Infrared/GP2D120XJ00F_SS.pdf 

 
Photoresistor:   SEN-09088 

http://www.sparkfun.com/datasheets/Sensors/Imaging/SEN-09088-datasheet.pdf 

 

QTI sensor:   Parallax 555-27401: QTI IR reflectivity sensor line following kit 

http://www.parallax.com/Portals/0/Downloads/docs/prod/robo/28108-QTILineFollower-v2.0.pdf 

 
Servo Motors:   TowerPro MG995 

http://www.google.com/products/catalog?q=towerpro+mg995&hl=en&client=firefox-

a&hs=tLF&rls=org.mozilla:en-

US:official&prmd=ivnsfd&biw=1280&bih=607&bav=on.2,or.r_gc.r_pw.&um=1&ie=UTF-

8&cid=17970671049710857146&sa=X&ei=lh-qTeyaB8LKgQei-tjzBQ&ved=0CFMQ8wIwAA# 

 

Stepper motor:   Minebea PM55L-048 750mA microstepper 

http://www.eminebea.com/content/html/en/motor_list/pm_motor/pdf/pm55l048.pdf 

 

DC motor:   Pololu 29:1 metal gearmotor, 3A, 15v, 500RPM 

http://www.pololu.com/catalog/product/1102 

 

Frame:    Erector Set 

 

Board:    PVR Xmega128 

http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf 
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Prototype Code: 

 

//Erik Stegman 

//EEL 4665 

//PME 

//Final demo code 

 

#include <avr/io.h> 

#include "PVR.h" 

 

#define Left_Bump (PORTF_IN & 0x02)  //Left bumper set to pin 0 

#define Right_Bump (PORTF_IN & 0x01)  //Right bumper set to pin 2 

#define Back_Bump (PORTF_IN & 0x04)  //Rear bump sensor set to pin 3 

#define All_Bump (PORTF_IN & 0x07) 

#define Left_Eye (ADCA2())    //Left IR set to pin 0 

#define Mid_Eye (ADCA1())    //Middle IR set to pin 1 

#define Right_Eye (ADCA0())   //Right IR set to pin 2 

#define Shade (ADCA3())    //Photoresistors set to pin 3 

#define Line_FR (ADCA7())    //Far right line sensor 

#define Line_MR (ADCA6())   //Middle right line sensor 

#define Line_ML (ADCA5())    //Middle left line sensor 

#define Line_FL (ADCA4())    //Far left line sensor 

#define Drive (PORTJ_OUT)    //Set drive control to pins 1,0 (+,-) 

#define Steer (ServoD0)    //Set Steer to servoD0 

#define Dump (ServoD1)    //Set dump to servoD1 

#define Arm (PORTH_OUT)    //Pin 0= Step, Pin 1= Direction 

#define LED (PORTQ_OUT)   //Feedback/debug output LEDs 

#define Forward (0b10)    //Pin values for drive forward 

#define Reverse (0b01)    //Pin values for drive reverse 

#define Stop (0b00)     //Pin values to turn off motor 

#define Left (40)     //Servo value for steer left 

#define Right (-50)     //Servo value for steer right 

#define Near_Left (20)    //Servo value for steer left 

#define Near_Right (-30)    //Servo value for steer right 

#define Center (-4)     //Servo value for steer straight 

#define On (0x1) 

#define Off (0x0) 

#define Up (-25)     //servo value for raise dump  

#define Down (-85)     //servo value for lower dump 

 

//INITIALIZE 

void main(void) 

{ 

 xmegaInit();     //setup XMega 

 delayInit();     //setup delay functions 

 ADCAInit();     //setup PORTA analong readings 

 PORTB_DIR |= 0xff;    //set PORT B to OUT 
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 ServoCInit();     //setup PORTC Servos 

 ServoDInit();     //setup PORTD Servos 

 PORTF_DIR |= 0x00;    //set PORT F to IN  

 PORTH_DIR |= 0xff;    //Initialize PORT H for debugging output 

 PORTJ_DIR |= 0xff;    //set I/O PORT J 

 PORTQ_DIR |= 0x0f;    //set Q (LED) as output for debug 

 

 lcdInit();     //setup LCD on PORTK 

 lcdString("Erik Stegman");  //display "Erik Stegman" on top line (Line 0) of LCD 

 lcdGoto(1,0);    //move LCD cursor to the second line (Line 1) of LCD 

 lcdString("PME");    //display "PME" on second line 

 

while(1) 

 { 

 Steer(Center); 

 Dump(Up); 

 

//wait for summon 

 while(Shade < 2500) 

 { 

  lcdGoto(0,0); 

  lcdString("Shade"); 

  lcdGoto(1,0); 

  lcdInt(Shade); 

  lcdString("     "); 

 } 

 

//begin line follow 

//look for black box at summoner 

 Drive = Forward; 

 delay_ms(1000); 

 Follow(); 

 Drive = Stop; 

 

//lift arm, wait, lower 

 Lift(); 

 

//begin line follow 

//look for black box at garbage 

 Drive = Forward; 

 delay_ms(1000); 

 Follow(); 

 Drive = Stop; 

 

//lift, dump, lower 

 Lift_Drop(); 
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//find line 

 Find_Line(); 

    

//begin line follow 

//look for black box at home 

 Follow(); 

 Drive = Stop; 

 } 

} 

 

void Follow(void)  //Line following function 

{ 

 while(Line_FL < 3500 || Line_ML<3500 || Line_FR < 3500 || Line_MR<3500) 

 { 

 int i; 

 

 if (Line_FL > 3500){LED |=8;}  //LEDs show what sensor the line is under 

 else {LED &= 7;} 

 if (Line_ML > 3500){LED |=4;} 

 else {LED &= 11;} 

 if (Line_MR > 3500){LED |=2;} 

 else {LED &= 13;} 

 if (Line_FR > 3500){LED |=1;} 

 else {LED &= 14;}  

   

 Steer(Center); 

 if (Line_FL > 3500 && Line_ML<3500) 

 { 

 for(i=Center; i<Left && Line_ML<3500; i++) 

  {     //turn left until line is under center 

  Steer(i); 

  delay_ms(10); 

  } 

 

 while(Line_ML<3500){} 

             

//straighten out 

 for(; i>Center; i--){ 

  Steer(i); 

  delay_ms(10); } 

  } 

 

 else if (Line_FR > 3500 && Line_MR<3500) 

 { 

  //steer right 

  for(i=Center; i>Right && Line_MR<3500; i--){ //turn right until line is under center 

  Steer(i); 
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  delay_ms(10);  

  } 

   

 while(Line_MR<3500){} 

            

 //straighten out 

 for(; i<Center; i++){ 

  Steer(i); 

  delay_ms(10); } 

  }   

 } 

} 

 

void Lift(void)    //Lift arm function 

{ 

 ServoD1(Up); 

 

//Raise Arm 

 int i; 

 PORTH_OUT = 2; 

 for(i=0; i<330; i++) 

  { 

  PORTH_OUT += 1; 

  delay_ms(20); 

  PORTH_OUT -= 1; 

  } 

 

//Wait for signal from bump sensor 

 while(All_Bump < 1){} 

 

//Lower Arm 

 PORTH_OUT = 0; 

 for(i=0; i<330; i++) 

  { 

  PORTH_OUT += 1; 

  delay_ms(20); 

  PORTH_OUT -= 1; 

  } 

 delay_ms(2000); 

} 

 

void Lift_Drop(void)    //Lift and dump function 

{ 

//Raise Arm 

 int i; 

 PORTH_OUT = 2; 

 for(i=0; i<330; i++) 



23 

 

  { 

  PORTH_OUT += 1; 

  delay_ms(20); 

  PORTH_OUT -= 1; 

  } 

 delay_ms(500); 

  

//Lower Dump 

 for(i=Up; i>Down; i--){ 

  ServoD1(i); 

  delay_ms(10); } 

 delay_ms(500); 

 

//Raise Dump 

 for(i=Down; i<Up; i++){ 

  ServoD1(i); 

  delay_ms(10); } 

 delay_ms(500); 

 

//Lower Arm 

 PORTH_OUT = 0; 

 for(i=0; i<330; i++) 

  { 

  PORTH_OUT += 1; 

  delay_ms(20); 

  PORTH_OUT -= 1; 

  } 

 delay_ms(2000); 

} 

 

void Find_Line(void)    //Function to back up and locate line 

{ 

 int i; 

 

//Steer Right 

 for(i=Center; i>Right; i--){  

  Steer(i); 

  delay_ms(10); 

  } 

 

 Drive = Reverse; 

 while(Line_FL>3500 || Line_ML>3500 || Line_FR>3500 || Line_MR>3500){} 

 while(Line_FL<3500 && Line_ML<3500 && Line_FR<3500 && Line_MR<3500){} 

 Drive = Stop; 

 

//straighten out 

 for(; i<Center; i++){ 
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  Steer(i); 

  delay_ms(10); } 

 

 Drive = Forward; 

 delay_ms(2000); 

 

 while(Line_FL<3500 && Line_ML<3500 && Line_FR<3500 && Line_MR<3500){} 

} 


