
 Date: 4/19/11
 Student Name: Matt Morgan
 TAs: Devin Hughes

Tim Martin
Ryan Stevens
Josh Weaver

 Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

University of Florida
Department of Electrical and Computer Engineering

EEL 4665/5666
Intelligent Machines Design Laboratory

Final Report

Robot :
The Iron HouseMaiden

[2]

Table of Contents

Abstract .. 3

Introduction ... 4

Integrated System .. 4

Mobile Platform ... 5

Actuation .. 5

Sensors ... 5

Behavior ... 6

Experimental Layout and Results... 7

Conclusion .. 8

Documentation .. 9

Appendix A ... 10

Appendix B ... 14

[3]

Abstract

This report details the design and implementation of an autonomous robot that collects green
colored bottles, empties their contents into a red, specified bin, and proceeds to dispose of the
bottles into a separate, blue bin. A powerful microprocessor makes up the core of this robot's
functionality and controls it's motion control and maneuverability. It further utilizes an IP
webcam, along with a Bluetooth connection to an external laptop, to capture images for vision
and image processing where an even more powerful processor is needed.

[4]

Yes

Yes

No

No

Introduction

Have you ever decided to have a few friends over to enjoy a game on TV, yet woke up ten
minutes before work to find out that your living room floor is now completely enshrouded in
half empty bottles? The purpose of the project is to create an autonomous robot, designed
primarily for indoor use, that is, first and foremost, capable of seeking out and collecting green
colored bottles. It then uses its claw-like mechanism to lift the bottles, one at a time, to a
specified disposal site. The robot empties any remaining liquids contained in the bottles into a
specified, red bin, and then carries them to another specified, yet separate, blue bin where the
bottles will ultimately be disposed of. The scope of the project primarily focuses on precise
motion control and functionality, as well as the use of an IP webcam for advanced image
processing.

Integrated System

Process Flow

Initialize

Continuously
Capture

Camera Image

Spin Clockwise

Bottle

Present?

Move Toward

Bottle

Align Body
and Arm

Move Arm
Select Distance
Towards Bottle

Light

Sensor

Trips?

Grasp Bottle

and Lift

Move to Bin 1

Empty
Contents into

Bin 1

Move to Bin 2

Move Away
Slightly from

Bin 2

Dispose of
Bottle in Bin 2

[5]

Mobile Platform

The platform consists of a stack of two wooden, circular disks. Two motors along with a dual
motor controller are mounted along with the IP webcam between the disks towards the front
of the robot. A metal ball caster is placed underneath the bottom disk towards the back of the
robot along its midpoint. Two bump sensors (one in the front, and one in the back) are located
along the edge of the lower platform. Finally, three midrange IR sensors are mounted on top of
the upper deck along with the microcontroller [1], an LCD [2], and the shoulder joint of the arm
on the top of the upper disk. Two additional short range IR sensors are mounted on the gripper
as well.

Actuation

The actuation on this robot consists primarily of its method of movement along with the
motion and maneuverability of the arm. Two Pololu gearmotors [3] with 90x10 mm wheels [4]
attached to the shafts are controlled by a Pololu Qik 2s12v10 Dual Serial Motor Controller [5].
The arm is made out of wood and has a slightly arced shape to allow for grappling of bottles
standing upright. It uses one Hitec HS-985MG and two Hitec HS-645MG servos [6], modified for
180° rotation, to achieve two degrees of freedom, one in the shoulder joint and one in the
wrist, as well as the ability to clamp the "hand."

Sensors

IP Webcam
The camera used in the project is a Linksys Wireless-N+RJ45 [7]. A BlueSMiRF Gold [8] is
integrated into the PVR board to allow for wireless communication with an external laptop via
Bluetooth technology. Images are repeatedly captured via http protocol and then analyzed and
modified via OpenCV libraries that contain numerous image processing, matrix operation, and
transformation algorithms. With the help of these functions, the Iron HouseMaiden is able to
recognize, and locate, green objects with very specific hue and saturation values. Several
outputs to pertinent algorithms can be seen in Appendix A.

IR Sensors
Three Sharp GP2Y0A02YK0F Analog Distance Sensor [9] with a specified range between 20 and
150cm along with Two Sharp GP2Y0A21YK0F Analog Distance Sensor [10] with a range between
10 and 80 cm is used for object avoidance. The three long distance sensors are located on the
upper portion of the platform assembly, while the two shorter range sensors are located on the
gripper / arm assembly itself. The ADC located on the Atmel Xmega is what is used to convert
the analog signal into digital information. The voltage vs. distance plots for each sensor are
located in Appendix A.

http://www.pololu.com/catalog/product/1112
http://www.newegg.com/Product/Product.aspx?Item=N82E16881334006&nm_mc=OTC-Froogle&cm_mmc=OTC-Froogle-_-Surveillance+-+Cameras-_-Linksys-_-81334006
http://www.pololu.com/catalog/product/1137
http://www.pololu.com/catalog/product/1137
http://www.pololu.com/catalog/product/136

[6]

Bump Sensors
Bump sensors are utilized on the front and rear of the robot. The rear bump sensor is also used
to initiate the robot's actions. Other than the "start bump," they are all interrupt driven by
software. The basic design of the simple circuit is shown below in Appendix A.

Light Intensity Sensor
A bright white LED [11] is paired with Jameco MAX LITE photocell [12] to create a light intensity

sensor on the gripper. The photocell is in series with a 10 kresistor so that when a bottle is
far enough inside the clamp, the light is blocked enough to bring the ADC integer value from
around 1000 to approximately 2500 (max value = 4095). Thus, the robot knows to close its grip.

Behaviors

The basic behaviors of the Iron HouseMaiden require a somewhat significant amount of
sophistication. It first rotates in search of its target (a bottle), which it finds with the use of
several different compares and a combination of both transforms and processing algorithms
(important code snippets can be found in Appendix B; however, the complete source code can
be found on my website: plaza.ufl.edu/mmblind10). When it discovers what it believes to be a
bottle, it moves towards it. Re-calibration takes place as a second check and a buffer for itself.
As it moves, obstacle avoidance is primarily governed by the five IR sensors; however, there
does exist a small amount which is governed by webcam processes.

When the Iron HouseMaiden finally decides that it has found what it is looking for by using a
blob area algorithm where it compares the overall area of the green blob to the size of the
frame, it initiates an algorithm to position itself at the correct place in front of its target. With
the help of the light intensity sensor, it knows when to close its grip and proceed to lift the
bottle off of the ground.

The initial behavior then re-occurs, this time looking for the red bin. Once it believes it has
found it, it moves towards the bin, and stops when the area of the bin has surpassed a specified
value. It initiates its servos and lifts the bottle high enough to dispose of its contents. It slightly
turns left until it has positioned itself correctly relative to the red blob, and then proceeds to
move forward a given distance. When it has moved forward far enough, it stops, initiates its
wrist servo and empties the remaining contents of the bottle into the red bin. It then backs up,
quickly locates the blue bin close by, and moves toward it as it did with the red bin. Again it
properly aligns itself relative to the blob and proceeds forward until it has decided it is close
enough to the bin. It initiates its servos and proceeds to dispose of the bottle in the bin. It then
backs away from the bins where it proceeds to repeat the process all over.

http://plaza.ufl.edu/mmblind10

[7]

Experimental Layout and Results

The most experimental portion of the project was the image processing done with the IP
webcam and OpenCV. My initial algorithm involved using contour matching in RGB (red, green,
blue) color space. The contour matching was extremely successful (seen in Appendix A), and
although the recognition of green appeared to be successful as well, there was a ton of noise
inherent in the design and the robot would almost always locate false positives. The transition
to HSV color space (hue, saturation, and value) eliminated a lot of the noise and with the
addition of a Gaussian smoothing filter, a binary erode filter, and a binary dilate filter, I was able
to almost completely eliminate both outside noise and false positives in the image. However,
due to the implementation of the contour matching combined with the fact that the camera
was sending image wirelessly, the processing was too slow for the robot to react quick enough.

Next, I redeveloped my code and integrated a blob tracking technique into my own code that
ran at a much faster rate. Although, it was less precise, it allowed for my robot to react in real
time and made communication between my laptop and my robot (via Bluetooth) much easier
to code. The blob tracking is still done in HSV color space and the additional filters are still
needed. I further implemented a start-up calibration algorithm for the robot to calibrate the
colors it is looking for in memory. Screenshots of the output of the blob tracking algorithm can
be seen in Appendix A, and portions of code where the algorithm was used can be seen in
Appendix B.

After the tracking algorithm was secure, the next challenge was creating a system for my robot
to react to what my laptop is processing. With the help of Bluetooth, I was able to send
different characters to my robot depending on the response that it needed to perform.
Essentially, there were designated characters (Hex values) for the robot to perform such
behaviors as "turning slight right," "brake," "turn hard left," "lift bottle," etc. A good portion of
this code can be found in Appendix B.

The last and final challenge involved the fact that the IP webcam would continuously capture
images at a rate of approximately 40 Hz. This became a problem when the robot was asked to
initiate a chain of commands that took a relatively large amount of time (like dumping the
bottle). When, the robot was ready to proceed to the next objective, the computer was still
querying frames from right after the robot started its previous objective. This caused an
enormous amount of lag and made the robot travel in false directions (for the images were not
real time). This was overcome by the combination of a delay counter and a function that would
query frames and dispose of them immediately.

[8]

Conclusion

I believe the project was a great success and demonstrated a substantial amount of image
processing capability. The robot was successfully able to locate the green bottles, grab hold of
them, empty their contents into the specified red bin, and ultimately dispose of the bottle into
the blue bin.

There were a great deal of situations for which I was unprepared and could have done much
better. First of all, it would have been much smarter to cover the bottles with paper or some
kind of dull, or unfinished material before painting them. The glare from the lights would reflect
off the bottles and cause the source code to have to be slightly altered whenever different
lighting conditions would arise. This was only apparent with the bottle, however, and was not
witnessed with the dull finish of the painted cardboard bins. A separate approach would have
been to provide my own lighting that matched my test area. That would have eliminated the
additional variables that arose from the various environments in which my robot was
demonstrated.

Next, I spent far too long perfecting the image processing algorithms before the robot was
completely built. I wanted to guarantee that they worked correctly before setting my design in
stone; however, I was unprepared for how much the code would have to change after the
systems were integrated. This further led to additional hardware problems. I completely
underestimated how much load was going to be placed on the shoulder joint and was forced to
both upgrade my servo, as well as provide it with the maximum voltage (6 V) for additional
torque and power.

Finally, I spent far too much time trying to debug and fix a broken webcam. Originally, I was
trying to make my camera work on an ad-hoc network with my PC; however, after countless
attempts and a multitude of resets I failed. When I finally settled on using it wirelessly over a
network, my camera was having power issues and would turn itself off after transmitting
around 200 frames (at 40 frames/second). It took me three, long days and several different
circuits to realize that it was not a power problem and that the wireless adapter in the camera
had gone bad. Luckily, a classmate had an extra camera for sale, and within a couple days a new
camera was hooked up and working properly.

I believe that, as a whole, this project provided countless benefits in both aided and brute force
learning. I learned a multitude of lessons in various engineering aspects including: electrical,
mechanical, and computer science. I believe my application can be worked on, and perfected to
allow for a quick and clean, un-manned clean-up of virtually any kind of environment that is
littered with, essentially, any color bottle made from any type of material. This project has shed
some light on the power that advanced image processing and wireless communication have
when working together. I ultimately believe that, when the two concepts are combined, they
can stretch the limit on the capabilities of autonomous robotics, and make the visions of so
many into actual realities.

[9]

Documentation

Parts:
[1] PVR Microcontroller : Thomas Vermeer and Mike Pridgen
[2] Basic 16x2 Character LCD : Sparkfun sku: LCD-9051
[3] 131:1 Metal Gearmotor 37Dx57L mm : Pololu Part #1107
[4] Pololu Wheel 90x10mm Pair - Black : Pololu Part #1435
[5] Pololu Qik 2s12v10 Dual Serial Motor Controller : Pololu Part #1112
[6] Hitec HS-985MG Servos : Servocity Part #32985S
 Hitec HS-645MG Servos : Servocity Part #32645S
[7] Linksys Wireless-N+RJ45 : Newegg Item #N82E16881334006
[8] Bluetooth Modem - BlueSMiRF Gold : Sparkfun sku: WRL-00582
[9]Sharp GP2Y0A02YK0F Analog Distance Sensor : Pololu Part #1137
[10] Sharp GP2Y0A21YK0F Analog Distance Sensor : Pololu Part #136
[11] Super Bright White LED : RadioShack Part #276-017
[12] Jameco MAX LITE Photocell : Jameco : Manufacturer # CDS001-8001

Atmel Documentation:
[1] AVR Xmega A1 Microcontroller datasheet:
 http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
[2] AVR Xmega A Manual Microcontroller datasheet:
 http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf

BlueSMiRF Gold Documentation:
[1] Bluetooth Advanced Users Manual
 http://www.sparkfun.com/datasheets/Wireless/Bluetooth/rn-bluetooth-um.pdf
[2] Bluetooth module datasheet:
 http://www.rovingnetworks.com/documents/RN-41.pdf

OpenCV Documentation:
[1] Download / Install:
 http://opencv.willowgarage.com/wiki/
[2] Blob Tracking:
 http://code.google.com/p/cvblob/

http://www.pololu.com/catalog/product/1107
http://www.pololu.com/catalog/product/1435
http://www.pololu.com/catalog/product/1112
http://www.newegg.com/Product/Product.aspx?Item=N82E16881334006&nm_mc=OTC-Froogle&cm_mmc=OTC-Froogle-_-Surveillance+-+Cameras-_-Linksys-_-81334006
http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf
http://www.sparkfun.com/datasheets/Wireless/Bluetooth/rn-bluetooth-um.pdf
http://www.rovingnetworks.com/documents/RN-41.pdf
http://opencv.willowgarage.com/wiki/
http://code.google.com/p/cvblob/

[10]

Appendix A

Final Design

Note: The white object on top of the robot acts as both a maid reference and as a shield to block LED light coming
from the PVR board and the LCD screen from reflecting off of the glossy bottles

Gripper CAD Assembly

Note: Developed with SolidWorks 2010

[11]

IR Senor Plots

Bump Sensor Circuit

*Vout is pulled to a Vcc when the switch
is closed (when the sensor is triggered).

Special Sensor Functional Diagram

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

Ouput Voltage vs
Distance

Ouput Voltage

0

0.5

1

1.5

2

2.5

3

3.5

0 25 50 75

Ouput Voltage vs
Distance

Ouput Voltage

[12]

Screenshot of Various IP Webcam Modified Outputs

Clockwise starting from the top-left -> Binary Threshold Output, Pixel coordinates of the Contour Drawing,

ColorFinder (green), Contour Drawer / Locator, Test Feed

Blob Track Method -> Real-time and HSV color space images utilizing tracking method with dilate and erode filters

[13]

Blob Tracking Method -> 3 channel real-time and HSV color space images shown utilizing dilate, erode, and
smoothing filtering algorithms

[14]

Appendix B: Code

*The bulk of the code used in this project can be found in the zip file located here:
http://plaza.ufl.edu/mmblind10/IronHouseMaiden.zip

**The following are several important sections of code performing the main functions

Main Code Implemented on Robot:

/****************************\
 Glass Bottle Glutton Code v3
 By Matt Morgan
 IMDL Spring 2011
****************************/

#include <stdlib.h>
#include <stdio.h>
#include "servo.h"
#include "interrupts.h"

/*********
 * Xmega *
 *********/

int FLir, BLir, FRir, GRir, GMir;
int rand1;
int count = 0;
int nextCount = 0;
int speed = 30;
int IRflag = 1;
int array[3];

int main()
{
 extern int ServoSH;
 extern int ServoWR;
 extern int ServoGR;

 xmegaInit(); //setup XMega

 delayInit(); //setup delay functions
 ADCAInit(); //setup PORTA analog readings
 ServoCInit(); //setup Servos on Port C
 ServoC0(ServoSH); //shoulder servo ->
 ServoC1(ServoWR); //wrist servo ->
 ServoC2(ServoGR); //gripper servo ->
 usart_init(); //setup usart
 bluetooth_init(); //setup bluetooth
 lcdInit();
 PortHSet(); //enable PortH pin 0 as output

 while ((PORTF.IN & 0x01) == 1); //compensate for motor driver being turned on

http://plaza.ufl.edu/mmblind10/IronHouseMaiden.zip

[15]

 _delay_ms(100); //setup LCD on PORTK
 PortFinterrupt0_init(); //setup portF interrupt 0 on pin 1

 while ((PORTF.IN & 0x01) == 1);

 lcdString("Calibrate");
 calibrateCamera();

 LightOn();
 lcdGoto(0,0);
 lcdString(" GBGv3");

 while(1)
 {
 bluetooth_receive_act(array, speed, count, IRflag);

 count = array[0];
 speed = array[1];
 IRflag = array[2];

 if (IRflag)
 {
 IR_react(speed, FLir, FRir, BLir, GRir, GMir);
 }
 }
}

SIGNAL(PORTF_INT0_vect)
{
 lcdGoto(0,0);
 lcdString("Go! ");

 ebrake(127);

 _delay_ms(200);

 back_up(15, 500);
 back_up(30, 2000);
 back_up(15, 500);
 back_up(5, 500);
 coast(200);

 ebrake(127);

 _delay_ms(100);

 rand1 = random();
 if (rand1 < 0) rand1 = -rand1;

 if ((rand1 & 0x1) == 1)
 {
 turn_right(15, (rand1 % 2000));
 }

[16]

 else
 {
 turn_left(15, (rand1 % 2000));
 }

 StraightForward(speed/2);
 _delay_ms(100);
 StraightForward(speed);
}

Bluetooth Reaction Function Implemented on Robot:

void bluetooth_receive_act(int array[], int speed, int count, int IRflag)
{
 unsigned char rec;

 rec = BluetoothReadChar();

 if (((rec >> 4) & 0xF) == 0x3)
 {
 if (rec == 0x30) //go left
 {
 turn_soft_left(speed, 50);
 }
 else if (rec == 0x31) //go right
 {
 turn_soft_right(speed, 50);
 }
 else if (rec == 0x32) //go straight
 {
 StraightForward(speed);
 _delay_ms(50);
 }

 IRflag = 1;
 }
 else if (((rec >> 4) & 0xF) == 0x4)
 {
 if (rec == 0x40) //brake
 {
 ebrake(50);
 _delay_ms(50);
 ebrake(127);

 IRflag = 0;

 bluetooth_transmit(0x13);

 }
 }
 else if (((rec >> 4) & 0xF) == 0x5)

[17]

 {
 if (rec == 0x50) //align bottle for grip
 {
 turn_hard_left(speed, 0);
 _delay_ms(50);
 coast(0);
 }
 else if (rec == 0x51)
 {
 turn_hard_right(speed, 0);
 _delay_ms(50);
 coast(0);
 }
 else if(rec == 0x52) //grip bottle
 {
 StraightForward(20);
 while (!checkLight());

 ebrake(127);

 grabBottle();

 _delay_ms(100);

 bluetooth_transmit(0x10);

 turn_hard_right(15, 0);
 }
 }
 else if (((rec >> 4) & 0xF) == 0x6)
 {
 if (rec == 0x60) //dump bottle
 {
 bottleDump1();

 turn_soft_left(speed, 1050);
 StraightForward(speed);
 _delay_ms(2750);

 ebrake(127);

 bottleDump2();
 _delay_ms(1000);

 back_up(speed, 3500);

 bottleDump3();

 back_up_left(speed, 1300);
 back_up(speed, 3500);

 ebrake(80);
 _delay_ms(100);

[18]

 ebrake(127);

 bluetooth_transmit(0x11);

 turn_hard_right(15, 0);
 }
 else if (rec == 0x61) //trash bottle
 {

 ebrake(127);

 bottleDump1();

 turn_soft_left(speed, 200);
 StraightForward(speed);
 _delay_ms(4000);

 ebrake(127);

 ebrake(127);

 release_grip();
 _delay_ms(500);

 back_up(speed, 3500);

 bottleDump3();

 back_up(speed, 2500);

 ebrake(80);
 _delay_ms(100);
 ebrake(127);

 bluetooth_transmit(0x12);

 IRflag = 1;

 turn_hard_right(15, 0);
 }
 }
 else if (((rec >> 4) & 0xF) == 0x7) //for calibration
 {
 if (rec == 0x70)
 {
 turn_hard_left(speed, 0);
 _delay_ms(100);
 coast(0);
 }
 else if (rec == 0x71) //for calibration
 {
 turn_hard_right(speed, 0);
 _delay_ms(100);

[19]

 coast(0);
 }
 }
 else if (rec == 0xFE)
 {
 coast(0);
 }
 else if (rec == 0xFF)
 {
 turn_hard_right(15, 0);
 IRflag = 0;
 }
 else
 {
 lcdGoto(0,0);
 lcdString("Invalid Character!");
 }

 array[0] = count;
 array[1] = speed;
 array[2] = IRflag;

 return;
}

Main loop of program run on laptop:

//main loop
 while (!quit&&cvGrabFrame(capture))
 {
 IplImage *img = cvRetrieveFrame(capture);

 if (drop)
 {
 clearFrames(capture, img, 1);
 drop = false;
 }

 cvConvertScale(img, frame, 1, 0);

 IplImage* HSVOut = cvCreateImage(cvGetSize(frame), 8, 1);
 cvConvertImage(frame, HSVOut, 0);
 IplImage* HSVFrame = cvCreateImage(cvGetSize(frame), 8, 3);
 cvConvertImage(frame, HSVFrame, 0);

 cvSmooth(HSVFrame, HSVFrame);
 cvCvtColor(HSVFrame, HSVFrame, CV_BGR2HSV);

 if (choice == 0)
 CvFindHSV(HSVFrame, HSVOut, H, S, V, HSensibility, SSensibility,
VSensibility);

[20]

 else if (choice == 1)
 CvFindHSV(HSVFrame, HSVOut, H2, S2, V2, HSensibility, SSensibility + 50,
VSensibility + 50); //set robot vision based on what it's looking for
 else if (choice == 2)
 CvFindHSV(HSVFrame, HSVOut, H3, S3, V3, HSensibility, SSensibility + 50,
VSensibility + 50);
 else;

 cvSmooth(HSVOut, HSVOut);
 cvMorphologyEx(HSVOut, HSVOut, NULL, morphKernel, CV_MOP_CLOSE, 1);
 cvMorphologyEx(HSVOut, HSVOut, NULL, morphKernel, CV_MOP_OPEN, 1);

 cvShowImage("HSV", HSVOut);

 IplImage *labelImg = cvCreateImage(cvGetSize(frame), IPL_DEPTH_LABEL, 1);

 CvBlobs blobs;
 unsigned int result = cvLabel(HSVOut, labelImg, blobs);

 if (select == 3)
 {
 if (choice == 1)
 {
 if (hcount < 30)
 {
 hcount++;
 write_char(hCom, 0xFE);
 drop = true;
 }
 else
 {
 hcount = 0;
 select = 4;
 write_char(hCom, 0xFE);
 clearFrames(capture, frame, 15);
 drop = true;
 }
 }
 else
 {
 if (hcount < 65)
 {
 hcount++;
 write_char(hCom, 0xFE);
 drop = true;
 }
 else
 {
 hcount = 0;
 select = 4;
 write_char(hCom, 0xFE);
 clearFrames(capture, frame, 15);
 drop = true;
 }
 }

[21]

 }

 else if (result != 0)
 {
 label = cvGreaterBlob(blobs);
 cvFilterByLabel(blobs, label);

 bottle = *blobs[label];

 center.x = frame->width/2;
 center.y = frame->height/2;
 centroid = bottle.centroid;

 if (choice == 1 || choice == 2) choiceOffset = 4500;
 else choiceOffset = 0;

 if(bottle.area > 200+(choiceOffset/2))
 {
 switch(select)
 {
 case 0: //handle approaching bottle or
 {
 if (bottle.area > (5000 + choiceOffset))
 {
 //printf("\n%d\n", bottle.area);
 write_char(hCom, 0x40);
 if (choice == 0)
 select = 1;
 else if (choice == 1 || choice == 2)
 select = 2;

 clearFrames(capture, frame, 20);

 message = read_char(hCom);

 if (message == 0x13)
 break;
 else
 {
 printf("Error reading message");
 break;
 }
 }
 else if (center.x > centroid.x)
 {
 write_char(hCom, 0x30);
 break;
 }
 else if (center.x < centroid.x)
 {
 write_char(hCom, 0x31);
 break;
 }
 else if (center.x == centroid.x)
 {

[22]

 write_char(hCom, 0x32);
 break;
 }
 else
 {
 break;
 }
 }
 case 1: //handle aligning gripper with bottle
 {
 if (centroid.x <= frame->width/1.6)
 {
 write_char(hCom, 0x50);
 break;
 }
 else if (centroid.x >= frame->width/1.01)
 {
 write_char(hCom, 0x51);
 break;
 }
 else if (centroid.x > frame->width/1.6 && centroid.x
< frame->width/1.01)
 {
 write_char(hCom, 0x52);

 clearFrames(capture, frame, 30);
 message = read_char(hCom);

 if (message == 0x10)
 {
 choice = 1;
 select = 3;
 }
 else printf("\nError! Invalid message
received\n");

 clearFrames(capture, frame, 1);
 break;
 }
 else
 {
 break;
 }
 }
 case 2: //handle dump and trash
 {
 if (choice == 1)
 {
 write_char(hCom, 0x60);
 }
 else if (choice == 2)
 {
 write_char(hCom, 0x61);
 }
 else printf("\nError with choice value!\n");

[23]

 clearFrames(capture, frame, 30);
 message = read_char(hCom);

 if (message == 0x11)
 {
 choice = 2;
 select = 3;
 }
 else if (message == 0x12)
 {
 choice = 0;
 select = 3;
 }
 else printf("\nError! Invalid message received\n");
 break;
 }
 case 4:
 {
 if (centroid.x <= frame->width/2.6)
 {
 write_char(hCom, 0x50);
 break;
 }
 else if (centroid.x >= frame->width/1.85)
 {
 write_char(hCom, 0x51);
 break;
 }
 else
 {
 write_char(hCom, 0xFE);
 select = 0;
 break;
 }
 drop = true;
 }
 default:
 {
 printf("\nError: Invalid case\n");
 break;
 }
 }
 }
 else
 {
 write_char(hCom, 0xFF);
 drop = true;
 }
 }
 else
 {
 write_char(hCom, 0xFF);
 drop = true;
 }

[24]

 cvRenderBlobs(labelImg, blobs, frame, frame, CV_BLOB_RENDER_BOUNDING_BOX);
 cvUpdateTracks(blobs, tracks, 200.0, 5);
 cvRenderTracks(tracks, frame, frame,
CV_TRACK_RENDER_ID|CV_TRACK_RENDER_BOUNDING_BOX);

 cvShowImage("Blob Tracking Method", frame);

 cvReleaseImage(&labelImg);
 cvReleaseImage(&HSVOut);
 cvReleaseImage(&HSVFrame);

 k = cvWaitKey(25)&0xff;
 switch (k)
 {
 case 27:
 case 'q':
 case 'Q':
 quit = true;
 break;
 }

 cvReleaseBlobs(blobs);

 }

