BreakfastBot

David Box

April 24,2012

University of Florida
Department of Electrical and Computer Engineering
EEL 5666C - IMDL - Final Written Report
Instructors: A. Antonio Arroyo, Eric M. Schwartz
TAs: Ryan Stevens, Josh Weaver, and Tim Martin

Table of Contents

PN 0 151 o i Lot o 3
EXecutive SUMMArycccciiiii i e e e e e s 3
|58 oo Yo L0 Uox u (o) o FO U 4
Integrated SYSteIM.......coii i e s 5
| 3d =T (0) s s o F R 7
ot 011 X 10) o 10
Y0 8 1Y 0 13
3 1) 6T 1% [0 of T 14
Experimental Layout and Results..........cceoviiiiiiieiiiniie e 15
(070 s el 1053 T) s U 18
| DL Y0010 1<) 0N 10) o 20
APPENAICES ...ttt et e e e e e e e e 21

Abstract

Given the pace of modern day lives many people leave for work or
school without having a healthy breakfast. Research by health
professionals commonly shows that having a breakfast is the key for an
individual to unlock his or her peak performance and efficiency. Many
people choose to maximize their sleep and therefore have very little
time in the morning to cook. This paper describes the BreakfastBot
which automates your breakfast cooking to save a person precious time
in the morning. This robot will cook one of the best breakfast options
there is: eggs.

Executive Summary

BreakfastBot is a robot designed to autonomously cook any user
some delicious eggs. In order to accomplish this task on a college
student’s budget this robot has a novel architecture and platform. This
robot is easily broken up into three major components: the mechanical,
electrical, and computer components. This section will detail a
summary of the most salient aspects of each of these components.

The mechanical component of the system is responsible for
providing the structure for the 1’x1’x1’ of workable area. In order to
accomplish this task this system was made out of the study but light
1/8” aluminum. Straight pieces and L-beams were used to provide most
of the structure with a piece of square tubing with a slot providing the
moving along the main frame’s length. Bearings were moved along a
track powdered with graphite for one direction of movement. A bolt was
moved along the slot underneath the square tubing for another
direction of movement. Finally, the third axis of movement was directly
mounted to the aforementioned bolt. In addition to the pieces of
aluminum, a lot of wood was used for height adjustments for the
system.

The main electrical components consist of pressure sensors, a
touchscreen, linear actuators, servos, optical distance sensors, many
amplifiers and drivers to make everything work. In order to provide

enough power for all of these components a large 12V 7A power supply
is utilized for the major components like the actuators. Additionally, 5V
and 3.3V supplies are utilized. LM741 op amps are used to boost the
output for analog signals like from the pressure sensors. Several
mechanical and solid-state relays are used to provide precise and quick
control of major components.

In order to provide the logic for the entire system two 32-bit ARM
microcontrollers were used. The mbed NXP LPC1768 microcontrollers
were preferred for this project for their high clock rate of 96MHz. This
clock rate is useful to control this system because it requires a lot of
temporal precision. In addition, I've wanted to become familiar with the
ARM architecture and libraries for some time. Two mbeds were
necessary because of the lack of peripheral ports, namely the serial and
analogln (which contain an ADC) ports. An arm-gcc compiler was used
to program the controllers over an USB interface.

Introduction

Many people know from personal experience that their
performance throughout the day suffers if you don’t eat breakfast (1.
Yet, many people’s modern lives cause them to habitually miss
breakfast. | am proposing a robotic solution to this problem that will
minimize the human involvement in the making of eggs. Eggs are
considered one of if not the best breakfast foods [21.

Once the eggs are loaded into the robot and the options are
selected on a touchscreen the robot will kick into action producing the
amount of egg specified, scooped onto a plate for easy consumption. In
a practical application, I could see a person just waking up, loading the
eggs, then getting dressed and ready (possibly taking a shower), and
then walking back to the robot with the eggs already prepared. The
main overall objective is to be able to make high-quality eggs
autonomously (by high-quality I mean without mishaps like having egg
shells in the final dish served). A secondary objective is to speed up the

egg making process as much as possible to reduce the time that would
have to be spent waiting for the eggs.

In this paper [will be describing the details of operation of the
BreakfastBot. Each subsequent section will focus on one of the major
aspects of developing a robot. In particular I will describe the
integrated system, platform, actuation, sensors, and behaviors of the
robot followed by the results and conclusion.

Integrated System

Everything starts with the user loading the eggs into the pan
attached to the robot and the user making the selections on a
touchscreen. The options I will offer will be how many eggs to scramble
and when to start. Once these steps have been fulfilled and the user
presses the on-screen button to start the robot, the robot will begin the
cooking process. Output is displayed real-time to the LCD touchscreen
to notify the user of the robot’s progress.

12" Linear
Actuators (x3)

[LCD h

Touchscreen
. (2.4"))

Figure 1: High-level Diagram of System Components

((15 oz/in) pan))) B N\
servo - 150 Ethernet 1Ib touch sensor
____range) mbed 2 0S| mbed1 | with
. amplification)
[(20 oz/in) tilt)
servo - 160 r ~
\ range J | Mechanical AC
rela
() _/ k) . y J
(10-80 cm) IR
sensor r 2
q J Solid-state DC
r N relay (x2)
(4-30 cm) IR ~
sensor

The system is extremely sensitive to precision both mechanical
and temporal. For this reason the system platform has to be put
together very carefully and needs to be calibrated so that everything is
level. The position of the skillet can be moved in the x-direction (length-
wise) with the addition of IR sensors but needs to be placed in the
“correct” place with regard to it’s angle and y-direction. The IR sensors
for the skillet and plate detect how far aware each component is from
the stands the main frame rests on. With this information the system
can cook the eggs. Figure 1 shows a high-level diagram of the
components involved.

Once the system has been powered on and the power switches are
in the “on” position, the system is waiting for the user to supply the egg
batter and make the corresponding options on the LCD touchscreen.
Once the selections have been made the system follows a routine like
outlined in Figure 2. The initialization involves setting the right
position and actuation values so that every subsequent procedure meets
the accuracy requirements. In addition, the skillet is turned on via an
AC relay and the eggs begin to cook.

Initialize /preheat F‘
‘ Stir Egg

Figure 2: High-Level Flow Diagram of Cooking Eggs with BreakfastBot

Once the eggs have cooked enough that they need to be stirred
(which depends on the amount of eggs but into the skillet), the stir
routine is begun. The optical infrared sensor locates the skillet with
relation to the stand and the linear actuators are put to work. The egg
contents are stirred four times spaced out between a little over two
minutes. The egg contents will eventually thicken and become ready to
scoop onto a plate. A pressure sensor determines how many times the
robot needs to attempt to scoop based on if it senses the egg contents’
weight.

The main objective of preparing eggs and delivering them to the
user on a plate is completed with the weight of the cooked eggs sensed.
Originally the system was going to crack and stir eggs but this proved to
be infeasible given the components [was able to buy. Many additional
substructures and subsystems were developed that didn’t make it into
the final system. Although the final system went through many
revisions throughout the semester as challenges arouse I am very happy
with this objective completed.

Platform

The mechanical component is quite unusual for a robot. In order
to save on costs linear actuators were used for linear motion that
necessitated a large platform. This proved to be a daunting but exciting
task for a computer engineering major (like myself) to undertake.
Ninety percent of the platform was made out of aluminum to save on
weight but to provide sturdiness that wood couldn’t provide. The main
frame for the platform houses the linear actuators and is the most
mechanically complex part of the project. Four perforated angle iron
beams form the basis of the design. Several solid pieces of 1/8” angle
iron connect the frame together and are doubled up in several places to
provide extra sturdiness. A square piece of tubing provides is used as a
push rod for one of the linear actuators that is mounted in the center of
the platform. The square tubing is moved by free spinning bearings
along a track made with metal dowels and powdered with graphite.
Underneath this push rod, a slot was drilled lengthwise so that another
linear actuator also mounted underneath can linearly push a bolt.

Finally, the third linear actuator is mounted to this bolt so that it can
provide vertical actuation. All together this frame is 4’Lx3’'Wx30”H.

Figure 3: Platform from Front View

A pan/tilt system is mounted to the vertical linear actuator to
provide ample motion for a spatula mounted underneath. To directly
mount the spatula to the tilt bracket, two collars where attached
horizontally to mount the spatula flush to the ground. Throughout the
semester the overall height of the system was adjusted as the
prototyping necessitated. In order to accommodate doorways and the
height demands, the main frame is set on top of two metal stands with a
5/8” wooden platform on top. Additionally, another entirely wooden
4’L x 2’'W x 5 3/4”H frame was constructed to act as a standoff for the
skillet from the ground. Clamps, U-Bolts, and brackets where used
extensively to mount and level-off actuators and sensors. The entire
system’s success relies heavily on precision so a level was used
extensively to make the mechanical aspects of the system adequate.

Figure 4: Platform Side View

This project ended up being a lot more difficult mechanically than
[originally realized. Apart of the reason why was the need to go with
the linear actuators instead of a CNC Router-like design because of cost
constraints. A lot of the mechanical difficulties encountered were
because the precision needed and my limited knowledge of mechanical
components. Fortunately I learned a lot quick and know much more
about mechanical parts, tools, and methods. I have also learned my way
around a hardware store and many store employees have gotten to
know me.

One of the most challenging and embarrassing lessons learned in
developing the platform was getting the push rod to work well. 1
attached one linear actuator in the middle and attached two bearings to
each end but this didn’t work nearly as well as I initially thought it
would. [spent a lot of time tightening/loosening the tracks, making
things more level, and considered some drastic measures to get the
actuator mounted. In the end I just needed to remember some basics

about torque and friction. Simply separating the bearings and putting
graphite along the track worked like a charm.

Actuation

In order to achieve the task of cooking an egg it was determined
that this system would need a large “workable” area. The robot would
then need to be able to manipulate objects within this area. Three linear
actuators each with 12” strokes [3] [4] were attached to the metal
platform to give this robot a cubic foot of workspace. Attached to the
end of the vertical linear actuator is a pan and tilt system powered by
small, lightweight servomotors. This pan and tilt system theoretically
allows up to 180 degrees of rotation each although in real world tests
the max rotation was around 150 degrees.

The linear actuators were by far the most crucial and most
frustrating part of the design. The linear actuators were much cheaper
than the alternatives considered for the main movement however this
robot uses them in a way that they weren’t originally designed for. Each
linear actuator has a potentiometer for feedback and is powered and
controlled by a driver that contains an 8-bit PIC running a PID
controller. Originally when the linear actuators were bought I tuned
and scaled the feedback so that the performance and precision was
within the systems requirements. However, as the semester wore on
the performance of the linear actuators gradually degraded and the PID
controller and feedback scale needed to be continuously tweaked. In
addition, the drivers for the actuators started to show anomalous
behavior. A lot of debugging went into continuously tweaking the linear
actuators and debugging the erratic behavior. Some of the issues were
solved by continuously empting the buffers (although with simple serial
communication this shouldn’t have been the case). In the final
implementation the linear actuators are very conservatively initialized
and run.

Servomotors [5] [6] are used extensively in the stirring and
scooping of the eggs as they provide the angular actuation. A pan and
tilt system powered by the servomotors has been tested for about 150°
total rotation. At 15 oz/in pan and 20 oz/in tilt this system provides

10

more than enough torque to accomplish its objectives. Figure 5 shows
the pan and tilt system being put to use scooping the egg contents onto
a plate.

Figure 5: Scooping the Eggs onto a Plate

Initially this project also incorporated linear solenoids with 1”
strokes to crack eggs. The solenoids had a spring attached to them to
make them into the “pull” type (Figure 6). The ends of the strokes had
very sharp blades to crack eggs. Also, a sevo-powered claw was used to
manipulate the workspace but with a redesign of the egg cooking
process a spatula directly mounted to the pan/tilt bracket was found to
be optimal. Finally, a servomotor was attached to a cup holder to pour
the egg batter for the robot (Figure 7). While this worked really well,
the final design didn’t call for this to be necessary as the egg batter can

11

be directly poured into the pan. In the future, this system can be used
when you want to cook more than just eggs.

Flgure 6: Egg Cracklng Subsystem w1th Lmear Solen01ds

12

Figure 7: Egg Pouring Station with High Torque Servomotor

Sensors

A touchscreen [7] will be used to allow the user to make the
different selections for the robot. This screen will also be used to give
feedback to the user on which stage the robot is currently undergoing
and to notify the user that the task has been completed. In order to
control this 2.4” LCD touchscreen from Vizic Technologies, several
images are preloaded on to a SDHC memory card for recall. The LCD is
continually updated via a serial interface. The feedback from the
capacitive screen is continually read and responded to.

IR distance sensors [8] are used to know the distance from the
skillet and plate to the edge of wooden platform it rests on (Figure 8).
This information is used to know where to stir, scoop, and deposit the
eggs. In order to get the most accurate reading as possible I selected the
IR sensors so that they had a big voltage drop-off between the 4” to 16”
distance that | would need to be measuring in. Through testing [found

13

that taking the median instead of the mean of 21 values gives the most
reliable result. Since I can store up to 64-bit integer number I could
keep taking more samples for the median but this becomes
computationally too complex since [must then sort the number
(selection sort). In order to get the reading I'm using the onboard 12-bit
ADC that refreshes 200 KHz which is more than enough for this sensor.
However, since this system requires %" precision in order to properly
work this system’s error combined with the error from the linear
actuators feedback cause the system to become unstable. For more
information on this problem see the results section.

Figure 8: IR Sensor attached to handle of Electric Skillet

My special sensors are my pressure sensors that detect where the
eggs have been placed and are used to know if the robot has deposited
the eggs on the plate. If the scooping process fails the procedure is
repeated until the eggs are properly dropped onto the plate. Since the
eggs have little weight, [went with the Interlink Electronics FSR 406 [9]
pressure sensors. These sensors are designed to work with forces as
little as .1N and up to 10N (roughly 0 to 16 0z). At 43.69mm of area the

14

pads are also small which is beneficial since the eggs are small. The
sensor has two leads change resistance based on how much pressure is
applied. Just directly reading back the voltage on my analog ports on
my microprocessor I can read high-pressure changes but miss the small
changes in pressure. In order to get a better reading [am using a
Microchip Technology MCP6004 Op Amp to boost the Voltage reading
into my microprocessors analog port’s dynamic range.

Behaviors

Much of the behavior for this robot is predicated on the accurate
physical and temporal precision. Therefore a lot of the effort for this
robot was getting the accuracy [needed. Given the components that |
had a budget for this robot is very integrated as opposed to modular. If
a small modification is done to one component the consequences often
affect every other component. One possible solution to this challenge is
to add sensors that will detect position and pressure against the main
components. One of the original attempts for this was to attach tiny
pressure sensors [9] to the “pads” at the end of the claw. However, the
error from the sensor was amplified from the drastic changes in heat
due to the electric skillet. The error from the sensor coupled with the
error from the linear actuators proved to cause too much imprecision to
rely on this method. The final nail in the coffin was when the pressure
sensor actually melted to the claw due from it accidently resting on the
skillet during operation. Another attempt has been to incorporate IR
sensors [8] but since the linear actuators are already on the upper limit
of the amount of precision needed the additional error from the sensors
seems to still cause the procedure to fail.

The solution to these problems has been to tweak the PID
controller so that the settings are very conservative. In addition, I have
relaxed my linear actuator positioning routines so that they make sure
that the feedback is within the %4” needed precision range. This causes
the robot to move slowly but this ensures acceptable behavior. This
robot also requires precise timing which is carried out using a Timer
that runs in it's own thread.

15

Experimental Layout and Results

The main objective of this project has been to be able to reliably
put some cooked eggs on a plate. The final routine has been run nine
times now and only failed to place the eggs on the plate once
(represented in Figure 9). Given the challenge-level of this project I am
happy with this result.

Cooked Eggs on Plate

& Success

& Failure

Figure 9: Success Rate of Cooked Eggs on a Plate from Testing

While the overall success rate is really the only results that
ultimately matter there are several other results that have a huge
impact on that success. The metric with the biggest impact on overall
success is whether the linear actuators actually meet their target. The
linear actuators started off being pretty good about getting close
(determined by the feedback) to what their target was any given time.
Despite the PID controller, as time went on the performance degraded.
Unfortunately I didn’t keep any metrics on the target error when I first
got the linear actuators but I did collect this information for the y-
direction linear actuator (the one used most often). Figure 10 shows
what the error is from the target to the final stop’s scaled feedback
moving 6” both ways a total of 20 times. These results show that with

16

the final tweaks to the PID controller [am getting acceptable or better
results over 75% of the time.

Error between Target and Feedback

' £ <1/8" (Good)
E<1/4" but > 1/8" (Acceptable)

>1/4" (Bad)

Figure10: Error between Target and Feedback (Good - 2, Acceptable - 15, Bad - 3)

Another source of error that has to be taken into account is in the
distance measurement from the IR sensors. Since the linear actuators
are very close to the maximum error threshold (and in a few cases
already over), the IR sensors didn’t have much room for error. For this
test I moved took several samples with each sample consisting of the
median of 21 measurements with 200ms spaced between each
measurement. For my experiment I look at the error in the range from
10 to 20 cm (4-8inch). The ADC I'm using is sampling with 12-bits so
with this voltage drop from Figure 10 (2.4-1.4V) I should see the hex
range of 0xBA2-0x6C9. This gives me a range of about 10 bits, which is
pretty good. Unfortunately in practice I was only getting 6-8 bits of
resolution depending on where the sensor was in relation to the curve
in Figure 11. Practicing with this resolution didn’t seem to allow the stir
and scoop parts of the routine ample enough accuracy so that they
didn’t hit the clamps for the skillet or miss the pan entirely. I really
don’t think that this is the IR sensor fault at all. I think the main
problem is that the linear actuators are already on the edge of being too
inaccurate to work and adding any source of error, no matter how small,
is causing failure.

17

GP2Y0A21YK

e W hile paper
(Reflective rato:90%)
mmmm. Gray paper
(Reflective ratio: I8%)

Analog output voltage Vi, (V)

() 10 20 30 40 50 60 70 30

Distance 1o reflective object L (¢m)

Figure 11: Expect output Voltage for IR Sensor from Sharp (Manufacturer)

Conclusion

This was a very challenging project for me to work on and [am
very excited with the work that got accomplished. I developed a major
platform, pushed the limits of linear actuator accuracy, integrated a
pan/tilt system, built my own software and libraries for several
components, included several sensors, and much more. A lot of
unexpected challenges arose and sense this project was always very
highly integrated this cause several redesigns of the entire system.
However, I stuck with this project and proved very adaptable.

I believe cooking breakfast is a very hard task for a robot to do
especially given the time limit of one semester and the budget of a
college student. Working within my limits as one college student and
with the components I could afford is an important accomplishment in

18

and of itself (although I did stretch my budget quite a bit further than I
intended to). Given the amount of money I spent at the end [would
have made several changes to my parts list had I prepared to spend that
amount from the beginning. The most crucial part would have been to
trade the linear actuators for a full-blown CNC Router design. These
designs go into 3D printers and other systems and are known to achieve
accuracies of .1 mm. This would allow me to easily incorporate IR and
other sensors into my design without worry of the compounding error.

Another important component would have been to get a much
stronger/more accurate claw. [started to run out of money when I
bought the claw and [purchased one that wasn’t up to the task to firmly
griping an egg. Some claws (really expensive ones) even have tactile
feedback built-in so that [would have been able to know how hard to
grip the egg without breaking it. Had I been able to buy these more
expensive components I believe I would have been able to crack eggs as
[originally hoped to.

[was aware from early in the semester that my robot was going to
be big and that it’s size would cause it to be difficult for me to move
around. However, I drastically underestimated how much of a burden
this would be and I would highly advise other students to not undertake
tasks that require big robots. In addition, I also would have been more
careful to not be stuck with such high accuracy requirements had I
started this project over again.

[have many plans to improve my next breakfast robot. The first
step is going to be to buy the more expensive components that are
actually designed for this sort of precision work. With the more
advanced system [will work towards adding more breakfast foods and
much more flexibility to the software running the robot. I also plan to
use a higher end microcontroller that has all the peripherals I need so
that I'm not running with two microcontrollers. I think building the
microcontroller myself might be a fun project in itself.

Most importantly I've had a lot of fun working on this project and

[have learned tons about robotics through this course. I would highly
recommend it to any senior or graduate student!

19

References

[1] John A. Seibel, MD, “Why Breakfast is the Most Important Meal”,
http://www.webmd.com/diet/guide/most-important-meal, WebMD,
February 3, 2012

[2] Fiona Macrae, “Breakfast like a king: Why a high fat bacon and eggs

meal is the healthiest start to the day”,

http://www.dailymail.co.uk/health /article-1262453 /High-fat-bacon-

eggs-breakfast-healthiest-start-day.html, Mail Online, March 31st 2010

[3] Concentric LACT12P-12V-20 Linear actuator with Feedback: 12”
Stroke, 12V, 0.5” /s, Pololu, www.pololu.com/catalog/product/2313

[4] Concentric LACT12P-12V-5 Linear actuator with Feedback: 12”
Stroke, 12V, 1.7” /s, Pololu, www.pololu.com/catalog/product/2327

[5] Servo — Medium, Sparkfun Electronics, ROB-10333,
www.sparkfun.com/products/10333

[6] Servo - Small, Sparkfun Electronics, ROB-09065,
www.sparkfun.com/products/9065

[7] SMARTGPU, Vizic Technologies, vizictechnologies.com/# /smart-
gpu4554296549

[8] Sharp GP2Y0OA21YKOF Analog Distance Sensor 10-80cm, Pololu,
www.pololu.com/catalog/product/136

[9] Interlink Electronics FSR 406, Interlink Electronics,
http://www.interlinkelectronics.com/Product/Standard-406-FSR

[10] mbed NXP LPC1768, ARM microcontroller, MBED,
http://mbed.org/handbook/mbed-NXP-LPC1768

20

Appendices

breakfastBotProto.cpp - used for main controller mbed1

#include "mbed.h"
#include "SMARTGPU.h"
#include "MyEthernet.h"
#include <string>

SMARTGPU lcd(p28,p27,p26); //(TX,RX,Reset);

DigitalOut acRelay(p21);

DigitalOut led1(LED1);

DigitalOut led2(LED2);

//Each time we use the touchscreen we must define a int array that
stores the X and Y readed or touched coordinates.

int touch[2];

Analogln pressure_sensor(p20); //used for pressure sensor reading
(under plate)

void straightLine(int height, int thickness, int color) {
int xstart, xend, i;
xstart = 0;
xend = 320;

for (i=0; i< thickness; i++) {
lcd.drawLine(xstart, height+i, xend, height+i, color);

}
}

/* Screen that displays output when robot in operation */
void inOperationScreen(string output[]) {

lcd.erase();

int numOutputLines = 5;

char *lcdout = (char*)malloc(sizeof(char) * 25+1); //Can only
output 25 characters per line (+1 for terminating null char)

21

//lcd.string(10,5,310,25,BLACK,FONT4,TRANS,"Output from
operation:");
straightLine(30,4,BLACK);
inti=0;
for (i; isnumOutputLines; i++) {
strcpy(lcdout, output[i].c_str());
lcd.string(5,40+i*28,315,58+i*28,BLACK,FONT3,TRANS,lcdout);
}
straightLine(180,4,BLACK);
// lcd.imageSD(90,190,"resetbtn");
free(lcdout);

}

int main() {

string output[5]; //For output on inProgress Screen of LCD (for debug
output) [FIRST ITERATION]

/* INITIALIZE LCD */

lcd.reset(); //physically reset SMARTGPU

lcd.start(); //initialize the SMARTGPU processor

lcd.baudChange(2000000); //set high baud for comm with LCD

lcd.setScreenBackground(WHITE); //set background to white

/* END INIT LCD */

/* Declare and Init */

unsigned char numEggs = 0; //number of eggs to make (currently 1-
3)

bool inOperation = false; //when false display selection screen on
LCD; when true display inProgress screen with debug output

bool change = true; //when change == true we need a screen refresh
on LCD

bool readyForBreakfast = true;

bool preheat = true;

bool stir = false;

bool scoop = false;

string txstr;
string rxstr;
MyEthernet eth;
char buffer[6];

string dis;

22

acRelay = 0;

led1 =0;

led2 = 0;

/* End Declare and Init */

eth.waitForLink();
wait(1);

while (1) {
if (!linOperation) {
if (change) {

lcd.erase();

change = false;

readyForBreakfast = true;

lcd.string(10,5,240,25,BLACK,FONT4,TRANS,"Number of

Eggs:");

/* Draw Number of Egg Button Array (Horz) */

if (numEggs ==1){
lcd.imageSD(10,35,"1btnalt");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btn");

} else if (numEggs == 2) {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btnalt");
lcd.imageSD(160,35,"3btn");

} else if (numEggs == 3) {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btnalt");

} else {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btn");

}

straightLine(80,4,BLACK);

/* End of Button Array (EGGS) */

//lcd.string(10,90,240,115,BLACK,FONT4,TRANS,"Options:");

/* No options for now :(*/

23

straightLine(180,4,BLACK);
lcd.imageSD(90,190,"startbtn");

}

/* Wait for touch to do something */
while (Icd.touchScreen(touch)==0);

//check for touch at number of eggs row
if (touch[YCOORD]>33 && touch[YCOORD]<72) {
if (touch[XCOORD]>8 && touch[XCOORD]<72) {
numEggs = 1;
change = true;
} else if (touch[XCOORD]>83 && touch[XCOORD]<142) {
numkEggs = 2;
change = true;
} else if (touch[XCOORD]>158 && touch[XCOORD]<222) {
numEggs = 3;
change = true;
}
} /* touch at number of eggs row (if) */
//check for touch at start main program
else if (touch[YCOORD]>188 && touch[XCOORD]<240) {
if (touch[XCOORD]>88 && touch[XCOORD]<172) {
if (numEggs > 0) { /* else keep at same screen and wait for
user to make selection */
inOperation = true;
change = true;
}
}

} /* touch at start button location (else if) */
} /* if linOperation */
else { //we are inOperation
if (change) {
change = false;
dis = "Preheat stage";
output[0] = dis;
output[1] =" "
output[2] =" "
[

n

output[3] =" ;

24

output[4] =" "
inOperationScreen(output);
if (readyForBreakfast) {
readyForBreakfast = false;
/* Begin Breakfast Routine */
if (preheat){
acRelay = 1;
wait(4*60);
change = true;
preheat = false;
stir = true;
dis = "Stir stage";
output[1] = dis;
inOperationScreen(output);
}
if (stir){
txstr="s";
eth.txPKT (txstr);
rxstr = eth.rxPKT();
led1 =1;
change = true;
stir = false;
scoop = true;
dis = "Scoop stage";
output[2] = dis;
inOperationScreen(output);
}
if (scoop){
wait(60);
acRelay = 0;
txstr ="c';
eth.txPKT (txstr);
rxstr = eth.rxPKT();
//while(pressure_sensor <.8){
//eth.txPKT(txstr);
//rxstr = eth.rxPKT();
/1}
led2 =1;
output[0] =" "

25

output[1] =" "
output[2] =" "
inOperation = false;
change = true;

preheat = true;

scoop = false;

}
} /* if readyForBreakfast */
} /* if change */

} /* else (inOperation) */

} /* main while loop */
} /* int main function */

motionProto: used for mbed?2

/*

* Controlling linear actuators (x3) and servo motors for pan/tilt/bowl

* using jrk21v3 to controll linear actuators (one driver for each lin act)

* LinAct Range: 0-4000
*/

#include "mbed.h"
#include "Servo.h"
#include "MyEthernet.h"
#include <string>
#include <stdio.h>

Serial linactx(p9,p10);
Serial linacty(p13,p14);
Serial linactz(p28,p27);
Servo pan(p21);

Servo tilt(p22);

Servo bowl(p23);

Timer counter;

DigitalOut led1(LED1);

26

DigitalOut led2(LED2);
DigitalOut led3(LED3);

Serial pc(USBTX, USBRX);

int moveLinActx(int position);
int moveLinActy(int position);
int moveLinActz(int position);
void flushSerialBufferX(void) {
char charl = 0;
while (linactx.readable()) {
charl = linactx.getc();

}

return;
}
void flushSerialBufferY(void) {
char charl = 0;
while (linacty.readable()) {
charl = linacty.getc();

}

return;
}
void flushSerialBufferZ(void) {
char charl = 0;
while (linactz.readable()) {
charl = linactz.getc();

}

return;

}

int main() {
float panRange = 0.0008;
float panPosition = 0.0;
float tiltRange = 0.0009;
float tiltPosition = 0.7;
float bowlRange = 0.0009;
float bowlPosition = 0.0;

pan.calibrate(panRange, 45.0);

tilt.calibrate(tiltRange, 45.0);
bowl.calibrate(bowlRange, 45.0);

pan = panPosition;
tilt = tiltPosition;
bowl = bowlPosition;

//Static variables for the Stir Command!!!
int eggPanX = 4000;

int startEggPanY = 4000;

int eggPanZ = 2850;

int endEggPanY = 800;
int liftZ = 1600;

float stirTimer = 2.2*60;
int maxStirCount = 4;
int tipTimer = 15;

int panForward = 0;
int tiltStir = .7;

//ethernet

char rxchar;

float rxfloat;

string rxString, txString;
MyEthernet eth;

eth.waitForLink();
led1 =1;

while (1) {
//pc.printf("Input Command: ");
rxString = eth.rxPKT();
led2 =1;
sscanf(rxString.c_str(), "%c", &rxchar);
pc.printf("rx char = %c\r\n", rxchar);
switch (rxchar) {

28

case 's'":
//get starting and ending position of the egg pan (static
variables)
//start a timer for how long to do this
//begin from one end and go to other
pc.printf("\r\n Init\r\n");
led3 =1;
tilt =.7;
pan = 0;
moveLinActz(liftZ);
moveLinActx(eggPanX);
moveLinActy(startEggPanY);
moveLinActz(eggPanZ);
pc.printf("\r\n Start\r\n");
counter.start();
int stirCount = 0;
while (stirCount < maxStirCount) {
if (counter.read()>stirTimer) {
moveLinActy(endEggPanY+750);
moveLinActz(liftZ+550);
moveLinActy(endEggPanY);
moveLinActz(eggPanZ);
moveLinActy(startEggPanY-900);
moveLinActz(liftZ+550);
moveLinActy(startEggPanY);
moveLinActz(eggPanZ);
counter.stop();
counter.reset();
counter.start();
stirCount = stirCount+1;
//pc.printf("while\r\n");
}
wait(30);
pc.printf("Counter=%f\r\n", counter.read());
}
counter.stop();
counter.reset();
moveLinActz(liftZ);
pc.printf("\r\n Done\r\n");

txString = 'd’;
eth.txPKT(txString);
break;
case 'c":
pc.printf("\r\n Init\r\n");
tilt =.7;
pan = 0;
/* move egg clump to oposite side and get into position*/
moveLinActz(liftZ);
moveLinActx(eggPanX);
moveLinActy(startEggPanY);
moveLinActz(eggPanZ);
moveLinActy(endEggPanY+750);
moveLinActz(liftZ);
moveLinActy(startEggPanY);
/* in position */
pc.printf("\r\n Start\r\n");
for (inti=0; i< 1; i++) { //one go
moveLinActz(eggPanZ);
moveLinActy(startEggPanY-600); //y=3400
tilt = .6;
wait(.1);
tilt =.5;
wait(.1);
moveLinActz(eggPanZ+200); // z=2850
tilt = .4;
moveLinActz(eggPanZ+300); // z=2950
tilt =.3;
moveLinActz(eggPanZ+450); // z=3100
moveLinActy(startEggPanY-1250); //y=2750
tilt =.2;
moveLinActz(eggPanZ+650); // z=3300
moveLinActy(startEggPanY-1550); //y=2450
tilt =.1;
tilt = 0;
moveLinActz(liftZ+800); //z=2400
wait(1);
moveLinActy(endEggPanY); //y=800
tilt =.7;

30

wait(3);
moveLinActz(liftZ);
wait(2);
moveLinActy(startEggPanY);
pc.printf("\r\n For\r\n");

}

pc.printf("\r\n Done\r\n");

txString = 'd’;

eth.txPKT(txString);

break;

case 't":

bowl =.9;

wait(tipTimer);

bowl =.0;

txString = 'd’;

eth.txPKT(txString);

break;

}
}
}

int moveLinActx(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 50;
while (!done) {
flushSerialBufferX();
target = -9999;
feedback = -1;
while (1) {
if (linactx.writeable()) {
linactx.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}
while (1) {
if (linactx.writeable()) {

31

linactx.putc((position >> 5) & 0x7F);
break;
}
pc.printf("\t\t\tpos2 putc while loop\r\n");
}

while (1) {
if (linactx.writeable()) {
linactx.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferX();
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}
lowB = 0;
highB=0;

32

c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
target = lowB + (highB << 8);

break;
}
target = -9999;
c=c+l;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
}

pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;
prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
feedback = lowB + (highB << 8);
break;

}

33

feedback = -1;
c=c+1;
}
while (feedback>4095) {
flushSerialBufferX();
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
feedback = lowB + (highB << 8);
break;
)
feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;

} else if (prevfeedback == feedback) {
break;

}

wait(1);

fcount = fcount + 1;

prevfeedback = feedback;

} /* while fcount < 20 */
} /* while !done */

pc.printf("\tX target=%i, feedback=%i\r\n", target, feedback);
return 1;

}

int moveLinActy(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 50;
while (!done) {
flushSerialBufferY();
target = -9999;
feedback = -1;
while (1) {
if (linacty.writeable()) {
linacty.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}
while (1) {
if (linacty.writeable()) {
linacty.putc((position >> 5) & 0x7F);
break;
}
pc.printf("\t\t\tpos2 putc while loop\r\n");
}

while (1) {
if (linacty.writeable()) {
linacty.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {

35

lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferY();
while (1) {
if (linacty.writeable()) {
linacty.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
}
}
pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;

36

prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linacty.writeable()) {
linacty.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;
}
while (feedback>4095) {
flushSerialBufferY();
while (1) {
if (linacty.writeable()) {
linacty.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {

37

highB = linacty.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;
} else if (prevfeedback == feedback) {
break;
}
wait(1);
fcount = fcount + 1;
prevfeedback = feedback;
} /* while fcount < 20 */
} /* while !done */
pc.printf("\tY target=%i, feedback=%i\r\n", target, feedback);
return 1;

}

int moveLinActz(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 200;
while (!done) {
flushSerialBufferZ();
target = -9999;
feedback = -1;
while (1) {
if (linactz.writeable()) {
linactz.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}

38

while (1) {
if (linactz.writeable()) {
linactz.putc((position >> 5) & 0x7F);
break;
}
pc.printf("\t\t\tpos2 putc while loop\r\n");
}

while (1) {
if (linactz.writeable()) {
linactz.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferZ();
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}

39

lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
}
pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;
prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
feedback = lowB + (highB << 8);

40

break;
}
feedback = -1;
c=c+1;
}
while (feedback>4095) {
flushSerialBufferZ();
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;
} else if (prevfeedback == feedback) {
break;
}
wait(1);
fcount = fcount + 1;
prevfeedback = feedback;

} /* while fcount < 20 */
} /* while !done */
pc.printf("\tZ target=%i, feedback=%i\r\n", target, feedback);
return 1;

}

MyEthernet.h

#ifndef MYETHERNET_H
#define MYETHERNET_H
#include <string>

class MyEthernet{

private:
Ethernet eth;

public:
MyEthernet();
string rxPKT();
void txPKT(string input);
void waitForLink();
7
#endif

MyEthernet.cpp

#include "mbed.h"
#include "MyEthernet.h"

/* IMPORTANT:
- Don't forget to wait(1) before first TX send
* This is after both sides waitForLink()
* 1 have no idea why you need to do this but it doesn't work
otherwise

*/

MyEthernet::MyEthernet(){ }

42

string MyEthernet::rxPKT(){ //pktsize is size
string retString;

while(1) {
int size = eth.receive();
if(size > 0) {

char *rxbuf = (char*)malloc(sizeof(char) * size); // the +1 is for

a null terminator
eth.read(rxbuf, size);
retString = rxbuf;
free(rxbuf);
break;

}
}

return retString;

}

void MyEthernet::txPKT(string input){

char *txbuf = (char*)malloc(sizeof(char) * input.length()+1); //+1
for null terminator

strcpy(txbuf, input.c_str());

eth.write(txbuf, input.length()+1);

eth.send();

free(txbuf);

}

void MyEthernet::waitForLink(){
int linkval = 0;
while(!linkval){
linkval = eth.link();
}
}

analogINtoPC.cpp
#include "mbed.h"

Analogln ain(p20);
Serial pc(USBTX, USBRX);

43

int main() {
long unsigned temp;
while (1) {
long unsigned reg[7] = {0,0,0,0,0,0,0};
wait(1);
for (inti=0;i<7;i++){
temp = (ain.read_ul6()>>4);
printf("\ttmp = 0x%04X\r\n", temp);
reg[i] = temp;
wait(.2);
}
//selection sort
int position;
int min;

for (position = 0; position < 6; position++) {
min = position;

for (inti = position+1;i < 6; i++) {
if (reg[i] < reg[min]) {
min = i;
}
}
if (min != position) {
temp = reg[position];
reg[position] = reg[min];
reg[min] = temp;
}
}
pc.printf("ain = 0x%04X\r\n", reg[3]);
}
}

SevroProgram - used to calibrate servos

#include "mbed.h"
#include "Servo.h"

44

Servo myservo(p21);
Serial pc(USBTX, USBRX);

int main() {
printf("Servo Calibration Controls:\n");
printf("1,2,3 - Position Servo (full left, middle, full right)\n");
printf("4,5 - Decrease or Increase range\n");

float range = 0.0005;
float position = 0.5;

while(1) {

switch(pc.getc()) {
case '1": position = 0.0; break;
case '2": position = 0.5; break;
case '3": position = 1.0; break;
case '4": range += 0.0001; break;
case '5": range -= 0.0001; break;
case '6": position +=.1; break;
case '7": position -=.1; break;

}

if (position > 1.0)
position = 1.0;

else if(position < 0.0)
position = 0.0;

printf("position = %.1f, range = +/-%0.4f\n", position, range);

myservo.calibrate(range, 45.0);

myservo = position;

BreakfastBot - used to test code for touchscreen

#include "mbed.h"
#include "SMARTGPU.h"
#include "MyEthernet.h"
#include <string>

45

SMARTGPU lcd(p28,p27,p26); //(TX,RX,Reset);

DigitalOut acRelay(p21);

DigitalOut led1(LED1);

DigitalOut led2(LED2);

//Each time we use the touchscreen we must define a int array that
stores the X and Y readed or touched coordinates.

int touch[2];

void straightLine(int height, int thickness, int color) {
int xstart, xend, i;
xstart = 0;
xend = 320;

for (i=0; i< thickness; i++) {
lcd.drawLine(xstart, height+i, xend, height+i, color);
}
}

void inOperationScreen(string output[]) {
lcd.erase();
int numOutputLines = 5;

char *lcdout = (char*)malloc(sizeof(char) * 25+1); //Can only
output 25 characters per line (+1 for terminating null char)
lcd.string(10,5,310,25,BLACK,FONT4,TRANS,"Output from
operation:");
straightLine(30,4,BLACK);
inti=0;
for (i; isnumOutputLines; i++) {
strcpy(lcdout, output[i].c_str());
lcd.string(5,40+i*28,315,58+i*28,BLACK,FONT3,TRANS,lcdout);
}
straightLine(180,4,BLACK);
lcd.imageSD(90,190,"resetbtn");
free(lcdout);

}

int main() {

46

string output[5]; //For output on inProgress Screen of LCD (for debug
output) [FIRST ITERATION]

/* INITIALIZE LCD */

lcd.reset(); //physically reset SMARTGPU

lcd.start(); //initialize the SMARTGPU processor

lcd.baudChange(2000000); //set high baud for advanced
applications with LCD

lcd.setScreenBackground(WHITE); //set background to white

/* END INIT LCD */

unsigned char numEggs = 0; //number of eggs to make (currently 1-
3)

bool inOperation = false; //when false display selection screen on
LCD; when true display inProgress screen with debug output

bool change = true; //when change == true we need a screen refresh
on LCD

bool readyForBreakfast = true;

string txstr;
string rxstr;
MyEthernet eth;
char buffer[6];

acRelay = 0;
led1 =0;
led2 = 0;

eth.waitForLink();
wait(1);

while (1) {
if (!linOperation) {
if (change) {
lcd.erase();
change = false;
readyForBreakfast = true;
lcd.string(10,5,240,25,BLACK,FONT4,TRANS,"Number of
Eggs:");
/* Draw Number of Egg Button Array (Horz) */
if (numEggs ==1){

47

lcd.imageSD(10,35,"1btnalt");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btn");

} else if (numEggs == 2) {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btnalt");
lcd.imageSD(160,35,"3btn");

} else if (numEggs == 3) {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btnalt");

} else {
lcd.imageSD(10,35,"1btn");
lcd.imageSD(85,35,"2btn");
lcd.imageSD(160,35,"3btn");

}

straightLine(80,4,BLACK);

/* End of Button Array (EGGS) */

lcd.string(10,90,240,115,BLACK,FONT4,TRANS,"Options:");

/* No options for now :(*/

straightLine(180,4,BLACK);

lcd.imageSD(90,190,"startbtn");

/* Wait for touch to do something */
while (Icd.touchScreen(touch)==0);

//check for touch at number of eggs row

if (touch[YCOORD]>33 && touch[YCOORD]<72) {

if (touch[XCOORD]>8 && touch[XCOORD]<72) {
numEggs = 1;
change = true;

} else if (touch[XCOORD]>83 && touch[XCOORD]<142) {
numkEggs = 2;
change = true;

} else if (touch[XCOORD]>158 && touch[XCOORD]<222) {
numEggs = 3;
change = true;

}

} /* touch at number of eggs row (if) */
//check for touch at start main program
else if (touch[YCOORD]>188 && touch[XCOORD]<240) {
if (touch[XCOORD]>88 && touch[XCOORD]<172){
if (numEggs > 0) { /* else keep at same screen and wait for
user to make selection */
inOperation = true;
change = true;
}
}

} /* touch at start button location (else if) */
} /* if linOperation */
else { //we are inOperation
if (change) {
change = false;
inOperationScreen(output);
if (readyForBreakfast) {
readyForBreakfast = false;
/* Begin Breakfast Routine */
wait(60);
} /* if readyForBreakfast */
} /* if change */

} /* else (inOperation) */
} /* main while loop */
} /* int main function */

EthernetCom1 - prototype Ethernet code

#include "mbed.h"
#include <string>
#include "MyEthernet.h"

Serial pc(USBTX, USBRX); // tx, rx
string convertlnt(int number)

{

if (number == 0)

49

return "0";
string temp="";
string returnvalue="";
while (number>0)
{
temp+=number%10+48;
number/=10;
}
for (int i=0;i<temp.length();i++)
returnvalue+=temp[temp.length()-i-1];
return returnvalue;

}

int main() {
string rxString, txString;
MyEthernet x;
char buffer[6];

x.waitForLink();
pc.printf("Got Linked!\n");
rxString = x.rxPKT();
pc.printf("RX: %s\n", rxString.c_str());
txString = "I Recieved your value";
x.tXPKT(txString);
pc.printf("TX: %s\n", txString.c_str());
rxString = x.rxPKT();
pc.printf("RX: %s\n", rxString.c_str());
while(1)
{
pc.scanf("%s", &buffer);
txString.assign(buffer, 6);
pc.printf("\r\n%s\r\n", txString.c_str());
x.txPKT(txString);
rxString = x.rxPKT();
pc.printf("\r\n%s\r\n", rxString.c_str());

50

EthernetCom2 - went through sever revisions

#include "mbed.h"
#include <string>

Ethernet eth;
DigitalOut led(LED1);
DigitalOut led2(LED2);

string convertlnt(int number)
{
if (number == 0)
return "0";
string temp="";
string returnvalue="";
while (number>0)
{
temp+=number%10+48;
number/=10;
}
for (int i=0;i<temp.length();i++)
returnvalue+=temp[temp.length()-i-1];
return returnvalue;

}

string rxPKT(){ //pktsize is size
string retString;

while(1) {

int size = eth.receive();

if(size > 0) {
char *rxbuf = (char*)malloc(sizeof(char) * size); // the +1 is for

a null terminator

eth.read(rxbuf, size);
retString = rxbuf;
free(rxbuf);
break;

}
}

51

return retString;

}

void txPKT(string input){

char *txbuf = (char*)malloc(sizeof(char) * input.length()+1); //+1

for null terminator
strepy(txbuf, input.c_str());
eth.write(txbuf, input.length()+1);
eth.send();
free(txbuf);

}

void waitForLink(){
int linkval = 0;
while(!linkval){
linkval = eth.link();
}
}

int main() {
string rxString, txString;

waitForLink();
led = 'led;
wait(1);

int counter = 0;

txString = "This is a test" + convertInt(counter);
txPKT(txString);
led2 = !led?2;

rxString = rxPKT();

counter++;

txString = "This is a test" + convertInt(counter);
txPKT(txString);

led2 = !led?2;

52

txString = "Received";

while(1)
{
rxString = rxPKT();
txPKT (txString);
}
}

linactservos.cpp - test/calibrate actuation

/*

* Controlling linear actuators (x3) and servo motors for pan/tilt/bowl

* using jrk21v3 to controll linear actuators (one driver for each lin act)

* LinAct Range: 0-4000
*/

#include "mbed.h"
#include "Servo.h"

Serial linactx(p9,p10);
Serial linacty(p13,p14);
Serial linactz(p28,p27);

Servo pan(p21);
Servo tilt(p22);
Servo bowl(p23);

Analogln irskillet(p20);
Analogln irplate(p19);

Serial pc(USBTX, USBRX);

int moveLinActx(int position);
int moveLinActy(int position);
int moveLinActz(int position);

void flushSerialBufferX(void) {
char charl = 0;

53

while (linactx.readable()) {
charl = linactx.getc();

}

return;
}
void flushSerialBufferY(void) {
char charl = 0;
while (linacty.readable()) {
charl = linacty.getc();

}

return;
}
void flushSerialBufferZ(void) {
char charl = 0;
while (linactz.readable()) {
charl = linactz.getc();

}

return;

}

int main() {
int xPosition = 0.0;
int yPosition = 0.0;
int zPosition = 0.0;

float panRange = 0.0008;
float panPosition = 0;
float tiltRange = 0.0009;
float tiltPosition = 0.7;
float bowlRange = 0.0009;
float bowlPosition = 0.5;

pan.calibrate(panRange, 45.0);
tilt.calibrate(tiltRange, 45.0);
bowl.calibrate(bowlRange, 45.0);

//Static variables for the Stir Command!!!
int eggPanX = 4000;
int startEggPanY = 4000;

54

int eggPanZ = 2850;
int endEggPanY = 800;
int liftZ = 1600;

int panForward = 0;
int tiltStir = .7;

while (1) {
pc.printf("Input Command: ");
switch (pc.getc()) {

case 'x":
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%d", &xPosition);
pc.printf("\nxLinAct: position = %d\r\n", xPosition);
moveLinActx(xPosition);
break;

case'y"
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%d", &yPosition);
pc.printf("\nyLinAct: position = %d\n\n", yPosition);
moveLinActy(yPosition);
break;

case 'z":
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%d", &zPosition);
pc.printf("\nzLinAct: position = %d\n\n", zPosition);
moveLinActz(zPosition);
break;

case 'p":
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%f", &panPosition);
pc.printf("\nPan: position = %.1f, range = +/-%0.4f\n\n",

panPosition, panRange);

pan = panPosition;
break;
case 't":
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%f", &tiltPosition);
pc.printf("\nTilt: position = %.1f, range = +/-%0.4f\n\n",
tiltPosition, tiltRange);
tilt = tiltPosition;
break;
case 'b":
pc.printf("/n");
pc.printf("Input position: ");
pc.scanf("%f", &bowlPosition);
pc.printf("\nbowl: position = %.1f, range = +/-%0.4f\n\n",
bowlPosition, bowlRange);
bowl = bowlPosition;
break;
case 'c":
pc.printf("\r\n Init\r\n");
tilt =.7;
pan = 0;
/* move egg clump to oposite side and get into position*/
moveLinActz(liftZ);
moveLinActx(eggPanX);
moveLinActy(startEggPanY);
moveLinActz(eggPanZ);
moveLinActy(endEggPanY+750);
moveLinActz(liftZ);
moveLinActy(startEggPanY);
/* in position */
pc.printf("\r\n Start\r\n");
for (inti=0; i< 1; i++) { //one go
moveLinActz(eggPanZ);
moveLinActy(startEggPanY-600); //y=3400
tilt =.6;
wait(.1);
tilt =.5;
wait(.1);

moveLinActz(eggPanZ+200); // z=3050
tilt = .4;
moveLinActz(eggPanZ+300); // z=3150
tilt =.3;
moveLinActz(eggPanZ+450); // z=3300
moveLinActy(startEggPanY-1250); //y=2750
tilt =.2;
moveLinActz(eggPanZ+650); // z=3500
moveLinActy(startEggPanY-1550); //y=2450
tilt =.1;
tilt = 0;
moveLinActz(liftZ+800); //z=2400
wait(1);
moveLinActy(endEggPanY); //y=800
tilt =.7;
wait(3);
moveLinActz(liftZ);
wait(2);
moveLinActy(startEggPanY);
pc.printf("\r\n For\r\n");

}

pc.printf("\r\n Done\r\n");

break;

case 'i":

long unsigned temp, ir_reading;

long unsigned reg[21];

for (intj = 0; j<21; j++) {
reg[j] = 0;

}

for (inti=0;i<21;i++) {
temp = (ain.read_ul6()>>4);
printf("\ttmp = 0x%04X\r\n", temp);
reg[i] = temp;
wait(.2);

}

//selection sort

int position;

int min;

for (position = 0; position < 20; position++) {
min = position;

for (inti = position+1; i < 20; i++) {

if (reg[i] < reg[min]) {
min = i;
}

}
if (min != position) {
temp = reg[position];
reg[position] = reg[min];
reg[min] = temp;
}
}
ir_reading = reg[3];
if (ir_reading < 0x690) {
moveLinActx(4000);
} else if (ir_reading < 0x6D0) {
moveLinActx(3900);
} else if (ir_reading > 0x6E0) {
moveLinActx(3800);
} else if (ir_reading > 0x730) {
moveLinActx(3700);
} else if (ir_reading > 0x750) {
moveLinActx(3600);
} else if (ir_reading > 0x6E0) {
moveLinActx(3500);
} else if (ir_reading > 0x6E0) {
moveLinActx(3400);
} else if (ir_reading > 0x6E0) {
moveLinActx(3300);
} else if (ir_reading > 0x6E0) {
moveLinActx(3200);
} else if (ir_reading > 0x6E0) {
moveLinActx(3100);
} else if (ir_reading > 0x6E0) {
moveLinActx(3000);
} else if (ir_reading > 0x6E0) {
moveLinActx(2900);

} else if (ir_reading > 0x6E0) {
moveLinActx(2800);

} else if (ir_reading > 0xB00) {
moveLinActx(2700);

} else if (ir_reading > 0xB10) {
moveLinActx(2600);

} else if (ir_reading > 0xB15) {
moveLinActx(2500);

} else if (ir_reading > 0xB20) {
moveLinActx(2400);

} else {
moveLinActx(2300);

}

break;

}
}
}

int moveLinActx(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 50;
while (!done) {
flushSerialBufferX();
target = -9999;
feedback = -1;
while (1) {
if (linactx.writeable()) {
linactx.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}
while (1) {
if (linactx.writeable()) {
linactx.putc((position >> 5) & 0x7F);
break;

}
pc.printf("\t\t\tpos2 putc while loop\r\n");

59

}

while (1) {
if (linactx.writeable()) {
linactx.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferX();
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();

60

} else if (linactx.readable()) {
highB = linactx.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+l;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
}
pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;
prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;
}
while (feedback>4095) {

61

flushSerialBufferX();
while (1) {
if (linactx.writeable()) {
linactx.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactx.readable() && lowB == 0) {
lowB = linactx.getc();
} else if (linactx.readable()) {
highB = linactx.getc();
feedback = lowB + (highB << 8);
break;
)
feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;
} else if (prevfeedback == feedback) {
break;
}
wait(1);
fcount = fcount + 1;
prevfeedback = feedback;
} /* while fcount < 20 */
} /* while !done */
pc.printf("\tX target=%i, feedback=%i\r\n", target, feedback);
return 1;

int moveLinActy(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 50;
while (!done) {
flushSerialBufferY();
target = -9999;
feedback = -1;
while (1) {
if (linacty.writeable()) {
linacty.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}
while (1) {
if (linacty.writeable()) {
linacty.putc((position >> 5) & 0x7F);
break;
}
pc.printf("\t\t\tpos2 putc while loop\r\n");
}

while (1) {
if (linacty.writeable()) {
linacty.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
target = lowB + (highB << 8);

63

break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferY();
while (1) {
if (linacty.writeable()) {
linacty.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
}
}
pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;
prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linacty.writeable()) {

64

linacty.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;
}
while (feedback>4095) {
flushSerialBufferY();
while (1) {
if (linacty.writeable()) {
linacty.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linacty.readable() && lowB == 0) {
lowB = linacty.getc();
} else if (linacty.readable()) {
highB = linacty.getc();
feedback = lowB + (highB << 8);
break;

}

65

feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;
} else if (prevfeedback == feedback) {
break;
}
wait(1);
fcount = fcount + 1;
prevfeedback = feedback;
} /* while fcount < 20 */
} /* while !done */
pc.printf("\tY target=%i, feedback=%i\r\n", target, feedback);
return 1;

}

int moveLinActz(int position) {
int target, feedback, prevfeedback, fcount, lowB, highB, c;
int done=0;
int timeout = 200;
while (!done) {
flushSerialBufferZ();
target = -9999;
feedback = -1;
while (1) {
if (linactz.writeable()) {
linactz.putc(0xCO + (position & 0x1F));
break;
}
pc.printf("\t\t\tpos1 putc while loop\r\n");
}
while (1) {
if (linactz.writeable()) {
linactz.putc((position >> 5) & 0x7F);
break;

66

}
pc.printf("\t\t\tpos2 putc while loop\r\n");
}

while (1) {
if (linactz.writeable()) {
linactz.putc(0xA3);
break;
}
pc.printf("\t\t\tA3 putc while loop\r\n");
)
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
while (target>4095) {
flushSerialBufferZ();
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA3);
break;
}
pc.printf("\t\t\tA3over putc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {

67

if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
target = lowB + (highB << 8);
break;
}
target = -9999;
c=c+1;
pc.printf("c=%i, timeout=%i\r\n", c, timeout);
}
}
pc.printf("\ttarget=%i\r\n" target);
if (target ==-9999)
continue;
wait(1);
fcount = 0;
prevfeedback=-1;
while (fcount < 20) {
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB == 0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
feedback = lowB + (highB << 8);
break;
}
feedback = -1;
c=c+1;

68

}
while (feedback>4095) {

flushSerialBufferZ();
while (1) {
if (linactz.writeable()) {
linactz.putc(0xA7);
break;
}
pc.printf("\t\t\tputc while loop\r\n");
}
lowB = 0;
highB=0;
c=0;
while (c<timeout) {
if (linactz.readable() && lowB ==0) {
lowB = linactz.getc();
} else if (linactz.readable()) {
highB = linactz.getc();
feedback = lowB + (highB << 8);
break;
)
feedback = -1;
c=c+1;
}

}
if (!(feedback > target + 60 || feedback < target-60)) {

pc.printf("\t\tdone feedback=%i\r\n", feedback);
done = 1;
break;
} else if (prevfeedback == feedback) {
break;
}
wait(1);
fcount = fcount + 1;
prevfeedback = feedback;
} /* while fcount < 20 */
} /* while !done */
pc.printf("\tZ target=%i, feedback=%i\r\n", target, feedback);
return 1;

69

}

(I had several other files with code that I don’t have anymore because |
switched to another project design, in addition some of the code
attached with through several revisions ... if this code is needed I can
look and see if I can find it in one of my backups)

70

