
Date: 4/24/12

Student Name: Jonathan Krieger

E-mail: kriegerj@ufl.edu

TAs : Ryan Stevens

Tim Martin

Josh Weaver

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

University of Florida

Department of Electrical and Computer Engineering

EEL 4665/5666

Intelligent Machines Design Laboratory

Final Report

2 | P a g e

Table of Contents

Abstract 3

Executive Summary 3

Introduction 3

Integrated System 4

Mobile Platform 5

Actuation 7

Sensors 8

Behaviors 11

Experimental Layout and Results 12

Conclusion 15

Documentation 15

Appendix A – Circuits Used 16

Appendix B - Source Code 19

3 | P a g e

1. Abstract

The purpose of this report is to explain the development that went into building an autonomous robot.

This robot’s main purpose is two-fold. First, it will play with a cat using a laser pointer and moving the

laser pointer across the ground. Second, the robot will punish the cat if it is caught scratching. It will

accomplish these tasks through a combination of infrared thermometer, sonar sensors, and a

microphone. It will also be capable of collision avoidance to prevent damage to the robot.

2. Executive Summary

Zobot is a fully autonomous robot that interacts with my cat and was designed in my Intelligent Machine

Design Lab at the University of Florida. During the day Zobot will play with my cat, Zoey, by having her

chase a red laser on the ground.

At night, everything changes as Zobot will habituate Zoey against scratching at the door. The robot will

activate upon the sound of scratching, and then it will locate the source using a non-contact

thermometer. It then drives over to her and spray her with compressed air.

Zobot uses an Xmega64a1 processor for controlling the actuators and decision-making. For the infrared

temperature sensor, the robot uses an Arduino Mega 2560 that communicates with the Xmega.

Overall, Zoey enjoys playing with Zobot and the Guard Mode has successfully passed all its tests. I have

learned a tremendous amount this semester and I am especially thankful for all that the professors and

teaching assistants have done for me.

3. Introduction

The cat in Figure 3.1 is Zoey. She is a 3 year old Lynx-point Siamese that my wife and I adopted. Like

most Siamese cats, her mischievousness is only matched by her curiosity.

4 | P a g e

Figure 3.1. A picture of Zoey on the balcony.

As you can see, she likes to flirt with danger by jumping up on the balcony ledge in my loft. To prevent

this, we keep the door to the loft closed. Naturally, she hates any door being closed. So now she tries to

tunnel her way underneath the door by scratching furiously at the carpet at the foot of the door. This

obnoxious noise wakes my wife and me up constantly. Therefore, I wanted to design a robot that not only

prevented her from scratching but also habitually trained her to not scratch at the door.

But I didn't want her to be afraid of robots all the time. So I equipped Zobot with a laser pointer, a cat's

natural enemy. During the day, when my wife and I are gone, the robot will move the mystifying red dot

around the room while Zoey chases it. As soon as Zoey pounces on the laser, the robot will move the

laser to a new location, offering a cornucopia of endless fun!

In order to do this, the robot will need to be able to:

 Avoid obstacles

 Determine day or night setting

 Locate my cat upon scratching

 Stop my cat from scratching

 Entertain my cat through the use of a cat toy

4. Integrated System

The ATxmega64A1 processer is the used to control the robot and is included in the Epiphany DIY

microcontroller board. This board was chosen due to the plethora of peripherals available and because

of the seller’s availability to service the board. For instance, this board comes pre-equipped with motor

drivers for my 12 volt motors, a 5 volt rail for my laser, and 24 servo ports.

Due to compatibility issues with Atmel’s Two Wire In drivers and the Melexis infrared temperature

sensor, I used an Arduino Mega 2560 to communicate with the sensor and then relay it to the Xmega.

5 | P a g e

Figure 4.1. This figure shows the Epiphany board (upper right) and the Arduino (lower left) as they

were used. This image was produced in Prezi.

5. Mobile Platform

Zobot’s platform is made mostly out of a 1/8th inch thick piece of balsa wood. This offers a lightweight

and nonconductive surface to mount the mechanical and electrical systems. The platform itself is cut

into an octagonal shape to eliminate sharp corners. This was done to lessen the chance of the robot

getting caught on a wall when it rotates. The robot’s platform can be found in Figure 5.1

6 | P a g e

Figure 5.1. The completed version of Zobot. This image was produced in Instagram.

A PVC coupling was used to house the cleaning duster to allow it to be replaced. This coupling was glued

to the platform to save space, and a spacer was placed inside to duster the duster a press fit into the

coupling. To give the laser pointer ample surface area to play on, the pan and tilt servo was mounted

10.5” high on a 1”x3.5” piece of wood. To increase the stability of the post and coupling, they were

glued together as well. This helped increase their moment of inertias, and rely less on the screws.

Zobot uses two-wheel steering with a plastic ball caster on the back. The plastic ball caster was chosen

to help eliminate the friction between the caster and the carpet it will be operating on. A single level

platform was chosen to keep the center of gravity low, and the robot more stable.

7 | P a g e

The stainless steel cover and sonar brackets were chosen purely for aesthetic reasons. Careful care was

taken to make sure the metal does not short out any of the electronics.

6. Actuation

The actuators used in Zobot are described in Table 6.1. The reasoning behind their selection can be

found after the table.

Table 6.1. A description of the Actuators used in Zobot.

8 | P a g e

In order to entertain the cat, the robot will be equipped with a pet-friendly laser pointer. This laser

pointer will be attached to pan and tilt servo motors so that it can be rotated in both directions

orthogonal to its line of action.

In order to stop the cat from scratching, the robot will be equipped with a cleaning duster canister.

When the cat begins to scratch, the robot will drive over to the cat and expel compressed oxygen. This

will not only force the cat to retreat, but it will also relate scratching to a negative consequence. The

trigger will be squeezed by using a simple servo motor that is attached to the robot’s body.

The 67:1 gear ratio motors were chosen to increase the control of the robot when it is turning to face

the cat. If the motors did not have enough torque, there would be more error introduced due to

unequal wheel conditions. Also, if the robot turned too slowly, the increase spinning time would allow

more error due to inconsistent flooring.

7. Sensors

Table 7.1 shows the sensors used in Zobot as well as a short description of their purpose. After the table,

the reasoning behind choosing these sensors is described. Zobot has a total 8 sensors, 5 of which are

unique.

Table 7.1. Description of the sensors used and the behaviors they are used in.

9 | P a g e

The special sensor used in this robot is the Melexis MLX90614ESF-ACF Infrared Temperature. This Inter-

Integrated Circuit based sensor will need careful software consideration. This sensor requires a supply

voltage of 5V and has a 10O field of view. Due to the narrow field of view, this sensor will be placed on

10 | P a g e

the pan and tilt servo bracket to obtain the angular direction of the cat relative to the robot. The

thermometer will be hooked up to the Arduino first and then sent to the Xmega, as outlined in the

figure below.

Figure 7.1. Interfacing Melexis temperature sensor with Ephiphany board.

The Arduino sends a high signal when it detects the presence of a warm object. Therefore, the Xmega

looks for this signal when it is looking for the cat. The pullup resistor diagram used for this sensor can be

found in Appendix A.

The microphone used is the Inex ZX Sound. It will be used in conjunction with the breakout board

outlined in Appendix A. This sensor was chosen because it has operating conditions that fall in range

with the scratching noise. In addition, it offered a stronger differentiation between ambient noise and

the sound of the cat scratching than my original electret microphone.

The XL-Maxsonar EZ0 will be used in obstacle avoidance sequence to detect obstacles before collision.

This sensor was chosen because of its precise field of view and optimum range of 6.5 inches to 25 feet.

When these sensors fail, simple limit switches will be used to prevent the motors from stalling out.

When these limit switches are activated, the robot will know that it has hit an immovable object and it

11 | P a g e

will stop the motors and turn around. The wiring diagram used with the bump switches can be found in

Appendix A.

A simple photoresistor was used to determine which mode will be used. Because the resistance across

the photoresistor varies with light, it is implemented in series with another resistor. The design of this

circuit can be found in Appendix A.

8. Behaviors

As mentioned previously, the robot will feature two different modes selected based on the

photoresistor’s data. The first mode will be Play Mode, and it will be activated during the daytime. If the

robot perceives that there is light, the robot will activate the on-board laser pointer. It will then entice

the cat to play by wiggling the laser pointer on the ground. Once the infrared thermometer senses that

the cat detected has attacked the dot, the robot will move the dot to a new location. A flowchart of this

behavior generated in Microsoft Visio can be found in Figure 8.1.

Figure 8.1. Flowchart of Play Mode behavior.

12 | P a g e

The second mode will be a Guard Mode. It will wait by the cat’s favorite scratching zone. After it hears a

noise some percentage above the ambient noise level, it will activate the infrared thermometer to seek

out the cat. Upon locating the cat, it will drive over to it, and when it comes in range, it will fire a burst

of compressed oxygen. A flowchart of this behavior generated in Microsoft Visio can be found in Figure

8.2.

Figure 8.2. Flowchart of Guard Mode behavior.

9. Experimental Layout and Results

To use the photoresistor to determine the Robot’s mode, a threshold is used. This threshold was set by

measuring the signal under various conditions. After the ADC values were determined at both daytime

and nighttime, the square root of their product was used as the governing threshold.

13 | P a g e

In order to convert the sonar’s input signal to inches, a series of tests were conducted. The first test was

to find the minimum recordable distance that the sonar could pick up. After this was determined, 12

ADC signals were recorded at varying distances inside the operational zone of the robot. These were

then averaged and plotted against their corresponding distances. A linear regression was then fitted to

this graph in Excel to find the slope and offset needed to convert the signal to inches. The results for the

three sonars are shown in Figure 9.1.

Figure 9.1. The linear representation of the Left and Right sonar sensors.

Output = 0.0919*Input - 15.578

0

5

10

15

20

25

30

200 250 300 350 400 450

In
ch

e
s

ADC Ticks In

Left Sonar

Left Sonar

y = 0.0864x - 12.625

0

5

10

15

20

25

30

200 250 300 350 400 450

In
ch

e
s

ADC Ticks In

SnrC (in)

SnrC (in)

Output = 0.082*Input - 12.852

0

5

10

15

20

25

30

200 250 300 350 400 450

In
ch

e
s

ADC Ticks In

Right Sonar

Right Sonar

14 | P a g e

It should be noted that the slopes of the two sonar sensors vary significantly from the manufacturer

specified 0.125 inches per ADC ticks in.

In order to determine the delay time to rotate the robot to face the cat, the turning rate was measured.

This was done by setting up a series of lines corresponding to different angles and finding the

appropriate delay time to reach each angle. After testing, it was determined that for every degree the

robot needed to turn, it must turn for approximately 30 milliseconds.

Figure 9.2. Temperature recordings of the cat in Fahrenheit.

In order to determine if the cat will be tracked by an infrared thermometer, a preliminary test was

conducted to determine the cat’s body temperature. Using a pre-calibrated infrared thermometer, a

series of temperature data were collected in 6 different body zones of the cat. In every zone, not

including the tail, the cat was at least three degrees warmer than the room temperature of 76o

Fahrenheit as seen in Figure 9.2.

Since this is a suitable temperature difference, the next test will involve tracking the change in ADC ticks

when sweeping the infrared thermometer senor over the cat. In order to ensure the robustness of the

sensor, this procedure will need to be done over an array of possible operating-temperature conditions.

15 | P a g e

10. Conclusion

Despite many close calls with batteries frying, LCD screens shorting, and wheels falling off, Zobot was

successful in playing with Zoey and has passed all the testing requirements in Guard Mode. Throughout

this lab, I have grown in my understanding of intelligent machines. Despite starting out as a mechanical

engineer that did not know the difference between a wire crimper and a wire stripper, I have been able

to successfully build a robot that plays and teaches my cat.

If I had more time this semester, I would have rewritten the drivers to get my infrared temperature

sensor to work on my Xmega instead of having to use the Arduino. I would have also used multiple

infrared thermometers in an array pattern in order to increase sensitivity mode in Play Mode and enable

tracking in the attack sequence in Guard Mode.

Zobot’s success with playing with Zoey was caught on camera and can be found on Zoey.Krieger’s

Youtube channel along with videos of the Guard Mode.

No cats were harmed in the making of this robot. Unfortunately, the same cannot be said about me.

11. Documentation

Epiphany DIY Board

https://sites.google.com/site/epiphanydiy/

Arduino Mega 2560

http://arduino.cc/en/Main/ArduinoBoardMega2560

Melexis Infrared Thermometer

http://www.melexis.com/Infrared-Thermometer-Sensors/Infrared-Thermometer-Sensors/MLX90614-

615.aspx

Inex ZX Sound Microphone

http://www.inexglobal.com/downloads/ZX-sound_e.pdf

Sonar Sensor

http://www.maxbotix.com/documents/MB1000_Datasheet.pdf

LCD Screen

http://www.sparkfun.com/datasheets/LCD/ADM1602K-NSA-FBS-3.3v.pdf

TTL Laser Guide

http://www.sparkfun.com/tutorials/260

16 | P a g e

12. Appendices

Appendix A – Common Circuits Implemented

Photoresistor circuit used:

Figure A1. The circuit used for the Photoresistor, provided by the societyofrobots.com.

The resistor value was determined by the following equation:

 √

Where was the measured resistance when the photoresistor was covered (30.33kΩ), and is

the measured resistance when a light was shown on the photoresistor (2.65kΩ).

Bump switch circuit used:

Figure A2. The circuit used for the bump switch, provided by teaching assistant, Josh Weaver.

17 | P a g e

Appendix A

Breakout board diagram for microphone used:

Figure A3. The ciruit used in the breakout board to amplify the microphone voltage, provided by

robosavy.com.

18 | P a g e

Appendix A

Infrared Thermometer circuit implemented:

Figure A4. The circuit used in the implementation of the infrared thermometer, provided by

pololu.com.

19 | P a g e

Appendix B – Source Code

In an effort to save space, only the main funcitons are shown. Code that came prepackaged with the

Epiphany DIY board has been omitted below.

Special Sensor

/**************************************
Reads in from the Melexis MLX90614ACF
using i2C aka TWI aka SMBus protocol
and sends a 5V signal from the digital
I/O pin when the read in temp is over
the ambient temperature threshold

Uses Peter Fleury's i2cmaster library
Thanks Peter!
***************************************/

#include <i2cmaster.h>

void setup()
{
 pinMode(13, OUTPUT); //enables LED output control
 pinMode(26, OUTPUT); //enables digital pin26 output control
 i2c_init(); //initializing i2C
 Serial.begin(9600); //initializing the serial monitor
}

void loop()
{
 //Declaring i2C variables
 int slave = 0x5A<<1; //Shifting Slave Address one bit to the left, library-specific.
 int cmd = 0x07; //Command corresponding to Tobj1 location in RAM on the MLX
 int dataLo = 0; //The lower byte of the temperature data is sent first over the i2c
 int dataHi = 0; //The upper byte (only 7 bits) is sent after the low byte
 int PEC = 0; //Error byte

 //Begin i2C transmision for the temperature from the Melexis, Tobj1
 i2c_start_wait(slave+I2C_WRITE); //Tells arduino to send start command (when SCL is high, bring SDA low) and
begin writing something
 i2c_write(cmd); //Write the RAM address corresponding to Tobj1 in the Melexis

 //After writing the command, the device is now ready to send data. First, a repeated start must be sent, then
acks/nacks after every read
 i2c_rep_start(slave+I2C_READ); //Sending repeated start command (when SCL is high, bring SDA low) to the slave
address and begin reading process
 dataLo = i2c_readAck(); //Read the low data byte in Tobj1, and send ack
 dataHi = i2c_readAck(); //Read the high data byte in Tobj1, and send ack
 PEC = i2c_readNak(); //Read the error data byte, and send nack because transmission is over
 i2c_stop(); //Send the stop condition (when SCL is high, bring SDA high)

 //Declaring conversion variables
 int Tobj1 = 0x0000; //Tobj1 is the temperature received by the MLX device
 double d2Kslope = 0.02; //0.02 resolution per least sig. bit via the MLX90614 Data sheet
 double K2Coffset = 273.15; //Converts Kelvin to Celsius by an offset
 double C2Fslope = 1.8; //Multiplication factor when converting from Celsius to Farenheit
 double C2Foffset = 32; //Offset factor when converting from Celsius to Farenheit

 //Converting the data from LSB to Farenheit

20 | P a g e

Appendix B

 //The first bit in the dataHi byte is an error flag, dataHi must be bit masked and then shifted left and dataLo is
concatenated
 Tobj1 = (int)(((dataHi & 0x007F) << 8) + dataLo);
 Tobj1 = (Tobj1 * d2Kslope); //Converting from LSB to Kelvin
 Tobj1 = Tobj1 - K2Coffset; //Converting from Kelvin to Celsius

 Tobj1 = Tobj1 * C2Fslope + C2Foffset; //Converting from Celsius to Farenheit
 Serial.println(Tobj1); //Outputing to serial monitor for debugging

 int Tamb = 75; //Ambient temperature of my house through emperical data. May need to calibrate.

 //If temperature is above threshold, send signals to both the LED and Xmega
 if (Tobj1 > Tamb){
 digitalWrite(13, HIGH); //turns on led
 digitalWrite(26, HIGH); //sends 5V signal to Xmega
 delay(50); //finite amount of time for signal to be sent
 } else {
 digitalWrite(13, LOW);
 digitalWrite(26, LOW);
 }
 delay(50); //don't want to ping device to death.
}

21 | P a g e

Appendix B

Main loop

//Determining which mode to be in
if(lightValue > lightValueThreshhold){ //photoresistor detects its dark out if true
 Guard();
 } else {
 Play();
 }

Guard Mode

//********Guard Mode Functions***********************************
void Guard(void){
 // *******Guard Mode Sequence**************************************
 setServoAngle(2,sweepCenter); //setting pan&tilt motor straight
 setServoAngle(3,tiltCenter);

 fprintf(&lcd_str,"Guard Mode\n");
 sndAmb = sndCal(); //determine ambient sound
 wait4sound(1.5, .5); //while loop that forces robot to wait until sound
reaches 10% above or below ambient sound

 //sound threshhold reached, begin searching for cat
 sweepAngle = search();

 //Found cat, turn towards cat
 faceTarget(sweepAngle);

 //Facing cat, run at it and spray
 attack();
}

int sndCal(void){
 int i;
 //determines ambient sound
 fprintf(&lcd_str,"\nCalibrating\n");
 sndAmb = 0;
 //calibrating microphone for conditions
 for (i=0;i<8;i++){
 sndAmbA[i] = analogRead_ADCA(6);
 fprintf(&USB_str,"sndAmbA%d: %d\r",i,sndAmbA[i]);
 sndAmb += sndAmbA[i];
 _delay_ms(50);
 }
 sndAmb = sndAmb/8; //taking average of 8 readings and making it the threshhold
 fprintf(&USB_str,"sndAmb: %d\r",sndAmb);
 return sndAmb;
}

void wait4sound(double sndHi, double sndLo){
 //while loop that forces robot to wait until sound reaches 10% above or below
ambient sound
 fprintf(&lcd_str,"\nListening\n");

22 | P a g e

Appendix B
 snd = sndAmb;
 while(snd<sndAmb*sndHi && snd > sndAmb*sndLo){ //1.25 and .75 work for clapping
 snd = analogRead_ADCA(6);
 fprintf(&USB_str,"snd: %d\r",snd);
 _delay_ms(50);
 }
}

int search(void){
 //makes pan servo sweep back and forth to look for cat
 //returns the angle that the cat was found at

 fprintf(&lcd_str,"\nSearching\n");
 int theta = 0;
 int sweepSign = 1;
 bool sweepFlag = true;

 setServoAngle(3,tiltCenter - 5);

 //if cat straight ahead, say so
 cat = catThere();
 if(cat == true){
 sweepFlag = false;
 //sweepAngle = theta-sweepCenter;
 fprintf(&USB_str,"turning angle: %d \r",sweepAngle);
 theta = sweepCenter;
 }

 while (sweepFlag){

 setServoAngle(2,theta); //so angle = theta = 0 intially.

 //sensor read in
 cat = catThere();
 //bmpR = analogRead_ADCA(4);
 fprintf(&USB_str,"%d\r",cat);
 //if(bmpR < bmpThresh){
 if(cat == true){
 sweepFlag = false;
 //sweepAngle = theta-sweepCenter;
 fprintf(&USB_str,"turning angle: %d \r",sweepAngle);
 break;
 }

 if(theta >= 180){
 sweepSign = -1;
 }
 else if(theta <= 0){
 sweepSign = 1;
 }
 theta += sweepSign*sweepDist;

 //allowing servo to catch up, but checking for cat
 for (int i = 0; i<7; i++){
 _delay_ms(50);

23 | P a g e

Appendix B
 //sensor read in
 cat = catThere();
 //bmpR = analogRead_ADCA(4);
 fprintf(&USB_str,"%d\r",cat);
 //if(bmpR < bmpThresh){
 if(cat == true){
 sweepFlag = false;
 //sweepAngle = theta-sweepCenter;
 fprintf(&USB_str,"turning angle: %d \r",sweepAngle);
 break;
 }
 }
 //_delay_ms(300); //give time for servo to catch up
 }

 setServoAngle(2,sweepCenter);
 fprintf(&lcd_str,"\nCat Found\n");
 if (theta<=sweepCenter){
 return theta+5*sweepSign; //offsets the angle so robot attacks at center of
cat instead of just at first edge
 } else {
 return theta;
 }
}

void faceTarget(int sweepAngle){
 //rotates robot
 //sweepTime = sweepAngle*sweepSlope;
 //fprintf(&USB_str,"sweepAngle: %d \r",sweepAngle);
 fprintf(&lcd_str,"\nFacing Target\n");

 int i;

 if (sweepAngle > sweepCenter){
 //Right side

 setMotorDuty(1,turnSpeedL,MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,turnSpeedR,MOTOR_DIR_BACKWARD_gc);

 for (i=sweepCenter; i < sweepAngle; i++){
 _delay_ms(30); //30ms of turning at the speeds 600,590 for every
degree
 }
 setMotorDuty(1,0,MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
 }
 else if(sweepAngle < sweepCenter){
 //Left Side

 //i=sweepCenter;
 //sweepAngle = sweepAngle+sweepCenter;

 //fprintf(&USB_str,"i: %d sweepAngle: %d i>sweepAngle:
%d\r",i,sweepAngle,(i>sweepAngle));
 setMotorDuty(1,turnSpeedL,MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,turnSpeedR,MOTOR_DIR_FORWARD_gc);
 for (i=sweepCenter; i > sweepAngle; i--){

24 | P a g e

Appendix B
 //fprintf(&USB_str,"i: %d sweepAngle: %d\r",i,sweepAngle);
 _delay_ms(30);
 }
 setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,0,MOTOR_DIR_BACKWARD_gc);
 }

}

void attack(){
 bool catAhead = 0;
 //Driving Forward until sonar detected
 fprintf(&lcd_str,"\nAttack\n");
 if (catAhead == 0){
 setMotorDuty(1,attackSpeedL,MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,attackSpeedR,MOTOR_DIR_FORWARD_gc);

 while(catAhead == 0){
 snrC = analogRead_ADCA(1);
 snrCin = snrC * snrCslope - snrCoffset;

 if(snrCin < firingDist){
 setMotorDuty(1,0,MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,0,MOTOR_DIR_BACKWARD_gc);
 catAhead = 1;
 }
 }
 //drove toward cat, now fire
 fire();
 }
}

//*******Firing Sequence*******
void fire(void){
 setServoAngle(1,firingAngle);
 _delay_ms(750);
 setServoAngle(1,firingNuetral);
 _delay_ms(750);
}

25 | P a g e

Appendix B

Play Mode

// *******Play Mode Functions**************************************
void Play(void){
 fprintf(&USB_str,"Play Mode\n");
 PORTF.OUTCLR = PIN7_bm; // turns laser on

 //rotates looking for a clear area to play
 findClearArea();

 setServoAngle(1,firingNuetral+10); // so it doesnt accidentally fire once its
clear

 //Variables used to determine the random angles
 int theta2max = 180;
 int theta3min = 60;
 int theta3max = tiltCenter-theta3min; //adding 20 degrees at the end so range is
20-90
 int theta2,theta3;
 int trollFlag = 0;

 uint16_t kittyCounter = 0;//timeout used for wiggleLaser
 while(1){
 if (trollFlag == 0){
 theta2 = rand() % theta2max;
 theta3 = rand() % theta3max + theta3min;
 fprintf(&lcd_str,"theta: %d %d\n",theta2, theta3);
 setServoAngle(2,theta2);
 setServoAngle(3,theta3);
 _delay_ms(300); //to not trigger a reactivation
 } else {
 trollFlag = 0;
 kittyCounter = 0;
 }
 while(cat == 0){
 //waiting for cat to attack laser
 cat = catThere();
 if (cat){
 break;
 }

 //grab the cat's attention by wiggling the laser after 20 seconds of
inactivity
 kittyCounter++;
 if(kittyCounter>500){
 wiggleLaser(theta2, theta3);

 // delay an extra 60 milliseconds when wiggling because a lot
of servo action and check for cat
 cat = catThere();

 //check for cat
 if (cat){
 break;
 }

26 | P a g e

 Appendix B
 _delay_ms(20);

 cat = catThere();
 //check for cat
 if (cat){
 break;
 }
 _delay_ms(20);

 cat = catThere();
 //check for cat
 if (cat){
 break;
 }
 _delay_ms(20);
 }

 //move laser after 30s of inactivity
 if (kittyCounter>600){
 //troll(theta2, theta3);
 //trollFlag = 1;
 break;
 }
 _delay_ms(40); //minimal delay for servos
 }
 kittyCounter = 0;
 cat = 0;
 }
}

void findClearArea(){
 bool areaClearFlagLocal = 0;
 bool turning = 0;
 while (areaClearFlagLocal == 0){
 snrL = analogRead_ADCA(0);
 snrC = analogRead_ADCA(1);
 snrR = analogRead_ADCA(2);
 bmpL = analogRead_ADCA(3);
 bmpR = analogRead_ADCA(4);

 //converting ADC ticks in to inches using a linear approximation
 snrLin = snrL * snrLslope - snrLoffset;
 snrCin = snrC * snrCslope - snrCoffset;
 snrRin = snrR * snrRslope - snrRoffset;

 fprintf(&USB_str,"SnrL: %d SnrC: %d SnrR: %d\r",snrLin,snrCin,snrRin);

 if(bmpL<bmpThresh && bmpR < bmpThresh){
 //stop motors
 setMotorDuty(1,speedL,MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,speedR,MOTOR_DIR_BACKWARD_gc);
 fprintf(&lcd_str,"Area Clear\n");
 areaClearFlagLocal = 1;
 break;
 } else if(bmpL<bmpThresh && bmpR >= bmpThresh){
 setMotorDuty(1,speedL,MOTOR_DIR_FORWARD_gc);

27 | P a g e

Appendix B
 setMotorDuty(2,speedR,MOTOR_DIR_BACKWARD_gc);
 } else if(bmpL>=bmpThresh && bmpR < bmpThresh){
 setMotorDuty(1,speedL,MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,speedR,MOTOR_DIR_FORWARD_gc);
 }

 if (snrLin > playDist && snrRin > playDist && snrCin > playDist){
 //if all clear, tell motors to stop and begin playing sequence
 _delay_ms(1000);
 setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
 fprintf(&lcd_str,"Area Clear\n");
 areaClearFlagLocal = 1;
 break;
 } else if(snrLin>playDist && snrRin > playDist && turning ==0) {
 //if object is straight ahead, and left and right is clear, rotate
towards whatever is more clear

 if(snrLin>snrRin){
 //left is more clear, rotate left
 setMotorDuty(1,speedL, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,speedR, MOTOR_DIR_FORWARD_gc);
 } else {
 //right is more clear, rotate right
 setMotorDuty(1,speedL, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,speedR, MOTOR_DIR_BACKWARD_gc);
 }
 areaClearFlagLocal = 0;
 turning = 1;

 } else if(snrLin > playDist && turning ==0){
 //if object to the right and left is clear, rotate left

 setMotorDuty(1,speedL, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(2,speedR, MOTOR_DIR_FORWARD_gc);
 areaClearFlagLocal = 0;
 turning = 1;

 } else if(turning == 0){
 // if object to the left or left and straight, rotate right

 setMotorDuty(1,speedL, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(2,speedR, MOTOR_DIR_BACKWARD_gc);
 areaClearFlagLocal = 0;
 turning = 1;
 }
 }

}

void wiggleLaser(int theta8, int theta7){
 //theta8 = theta2, theta7 = theta3
 int mag8, sign8, mag7, sign7;
 fprintf(&lcd_str,"\nwiggle wiggle\nwiggle wiggle\n");

 //determing the wiggle magnitude and direction randomly

28 | P a g e

Appendix B
 mag8 = rand() % 10; //needs more angle when panning then tilting
 mag7 = rand() % 5;
 sign8 = rand() % 1;
 sign7 = rand() % 1;

 if(sign8==1){
 setServoAngle(2,theta8+mag8);
 } else {
 setServoAngle(2,theta8-mag8);
 }
 if(sign7 == 1){
 setServoAngle(3,theta7+mag7);
 } else {
 setServoAngle(3,theta7+mag7);
 }
}

Reading in from Arduino

bool catThere(void){
 catVal = analogRead_ADCA(7);
 fprintf(&USB_str,"%d\r",catVal);
 if (catVal > catThresh){
 return true;
 } else {
 return false;
 }
}

