Ballbot

Scott Pokorny
EML 5666 Intelligent Machines Design Lab

Instructors:
Dr. A. Antonio Arroyo and Dr. Eric M. Schwartz

TAsS:
Tim Martin, Ryan Stevens, and Josh Weaver

Table of Contents

Y o1 1 T TP P PR PP TP PTOPION 4
EXECULIVE SUMMIAIY ittt e e ettt e e e e e e sttt e e e e e s e atbbeteeeeeeesannsbbaeeeeeesssannsenaaaeeessnnas 4
T ageTe [V AT] o HUUT O PP P SO URTOPPTTOUPRI 4
T A= o = =T B3V 2y =T o o PP 5
MiICrOCONTIOEI BOAIM ..ottt ettt sttt ettt e b e e sbe e et e et e eneesbeesaeesanenas 5
POWET <.ttt e e a e s ra s 5
IMIOVEIMENT. ..ttt et e a e s e e e s s be e e s s be e e s s sarae e s s araees 5
(0] o1 = Tol [AN oY o =1 o [0l T T PPV PPPTOUSRPTO 6

(D T] d=Tot o o ST SRTUPPUPT 6
L] o T =41V~ PSSR 6

[oY o1 L=l - 1 o T4 o H OSSOSO PP PP UPPTUPPRRTORt 6
IIOTOTS. ottt e e s e e e s e e e s ra e e e s 7
WNEEIS .ttt ettt e b e bt e s bt e s ae e et e et e bt e bt e eh e e eat e e a et et e e ebeeehe e she e sabeeabe e b e e beenes 8
¥ot (U - | A [0 o D PP P PP PPPRPTOPPPPROR 8
A= 0TS0 TP PP PPPTTPTTPPON 9
L0010 1 T=T o= OSSP PO PP TR OPPRTON 9
Yo 0 =1 SO OSSP PP URRPPRTON 9
BUMP SWITCNES ...ttt e e et e e e e et e e e e e ba e e e eebaee e eeabaeeeeeabaeeeentaeeeeanbaeeeennsaeeeennsenas 9
211 (VT 3O TP PSP PP PR RPN 10
2] oo) A 6o o [PSPPSR PP PSPPI 10
CaliBration IMOTEcoiuiiiiiiieeieeeee ettt ettt s e st sttt e b et e b e sree st e e r e e reenneesree e 10
COllECLION IMIOTE ...ttt ettt e bt e s he e sat e st e et e e be e bt e sbeesbeesabeeabeenbeesbeesaeenas 10

1070 41T 1 0o Lo [T PSP P R OPRPOFRTOTORORRINS 13
Y= T o PRSP OPPROTI 13
oo [T Y= = [=Ll AP 14

[TaTo [T Y= g TN 2¥e] o Yo) AP 15
DeterminiNg INSTIUCTIONSuuuiiiiiiii e sese s asssssaessnnes 16
Experimental Layout and RESUILS........uuiiiii i e e e e e e e e e e e e e e s e nnraeeeeeas 19
INILIAl BOAI TESEING ceeieiiieiieeee ettt et e e e e et e e e e e e e e st e a e e e e e e e s e s anbsseeeeeaesesannsssaneaeeasenanrnnns 19
TaTE A Yo T g T Tl =TS 4 1oV UERROt 19

INItTA] SYSTEM TOSTING ...vveeeiiieee ettt e e et e e e e bt e e e e s bt e e e e sbteeeesbtaeeesastaeesesteeeesnnes 19

Obstacle Avoidance INitial TESTING ..cceci i e e e s rre e e e e e e e s nbraaeeeaaeeeaas 19

Obstacle Avoidance Beta TESHING....c.uuiiiiiiiieiiiie ettt e e e st e e s s ee e e s nbeeessnbeeesenabeeas 19

D LE Yo I oY T =Ty o = PNt 19

(6 0 LT & T =T o [V- T T T P PP T PP 20
D=1 =1 S =T Ao V= SRRt 20
OrIENTATION TOSTING ...uetiiiiiiiieitee ettt ettt e e e e e sttt et e e e e e e s babeeeeeeesesasnsebaeeeeessssannsenaeaeessnnnnn 20
Integrated Orientation TESTING ...c.uuii i e e st e e s s bte e e s sbeaeesssnreeeesanes 20
(0o] 1T Tot 4[] o T =Ty 4 o~ PRSPPI 21
(6001 3Tl (V13 o] DSOS P PSP PP PPPTORPUPPTRPRONS 21
DOCUMEBNTATION ...ttt e e st e e s b e e e s s b e e e s nre e e s s e 21
YT o1<1 g Yo o] Y-SR 21
RODOT COE .ttt ettt e sttt e et e s be e e ab e e s bt e s bteesabeeesabeesabeesbeeesabeeennnes 21
(07T 41T I 6o Yo [T O T OO OO U OO PP PP PPPOTOUOROPROINS 25
(0] oY= =Y o] o J 6o o [T UPURRRE 25

HSV COlOT COOR ...ttt ettt sttt et e b e s bt e sae e st e e b e et e e sbeesaeesaeesabeemneenbeenns 30

D] S Y A 1 I o T A =T PO 33

Abstract

The Ballbot will autonomously move about the tennis court in order to pick up tennis balls for the
player. This allows more time to be dedicated to playing the game and less to retrieving balls.

Executive Summary

The Ballbot will be an autonomous robot that collects tennis balls. The robot will consist of a mobile
platform and stationary camera. The mobile platform will hold the microcontroller, the collector, an
LCD, sonar, and bump switches. The camera will be by itself observing the court and communicating
with the mobile platform.

The robot will collect tennis balls by detecting them with a stationary camera that will direct a robot
toward the ball. The camera will send data to a laptop which will make calculations and send directions
to the robot using XBEE terminals.

In order to prevent the robot from crashing into objects, including players, obstacle avoidance will be
programmed into all behaviors. In order to detect obstacles, a sonar module has been installed. In
order to prevent major collisions, bump sensors consisting of basic push switches have been installed.

To move around, the mobile platform consists of two drive wheels and two casters. Each caster is
attached to one of the robot arms in order to keep the robot balanced. Each wheel has a motor to allow
the robot to make very tight turns.

An LCD is currently used to display the values of the sonar and bump switches. These values are
updated every time the robot’s current behavior starts a new iteration. The LCD is also used to show
whether the robot is in calibration mode or collection mode.

To collect tennis balls, an actuator consisting of four belts moves balls from the ground into the back of
the robot. Each belt is powered by a motor, which are powered by two 9V battery packs. Two belts
have been modified to have Velcro attached to them in order to assist in picking up tennis balls.

Introduction

When playing tennis, it can seem that a good chunk of play time is wasted walking around the court
picking up the tennis balls. In this day and age, it only seems logical that the balls should at least meet
you halfway and all be easily accessible in one location. Ballbot will be made to help meet the player
halfway by autonomously gathering tennis balls and storing them in an easy to access container.

Integrated System

Sonar F—

Switches —

Actuator
Motors

LCD

A

h 4

Drive Motors

Figure 1: Current system flow chart

The Ballbot integrated system will consist of switches, a camera, sonar, motors, and an LCD. Currently
there are four systems, as represented by the colored borders, which send and receive information from
the Xmega microcontroller board.

Microcontroller Board

The microcontroller board used in this robot is the Epiphany DIY board. It is built by Tim Martin and can
be purchased through the company Out of the Box. The main processor in the board is an
ATxmegab4A1l chip. Additionally, it can support up to four motors, twenty four servos, and eight analog
to digital converter ports.

Power

The robot is currently powered by one 12V battery pack. The ground terminal of the battery pack is
attached to a switch that controls the power to the entire board. Two 9V battery packs are used to
power the actuator motors.

Movement

The robot is currently driven by two drive wheels. Two caster wheels have been added to the front of
the robot in order to balance the robot and keep everything except from the ramp from dragging. The
microcontroller board will power the motors and adjust their speeds to allow for turning to allow for the
robot to line up with a detected tennis ball.

Obstacle Avoidance

The current obstacle avoidance sensor system consists of one sonar device and two bump switches. The
sonar is installed in the front of the robot in order to detect any objects in front of the robot. The bump
switches are placed in the dead zones of the sonar to act as fail safes. If the sensor detects that an
object is too close to the robot, the robot will turn until the sonar declares that it is safe to continue.
The current value that will set off the sonar is 400 mV, or about 23.5 inches. The sonar is angled slightly
upward so that it does not detect objects that are less than six inches in height at the moment. This may
be reduced to five depending on further testing. The sonar must not go below 3 inches though, due to
the fact that tennis balls must be able to approach the robot without starting up the obstacle avoidance
code. When a bump switch is pressed, this means that the robot is right up on an object. Thus, the
robot will back up and turn away from the side that has been bumped. In order to keep the robot from
turning from one obstacle to another, the robot will not move forward until all the sensors have been
cleared.

Detection

An IP camera and laptop will be used to detect tennis balls and the robot. The camera will attach to the
laptop, which will use visual studio and the OpenCV library to find the robot and tennis balls. When
both the robot and a tennis ball are found, the laptop will decide the direction that the robot needs to
travel and send it instructions via XBEE. When the distance between the tennis ball and the robot
becomes small, the laptop will send an additional instruction to the robot for starting the collection
motors. These motors will stay on until the instruction is not sent. Once the instruction is not sent by
the XBEE, the microcontroller will begin a timer which will turn off the motors when it finishes.

Debugging

The LCD is used to report what behaviors the system is currently in. This has helped in programming the
values for obstacle avoidance and finding the dead zones of the sonar. The LCD displays the current
outputs of each switch and the sonar. This is used to ensure that the sonar is performing correctly
before moving into the actual operation. To exit this behavior, the user would press the left bump
switch when facing the front of the robot.

Mobile Platform

The current mobile platform has a rectangular design. It is driven by two drive wheels located near the
center of the robot. This allows for a small turning radius when both wheels are used. The motors for
the wheels are completely housed inside the robot and will be located underneath the ramp. On the
top of the ramp is the actuator for tennis ball collection. Above that is housing for the microcontroller
board, followed by the top panel of the robot. The LCD is attached to the rear lid of the robot to allow
for easy viewing.

Figure 2: Original mobile platform design

Figure 3: Actual implementation

Motors
The motors used in the robot are made by Pololu. They are 37x54 mm metal gear motors with 67:1 gear

ratio. The two motors run on 12V and are screwed into the bottom panel and are adjacent to the
middle panel.

www.pololu.com

Figure 4: Motors used in the robot

Wheels

The wheels used on the robot are also made by Pololu. They are 90 mm diameter plastic wheels with
silicone tires. A caster may be added later to increase stability if needed.

OB

Figure 5: Wheels used in the robot

Actuation

The actuation of the robot is in the tennis ball collector. As tennis balls are funneled into the collection
mechanism, a series of four belts feed tennis balls into a compartment in the robot. The collection
mechanism is powered by four motors. Two of the belts have been modified to have Velcro attached to
them. This assists in picking up tennis balls, giving the actuator a greater grip.

Figure 6: Belts used for the actuator

Sensors

The sensors that will be used in this robot for obstacle avoidance are sonar and bump switches. The
special sensor that will be used is a camera for tennis ball detection.

Camera

The camera | purchased is the Cisco-Linksys Wireless-N Internet Home Monitoring Camera, via
Amazon.com. | chose this since it was recommended by Josh Weaver and was informed that it does
work with OpenCV. It will not be installed on the robot, but will be placed in a static position
overlooking the entire court. The camera easily performs as to what is needed, but some lag issues are
definitely present.

Figure 7: IP camera

Sonar

The sonar sensor that is used is the Maxbotix LV-EZ1 Ultrasonic Range Finder. This was purchased from
Sparkfun and is installed in the front lid of the robot. The sensor runs on 5V and can detect objects from
0 to 6.45 meters. The sensor’s lowest reported value is for six inches.

Figure 8: Sonar sensor

Bump Switches

The bump switches used in the robot are single pull double throw switches. They were purchased from
Radio Shack and run on a 5V supply from the microcontroller board. They have been manually wired
with a pull-up resistor, which was recommended by Josh Weaver.

Si=znwal
@ S N7n bR
UND AAD G LT,

Tese

Figure 9: Bump switch. The actual switch used also has a roller on the end

Behaviors

Currently, two behaviors have been written for the robot: calibration and collection. This section will
include the code used during robot operation. Some code is omitted for space considerations, however
all code is available in the appendix.

Robot Code

Calibration Mode
When the robot is turned on, it does the board initializations and enters calibration mode.

while(analogRead_ADCA(6) > 400)

{
LCDSetCursor(1,1);

fprintf(&lcd_str,"\r");

fprintf(&lcd_str,"%d %d
%d\nCalibration",analogRead_ADCA(®),analogRead_ADCA(6),analogRead_ADCA(7));

_delay_ms(200);

}

After initialization, the robot moves into a while loop that refreshes every 0.2 seconds. It prints all the
values of the sensors so that the user can check to make sure that all sensors are working accordingly.
When the value of the sensor plugged into ADC Port A channel 6 goes below 400, the loop is exited and
the obstacle avoidance mode is entered. This is currently mapped to the right bump switch, so when
this is pressed the robot will begin collecting balls.

Collection Mode
After calibration mode is exited, the robot currently enters collection mode.

while (1)

if(dataInBufE1l())
{

}
LCDSetCursor(1,1);

fprintf(&lcd_str,"\r");

fprintf(&lcd_str,"%d %d
%d\nCollection",analogRead_ADCA(®),analogRead_ADCA(6),analogRead_ADCA(7));

_delay ms(200);

if(analogRead_ADCA(Q) < 400)

{

fscanf(&Xbee_str, "%c",msg);

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);

setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay _ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);
j=1;

}

else if(analogRead_ADCA(6) < 400)

{
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay ms(1000);
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);
j=1;

}

else if(analogRead_ADCA(7) < 400)

{
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD gc);
_delay ms(1000);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(300);
j=1;

}

else if(j==1)

{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD gc);
_delay_ms(300);
j=0;

else

if(strcmp(msg, "W")==0)
{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
}
else if(strcmp(msg,"D")==0)
{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);

_delay_ms(100);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

¥

else if(strcmp(msg,"V")==0)

{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay _ms(200);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

¥

else if(strcmp(msg,"B")==0)

{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD gc);
_delay _ms(300);
setMotorDuty(1,0,MOTOR_DIR_FORWARD gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

b

else if(strcmp(msg, "N")==0)

{
setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD gc);
_delay_ms(400);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD gc);

b

else if(strcmp(msg,"A")==0)

{
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD gc);
_delay _ms(100);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

}

else if(strcmp(msg,"F")==0)

{
setMotorDuty(1,600,MOTOR_DIR_BACKWARD gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay_ms(200);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

}

else if(strcmp(msg,"G")==0)

{
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

}

else if(strcmp(msg,"H")==0)

{

setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay_ms(400);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);

setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

else if(strcmp(msg,"S")==0)

{
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

}

else if(strcmp(msg,"X")==0)

{
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

}

}

The new collection mode is a modified version of the previous obstacle avoidance code. The robot
checks the XBEE for new instructions before continuing with any obstacle avoidance or carrying out
instructions. It will also update the LCD with current values of all sensors.

From here, obstacle avoidance is checked to make sure that the path is clear. Note that the obstacle
avoidance code will only turn the robot and assign a variable “j” the value of 1. This was made due to
problems with the robot getting caught by the camera forcing it to take the same path. The robot will
now find a clear path and move forward before carrying out camera instructions to allow for a new path
to be taken.

Once the robot has cleared all obstacle avoidance flags, it moves to carrying out instructions from the
camera. The robot can be given instructions W, S, A, F, G, H, D, V, B, N, and X. W and S are used to
move forward and backward. X is given if the robot is to sit still. Commands A, F, G, and H are given to
turn left. Each command reflects an amount of degrees to turn, with A being the smallest turn and H
being the largest. D, V, B, and N are used for turning right. A delay after each turn has been added in
order to allow for the camera to catch up with the robot and send accurate instructions.

Originally, the robot would turn continuously in order to reach an acceptable vector with which to move
forward. This caused problems due to camera lag which would cause the robot to turn too far and get
caught in turning back and forth. The incremental turns will initially be slower, but should give more
accuracy and allow for the robot to achieve an acceptable vector faster than before.

Camera Code

Main
The following is the main function for the laptop. This is what is looped in order to analyze the camera’s
live feed.

int main()
{
CvCapture *capture;
char key = 'd';
String”® portChosen = "COM4";
SerialPort” _serialPort;

capture = cvCreateFileCapture("http://192.168.1.3/img/video.mjpeg");
if(!capture){
printf("Can't initialize the video capture\n");
return -1;
¥
//cvNamedWindow("Balls",CV_WINDOW_AUTOSIZE);
//cvNamedWindow("Live",CV_WINDOW_AUTOSIZE);
//cvNamedWindow("Robot",CV_WINDOW_AUTOSIZE);
//cvMoveWindow("Live",0,100);
//cvMoveWindow("Balls",650,100);
while(key!="'Q" && key!='q")
{
image = cvQueryFrame(capture);
IplImage *hsv = cvCloneImage(image);
findcenters(image,hsv);
findrobot(image,hsv);
finddir(portChosen,_serialPort);
key = cviaitKey(10);
//cvShowImage("Live",image);
¥
¥

At first, the serial port and video stream are initialized. If the video stream is not initialized, the program
will automatically quit. The code that is commented out is for showing the actual live feed and filtered
feeds. These are not being shown due to lag issues. However, they are left in to allow for debugging
and demos. In each loop, the positions of the targets are found, followed by the robot’s position and
the instruction.

Finding Targets
void findcenters(IplImage *image, IplImage *hsv){
cvCvtColor(image,hsv,CV_BGR2HSV);
IplImage *mask = cvCreatelImage(cvGetSize(image), image->depth,1);
cvInRangeS(hsv, cvScalar(hb - tolerance, sb - tolerance, @), cvScalar(hb +
tolerance, sb + tolerance, 255), mask);

IplConvKernel *kernel = cvCreateStructuringElementEx(5, 5, 2, 2,
CV_SHAPE_ELLIPSE);

cvDilate(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvErode(mask,mask, kernel, 1);
cvDilate(mask,mask, kernel,1);
cvReleaseStructuringElement (&kernel);

balls = CBlobResult(mask, NULL, ©);
balls.Filter(balls,B_EXCLUDE,CBlobGetArea(),B_LESS,120);
int num_blobs = balls.GetNumBlobs();

//IplImage *filtered = cvCreateImage(cvGetSize(mask),IPL_DEPTH_8U,3);

//cvMerge(mask,mask,mask,NULL,filtered);

for(int i=0;i<num_blobs;i++)

{
currentBlob = balls.GetBlob(i);
//currentBlob->FillBlob(filtered,CV_RGB(255,0,0));
center[i][@] = (currentBlob->MaxX() + currentBlob->MinX())/2;

center[i][1] = (currentBlob->MaxY() + currentBlob->MinY())/2;
¥
//cvShowImage("Balls",filtered);
cvReleaseImage(&mask);
//cvReleaseImage(&filtered);
¥

This is the code for finding the balls. A snapshot from the live feed is taken and converted into an HSV
image. The HSV image is then converted into binary using the HSV ranges for tennis balls given in the
initialization section. The binary image is then filtered to reduce noise. Once filtered, blob detection is
used to find the number of tennis balls in the picture. From here, the center of each tennis ball is found
and stored. The commented code is used to show the actual filtered image. All tennis balls will appear
as red balls, while noise is shown as a black background and white blobs.

Finding the Robot
void findrobot(IplImage *image, IplImage *hsv){
cvCvtColor(image,hsv,CV_BGR2HSV);
IplImage *mask = cvCreateImage(cvGetSize(image), image->depth,1);
cvInRangeS(hsv, cvScalar(hr - tolerance, sr - tolerance, 50), cvScalar(hr +
tolerance, sr + tolerance, 255), mask);
cvReleaseImage(&hsv);

IplConvKernel *kernel = cvCreateStructuringElementEx(5, 5, 2, 2,
CV_SHAPE_ELLIPSE);

cvDilate(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvErode(mask,mask, kernel, 1);
cvDilate(mask,mask, kernel,1);
cvReleaseStructuringElement (&kernel);

robot = CBlobResult(mask, NULL, 0);
robot.Filter(robot,B_EXCLUDE,CBlobGetArea(),B_LESS,100);

int num_blobs = robot.GetNumBlobs();

//IplImage *filtered = cvCreateImage(cvGetSize(mask),IPL_DEPTH_8U,3);

//cvMerge(mask,mask,mask,NULL,filtered);
if(num_blobs==2)

{
robot.GetNthBlob(CBlobGetArea(),robot.GetNumBlobs()-1,cb);
robpos[0][0] = (cb.MaxX()+cb.MinX())/2;
robpos[0][1] = (cb.MaxY()+cb.MinY())/2;
//cb.FillBlob(filtered,CV_RGB(255,100,0));
robot.GetNthBlob(CBlobGetArea(),0,cb);
robpos[1][@] = (cb.MaxX()+cb.MinX())/2;
robpos[1][1] = (cb.MaxY()+cb.MinY())/2;
//cb.FillBlob(filtered,CV_RGB(255,0,0));

}

else

{

for(int i=0@;i<num_blobs;i++)

{
currentBlob = robot.GetBlob(i);
//currentBlob->FillBlob(filtered,CV_RGB(255,0,0));
robpos[i][0] = (currentBlob->MaxX() + currentBlob->MinX())/2;

robpos[i][1] = (currentBlob->MaxY() + currentBlob->MinY())/2;
}
¥
//cvShowImage("Robot",filtered);
cvReleaseImage (&mask);
//cvReleaseImage(&filtered);
¥

This code is fairly similar to finding the targets. The same filtering method is used, except small objects
are filtered out instead of large objects. The robot’s position is made of two blobs, a square and a
triangle. These are used to determine the orientation of the robot later on. In the commented code,
the filtered image is shown. The triangle will be filled in as orange and the square will be filled in as red.

Determining Instructions
void finddir(String” portChosen,SerialPort” _serialPort)

{
int i = @, target = -1, num = balls.GetNumBlobs(), rob = robot.GetNumBlobs();
if(rob == @ || rob < 2)
{
//std::cout<<"\nRobot Not Found CMD: S";
char cmp[2] = "S";
if(strcmp(cmp,msg) != @)

_serialPort = gcnew SerialPort(portChosen, 115200, Parity::None, 8,
StopBits::0ne);

_serialPort->0pen();

_serialPort->Write("S");

_serialPort->Close();

strcpy(msg,cmp);
}
}
else if(num==0)
{

//std::cout<<"\nNo Targets Found CMD: X";
char cmp[2] = "X";
if(strcmp(cmp,msg) != @)

{

StopBits::0ne);

_serialPort = gcnew SerialPort(portChosen, 115200, Parity::None, 8,

_serialPort->0pen();
_serialPort->Write("X");
_serialPort->Close();

strcpy(msg,cmp);

else

double dist = @, check = @, robang = @, ballang = 0;
for(i;i<num;i++)

{
check = sqrt(pow((center[i][@]-
(robpos[@][@]+robpos[1][@])/2),2)+pow((center[i][1]-(robpos[@][1]+robpos[1][1])/2),2));
if(target==-1 || check<dist)
{
target = i;
dist = check;

}

robang = (atan2(robpos[@][1]-robpos[1][1],robpos[@][0]-
robpos[1][0])*180/3.14)+1809;

ballang = (atan2(center[target][1]-robpos[1][1],center[target][0]-
robpos[1][0])*180/3.14)+1809;

if(abs(robang-ballang)<10)

{

//std::cout<<"\nCorrect Angle. CMD: W";

char cmp[2] = "W";

if(strcmp(cmp,msg) != 0)

{

_serialPort = gcnew SerialPort(portChosen, 115200,

Parity::None, 8, StopBits::0ne);

}

_serialPort->0pen();
_serialPort->Write("W");
_serialPort->Close();

strcpy(msg,cmp);

}
else if(ballang - robang<®9)

{

//std::cout<<"\nAngle too small. CMD: A"<<ballang-robang;
char cmp[2] = "A";
if(abs(ballang - robang)<15){}

else if(abs(ballang - robang)<3@){strcpy(cmp,"F");}
else if(abs(ballang - robang)<45){strcpy(cmp,"G");}

else{strcpy(cmp,"H");}
if(strcmp(cmp,msg) != @)

{

_serialPort = gcnew SerialPort(portChosen, 115200,

Parity::None, 8, StopBits::One);

else

_serialPort->0pen();

if(abs(ballang - robang)<15) {_serialPort->Write("A");}
else if(abs(ballang - robang)<30){_serialPort->Write("F");
else if(abs(ballang - robang)<45){_serialPort->Write("G");
else{_serialPort->Write("H"); }

_serialPort->Close();

strcpy(msg,cmp);

//std::cout<<"\nAngle too large. CMD: D"<<ballang-robang;

char cmp[2] = "D";

if(abs(ballang - robang)<15){}

else if(abs(ballang - robang)<30){strcpy(cmp,"V");}
else if(abs(ballang - robang)<45){strcpy(cmp,"B");}
else{strcpy(cmp,"N");?}

if(strcmp(cmp,msg) != @)

{

_serialPort = gcnew SerialPort(portChosen, 115200,

Parity::None, 8, StopBits::0One);

_serialPort->0pen();

if(abs(ballang - robang)<15) {_serialPort->Write("D");}
else if(abs(ballang - robang)<30){_serialPort->Write("V");
else if(abs(ballang - robang)<45){_serialPort->Write("B");
else{_serialPort->Write("N"); }

_serialPort->Close();

—

strcpy(msg,cmp);

}
¥

This code is used to determine the orientation of the robot with respect to a target and the instruction
that the robot should carry out. To begin, the program will search for the robot. If the number of blobs
found in the previous code is less than 2, then the robot has run off of the camera. The program sends
the instruction “S” to have the robot back up until it reappears on camera. Originally the code would
only check if the amount of blobs was equal to zero, which would cause problems if only the square or
triangle was available.

If the robot is found, the camera searches for tennis balls. If no tennis balls have been found, the robot
will be given the “X” command, which tells it to stop. This will be changed to have the camera search for
a pre-determined position or object and send the robot in this direction. This will be considered a home
base for the player to move to in order to collect tennis balls from the robot.

If both the robot and at least one tennis ball have been found, the distance between the robot and each
tennis ball is calculated. The closest ball is determined to be the target to head towards. Once a target
has been determined, the orientation of the robot is determined. This is done using the thought that
the camera creates a 2D plane with three points on it: the square, the triangle, and the target. Using
the x-distance and y-distance between two points to create two lines, the angle of the tangent line is
found using atan2. The robot angle is found using the triangle and the square. The target angle is found
using the square and the target. These angles are found in degrees.

Once both angles are found and stored, they are compared with each other. If the difference between
the angles is found to be less than 10°, the robot will be given the “W” command to move forward.
Otherwise, the difference is used to determine which way the robot will turn. If the target angle minus
the robot angle is negative, the robot will turn left. If this difference is positive, the robot turns right.

The degree of the turn completed will be determined by how large the difference is. If the robot angle is
greater than 10° but less than 15, the “A” or “D” command will be given to perform a 5° turn. “F” and
“V” are given for 15° turns. “G” and “B” are given for 30° turns. “H” and “N” are given for 45° turns.

Finally, before a message is sent via XBEE, the previously sent message is compared to the new message.
If these are the same, then no message is sent. This has been done to reduce lag and keep the XBEEs
from getting clogged. Originally when the sent instructions every time, some instructions would get lost
and the laptop would crash from time to time. This check has highly increased stability on both the
laptop and the robot.

Experimental Layout and Results

Initial Board Testing

The initial test of the microcontroller board consisted of plugging it into a power source and testing the
USB power. Initially, a spare 5V power supply was used to power up the board. This was found to be
inadequate and failed to power up the board. In lab, a power supply was used to test the board and
load a small program that would blink the debug LED.

Initial Sonar Testing

Once soldered, the sonar was plugged into two separate devices. First, the sonar was plugged into an
oscilloscope and tested to make sure that the values varied correctly. Once satisfied, the sensor was
crimped and plugged into the microcontroller board. Using X-CTU to output the values of the sonar, it
was found to work fine for its purposes.

Initial System Testing

Once the LCD had been wired up, a system test was implemented. The board was powered up and the
values of the sonar were sent to the LCD. Once the contrast had been correctly adjusted, the code was
adjusted to refresh the LCD instead of printing new values until space ran out on the LCD.

Obstacle Avoidance Initial Testing

Once the bump switches had been wired up and plugged in, the first batch of obstacle avoidance code

had been tested. The wheels had not been attached at the time, but the motors were plugged in. The

code would start the motors when all sensors were clear and stop the motors when one or more of the
sensors dropped below their defined minimum value.

Obstacle Avoidance Beta Testing

Obstacle avoidance beta testing included finding the right values for motor duty cycle and time delays to
allow for the motors to smoothly transition from moving forward to moving backward. Initially the
motors were performing at 1024 duty cycle, the highest value allowed. Also, each flag reinitialized the
motors to move forward when the robot finished adjusting its placement. This was found to cause
unreliable obstacle avoidance and cause hard starts and stops. After adjusting values and code, the
current obstacle avoidance code was made.

Dead Zone Testing

Using the calibration mode of the robot, it was left on in order to view the sonar values. The areas
where the sonar value was about 400 were taped off to show the relative zone for which the robot
would stop and adjust its course. Looking straight forward, it was found to be about 2 feet. Using this
method, the dead zones of the sonar were found.

Figure 10: Sonar dead zone test

A good portion of these zones are not troublesome, since they are outside the width of the robot and
likely will never be hit. However, there are two small triangular areas that could lead to an impact. The
bump switches will be installed to cover these problem areas.

Camera Testing

Stock code was used in Visual Studio to test the camera. The camera performs well enough at low
settings. It was found that the green of the tennis ball blends in with the wood panels of the robot using
current filters.

XBEE Testing
Stock code was used to test the XBEE. The laptop would send a different instruction for each button
pressed. XBEEs have been working fantastically.

Orientation Testing

Orientation of the robot is found using a square and a triangle. Code was written to show where a
simulated robot was pointing with respect to a tennis ball. The simulated robot was moved by taping
fishing line to it and pulling it around from outside the camera’s view.

Integrated Orientation Testing

Tested orientation detection with the robot turned on. The wheels were suspended in midair and
observed while the simulated robot moved accordingly in the camera’s view. This was done to make
sure that the correct instructions were being sent and that the XBEE was working in a timely manner.

Collection Testing

Two belts were connected to two separate pieces of wood. The belts were placed in parallel and in
series and turned on to see if they would pick up tennis balls on a ramp. The belts worked great in
parallel, but in series they lacked the torque to actually pick up tennis balls.

Conclusion

Overall, the robot has made great progress in being fully functional. It moves easily now that casters
have been added and picking up balls has become easier with the addition of the arms. Changes in the
camera code should make the robot perform better than ever. The largest hurdle to overcome so far
has been lag from the camera. It has forced me to change the code from continuous movement to
incremental movement. Additionally, the current setup for collecting tennis balls requires less precision
than it previously has. The funnel allows for a larger collection area while still giving the actuator the
precision it requires.

Documentation

Sonar: http://www.sparkfun.com/products/639
LCD: http://www.sparkfun.com/products/9054
Epiphany DIY Documentation: https://sites.google.com/site/epiphanydiy/file-cabinet

Appendices

Robot Code

This is the full code that is currently used on the robot.

/**
* \file
*

* \brief Empty user application template
*

*/

/*

* Include header files for all drivers that have been imported from
* AVR Software Framework (ASF).

*/

#tinclude <asf.h>
#tinclude <avr/io.h>
#include <ctype.h>
#tinclude <stdint.h>
#include <stdio.h>
#include <string.h>
#include <util/delay.h>
#include "motor.h"
#include "lcd.h"
#tinclude "uart.h"
#include "RTC.h"
#include "ATtinyServo.h"

http://www.sparkfun.com/products/639
http://www.sparkfun.com/products/9054
https://sites.google.com/site/epiphanydiy/file-cabinet

#tinclude "ADC.h"
#include "sonar.h"

#tdefine DbLedOn() (PORTR.OUTCLR = 0x02) //Turns the debug led on.
The led is connected with inverted logic

#tdefine DbLedOff() (PORTR.OUTSET = 0x02) //Turns the debug led off.
The led is connected with inverted logic

#tdefine DbLedToggle() (PORTR.OUTTGL = 0x02) //Toggles the debug led

off. The led is connected with inverted logic
int main (void)
{

board_init(); /*This function originates in the file init.c, and is used to
initialize the Epiphany DIY

motorInit() is declared within because by default you
the user should define what your
motor setup is to prevent hurting the Epiphany. You
can do this by
*/

RTC_DelayInit();//initializes the Real time clock this seems to actually take an
appreciable amount of time

DbLedOn(); //I like to do this by default to show the board is no longer
suspended in the bootloader.

ATtinyServoInit();//this function initializes the servo controller on the Attiny

uartInit(&USARTCO,115200);//as can be seen in the schematic. This uart is
connected to the USB port. This function initializes this uart

uartInit(&USARTE1,115200);//as can be seen in the schematic. This uart is
connected to the Xbee port. This function initializes this uart

ADCsInits();//this function initializes the ADCs inside the Xmega

sei();
LCDINit();
//stdout = &lcd_str;
char msg = "X";
int j = 0;
/*while(1)
{
if(strcmp(msg,"S")==0)
DbLedOn();
}
else if(strcmp(msg,"X")==0)
{
DbLedOff();
}
if(dataInBufE1l())
{
fscanf(&Xbee_str, "%c",msg);
}
}
*/
while(analogRead_ADCA(6) > 400)
{
LCDSetCursor(1,1);

fprintf(&lcd_str,"\r");

fprintf(&lcd_str,"%d %d
%d\nCalibration",analogRead_ADCA(®),analogRead_ADCA(6),analogRead_ADCA(7));

_delay _ms(200);

}

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);

while (1)

if(dataInBufE1l())
{

}
LCDSetCursor(1,1);

fprintf(&lcd_str,"\r");

fprintf(&lcd_str,"%d %d
%d\nCollection",analogRead_ADCA(®),analogRead_ADCA(6),analogRead_ADCA(7));

_delay_ms(200);

if(analogRead_ADCA(@) < 400)

{

fscanf(&Xbee_str, "%c",msg);

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD gc);
_delay_ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(300);
j=1;

}

else if(analogRead_ADCA(6) < 400)

{
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay ms(1000);
setMotorDuty(1,600,MOTOR_DIR_FORWARD gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay_ms(300);
j=1;

}

else if(analogRead_ADCA(7) < 400)

{
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(400);
setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay ms(1000);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay _ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);

3=1;

}
else if(j==1)

{

else

setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);

j=e;

_delay _ms(300);

if(strcmp(msg, "W")==0)

{

else

else

else

else

else

else

setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg,"D")==0)

setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay _ms(100);

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg, "V")==0)

setMotorDuty(1,600,MOTOR_DIR_FORWARD gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay_ms(200);

setMotorDuty(1,0,MOTOR_DIR_FORWARD gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg,"B")==0)

setMotorDuty(1,600,MOTOR_DIR_FORWARD gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD gc);
_delay_ms(300);

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg, "N")==0)

setMotorDuty(1,600,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD gc);
_delay_ms(400);

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg, "A")==0)

setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay ms(100);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

if(strcmp(msg, "F")==0)

setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay _ms(200);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

else if(strcmp(msg,"G")==0)

setMotorDuty(1,600,MOTOR_DIR_BACKWARD gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD_gc);
_delay _ms(300);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

else if(strcmp(msg,"H")==0)

setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_FORWARD gc);
_delay_ms(400);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD gc);

else if(strcmp(msg,"S")==0)

setMotorDuty(1,600,MOTOR_DIR_BACKWARD_gc);
setMotorDuty(2,600,MOTOR_DIR_BACKWARD_gc);
_delay_ms(500);
setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

else if(strcmp(msg,"X")==0)

Camera Code

Operation Code
This is the full code that is currently used to analyze the camera feed.

#tinclude
#include
#tinclude
#include
#include
#tinclude
#include
#include

setMotorDuty(1,0,MOTOR_DIR_FORWARD_gc);
setMotorDuty(2,0,MOTOR_DIR_FORWARD_gc);

"opencv/highgui.h"

"opencv/cv.h"
"BlobResult.h"
<iostream>
<stdlib.h>
<math.h>
<stdio.h>
<BlobResult.h>

#using <System.d1l1l>

#include

"stdafx.h"

using namespace System;
using namespace System::I0

::Ports;

using namespace System::Threading;

// Maths methods

#tdefine max(a, b) ((a) > (b) ? (a) : (b))
#tdefine min(a, b) ((a) < (b) ? (a) : (b))
#tdefine abs(x) ((x) > @ ? (x) : -(x))
#tdefine sign(x) ((x) > @ ? 1 : -1)

// Step moving for object min & max
#define STEP_MIN 5

#define STEP_MAX 100

// HSV ball values

int hb = 167, sb = 90, vb = 230, tolerance = 40;
//HSV "robot" values. Currently pink

int hr = 173, sr = 164, vr = 230;

//array for center of all tennis balls
double center[10][10];

//robot position

double robpos[30][30];

IplImage *image;

CBlobResult balls, robot;

CBlob *currentBlob, cb;

char msg[2] = "X";

void findcenters(IplImage *image, IplImage *hsv){
cvCvtColor(image,hsv,CV_BGR2HSV);
IplImage *mask = cvCreateImage(cvGetSize(image), image->depth,1);
cvInRangeS(hsv, cvScalar(hb - tolerance, sb - tolerance, 0), cvScalar(hb +
tolerance, sb + tolerance, 255), mask);

IplConvKernel *kernel = cvCreateStructuringElementEx(5, 5, 2, 2,
CV_SHAPE_ELLIPSE);

cvDilate(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvErode(mask,mask, kernel, 1);
cvDilate(mask,mask,kernel,1);
cvReleaseStructuringElement (&kernel);

balls = CBlobResult(mask, NULL, @);
balls.Filter(balls,B_EXCLUDE,CBlobGetArea(),B_LESS,120);

int num_blobs = balls.GetNumBlobs();

//IplImage *filtered = cvCreateImage(cvGetSize(mask),IPL_DEPTH_8U,3);

//cvMerge(mask,mask,mask,NULL,filtered);
for(int i=0@;i<num_blobs;i++)

{
currentBlob = balls.GetBlob(i);
//currentBlob->FillBlob(filtered,CV_RGB(255,0,0));
center[i][@] = (currentBlob->MaxX() + currentBlob->MinX())/2;
center[i][1] = (currentBlob->MaxY() + currentBlob->MinY())/2;
}

//cvShowImage("Balls",filtered);
cvReleaseImage(&mask);
//cvReleaseImage(&filtered);

void findrobot(IplImage *image, IplImage *hsv){
cvCvtColor(image,hsv,CV_BGR2HSV);
IplImage *mask = cvCreateImage(cvGetSize(image), image->depth,1);
cvInRangeS(hsv, cvScalar(hr - tolerance, sr - tolerance, 50), cvScalar(hr +
tolerance, sr + tolerance, 255), mask);
cvReleaseImage(&hsv);

IplConvKernel *kernel = cvCreateStructuringElementEx(5, 5, 2, 2,
CV_SHAPE_ELLIPSE);

cvDilate(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvErode(mask,mask, kernel, 1);
cvDilate(mask,mask, kernel,1);
cvReleaseStructuringElement (&kernel);

robot = CBlobResult(mask, NULL, 9);
robot.Filter(robot,B_EXCLUDE,CBlobGetArea(),B_LESS,100);
int num_blobs = robot.GetNumBlobs();

//IplImage *filtered = cvCreateImage(cvGetSize(mask),IPL_DEPTH_8U,3);

//cvMerge(mask,mask,mask,NULL,filtered);

if(num_blobs==2)

{
robot.GetNthBlob(CBlobGetArea(),robot.GetNumBlobs()-1,cb);
robpos[0][0] = (cb.MaxX()+cb.MinX())/2;
robpos[0][1] = (cb.MaxY()+cb.MinY())/2;
//cb.FillBlob(filtered,CV_RGB(255,100,0));
robot.GetNthBlob(CBlobGetArea(),0,cb);
robpos[1][0] = (cb.MaxX()+cb.MinX())/2;
robpos[1][1] = (cb.MaxY()+cb.MinY())/2;
//cb.FillBlob(filtered,CV_RGB(255,0,0));

else

for(int i=0;i<num_blobs;i++)
{
currentBlob = robot.GetBlob(i);
//currentBlob->FillBlob(filtered,CV_RGB(255,0,0));
robpos[i][@] = (currentBlob->MaxX() + currentBlob->MinX())/2;
robpos[i][1] = (currentBlob->MaxY() + currentBlob->MinY())/2;
}
}
//cvShowImage("Robot",filtered);
cvReleaseImage (&mask);
//cvReleaseImage(&filtered);
}

void finddir(String” portChosen,SerialPort” _serialPort)

{
int i = @, target = -1, num = balls.GetNumBlobs(), rob = robot.GetNumBlobs();
if(rob == @ || rob < 2)

//std::cout<<"\nRobot Not Found CMD: S";

char cmp[2] = "S";
if(strcmp(cmp,msg) != @)

_serialPort = gcnew SerialPort(portChosen, 115200, Parity::None, 8,
StopBits::0ne);
_serialPort->0pen();
_serialPort->Write("S");
_serialPort->Close();
strcpy(msg,cmp) ;
}

else if(num==0)

{
//std::cout<<"\nNo Targets Found CMD: X";

char cmp[2] = "X";
if(strcmp(cmp,msg) != 0)

_serialPort = gcnew SerialPort(portChosen, 115200, Parity::None, 8,
StopBits::0ne);

_serialPort->0pen();

_serialPort->Write("X");

_serialPort->Close();

strcpy(msg,cmp) ;

else

double dist = @, check = @, robang = 0, ballang = 0;
for(i;i<num;i++)

{
check = sqgrt(pow((center[i][@]-
(robpos[@][@]+robpos[1][0])/2),2)+pow((center[i][1]-(robpos[@][1]+robpos[1][1])/2),2));
if(target==-1 || check<dist)
{
target = i;
dist = check;
) }
robang = (atan2(robpos[@][1]-robpos[1][1],robpos[@][@]-
robpos[1][0])*180/3.14)+180;
ballang = (atan2(center[target][1]-robpos[1][1],center[target][0]-
robpos[1][©])*180/3.14)+180;
if(abs(robang-ballang)<10)

{
//std::cout<<"\nCorrect Angle. CMD: W";

char cmp[2] = "W";
if(strcmp(cmp,msg) != 0)

_serialPort = gcnew SerialPort(portChosen, 115200,
Parity::None, 8, StopBits::0One);

_serialPort->0pen();

_serialPort->Write("W");

_serialPort->Close();

strcpy(msg,cmp);
}
}
else if(ballang - robang<®)
{

//std::cout<<"\nAngle too small. CMD: A"<<ballang-robang;

char cmp[2] = "A";
if(abs(ballang - robang)<15){}

else if(abs(ballang - robang)<30){strcpy(cmp,"F");}
else if(abs(ballang - robang)<45){strcpy(cmp,"G");}
else{strcpy(cmp,"H");}
if(strcmp(cmp,msg) != @)
{
_serialPort = gcnew SerialPort(portChosen, 115200,
Parity::None, 8, StopBits::0ne);
_serialPort->0pen();
if(abs(ballang - robang)<15) {_serialPort->Write("A");}
else if(abs(ballang - robang)<30){_serialPort->Write("F"); }
else if(abs(ballang - robang)<45){_serialPort->Write("G"); }
else{_serialPort->Write("H"); }
serialPort->Close();

strcpy(msg,cmp);

else

//std::cout<<"\nAngle too large. CMD: D"<<ballang-robang;
char cmp[2] = "D";
if(abs(ballang - robang)<15){}
else if(abs(ballang - robang)<30){strcpy(cmp,"V");?}
else if(abs(ballang - robang)<45){strcpy(cmp,"B");}
else{strcpy(cmp,"N");}
if(strcmp(cmp,msg) != 0)
{
_serialPort = gcnew SerialPort(portChosen, 115200,
Parity::None, 8, StopBits::One);
_serialPort->0pen();
if(abs(ballang - robang)<15) {_serialPort->Write("D");}
else if(abs(ballang - robang)<30){_serialPort->Write("V"); }
else if(abs(ballang - robang)<45){_serialPort->Write("B"); }
else{_serialPort->Write("N"); }
_serialPort->Close();

strcpy(msg,cmp);

}

int main()
{
CvCapture *capture;
char key = 'd';
String”® portChosen = "COM4";
SerialPort” _serialPort;

capture = cvCreateFileCapture("http://192.168.1.3/img/video.mjpeg");
if(!capture){
printf("Can't initialize the video capture\n");
return -1;
}
//cvNamedWindow("Balls",CV_WINDOW_AUTOSIZE);
//cvNamedWindow("Live",CV_WINDOW_AUTOSIZE);
//cvNamedWindow("Robot",CV_WINDOW_AUTOSIZE);
//cvMoveWindow("Live",0,100);
//cvMoveWindow("Balls",650,100);
while(key!="Q' && key!='q")

image = cvQueryFrame(capture);
IplImage *hsv = cvCloneImage(image);
findcenters(image,hsv);
findrobot(image,hsv);
finddir(portChosen,_serialPort);

key = cviWaitKey(10);
//cvShowImage("Live",image);

}

HSV Color Code

This code is used to determine the HSV values of any object. Just run the code and click on the object
that is in camera view. The terminal will spit out the HSV value of this object. This code is a slight
modification of the sample code given by Josh Weaver.

#include "opencv/highgui.h"
#include "opencv/cv.h"
#include <iostream>
#include <stdlib.h>
#include <stdio.h>

// Maths methods
#tdefine max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#tdefine abs(x) ((x) > @ ? (x) : -(x))
#tdefine sign(x) ((x) > @ ? 1 : -1)
// Step mooving for object min & max
#define STEP_MIN 5
#define STEP_MAX 100
IplImage *image;
// Position of the object we overlay
CvPoint objectPos = cvPoint(-1, -1);
// Color tracked and our tolerance towards it
int h = 118, s = 131, v = 166, tolerance = 40;
/*
* Transform the image into a two colored image, one color for the
color we want to track, another color for the others colors
* From this image, we get two datas : the number of pixel detected,
and the center of gravity of these pixel
*/
CvPoint binarisation(IplImage* image, int *nbPixels) {
int x, y;
CvScalar pixel;
IplImage *hsv, *mask;
IplConvKernel *kernel;
int sommeX = @, sommeY = 0;
*nbPixels = 0;
// Create the mask &initialize it to white (no color detected)
mask = cvCreateImage(cvGetSize(image), image->depth, 1);
// Create the hsv image
hsv = cvCloneImage(image);
cvCvtColor(image, hsv, CV_BGR2HSV);
// We create the mask
cvInRangeS(hsv, cvScalar(h - tolerance -1, s - tolerance, 0), cvScalar(h +
tolerance -1, s + tolerance, 255), mask);

// Create kernels for the morphological operation
kernel = cvCreateStructuringElementEx(5, 5, 2, 2, CV_SHAPE_ELLIPSE);
// Morphological opening (inverse because we have white pixels on black
background)
cvDilate(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvErode(mask, mask, kernel, 1);
cvDilate(mask, mask, kernel, 1);
// We go through the mask to look for the tracked object and get its gravity

center
for(x = 0; x < mask->width; x++) {
for(y = 0; y < mask->height; y++) {
// If its a tracked pixel, count it to the center of gravity's
calcul

if(((uchar *)(mask->imageData + y*mask->widthStep))[x] == 255) {
sommeX += X;
sommeY += y;
(*nbPixels)++;

}

}
// Show the result of the mask image

cvShowImage("Mask", mask);
// We release the memory of kernels
cvReleaseStructuringElement (&kernel);
// We release the memory of the mask
cvReleaseImage(&mask);
// We release the memory of the hsv image
cvReleaseImage(&hsv);
// If there is no pixel, we return a center outside the image, else we return the
center of gravity
if(*nbPixels > 9)
return cvPoint((int)(sommeX / (*nbPixels)), (int)(sommeY / (*nbPixels)));

else
return cvPoint(-1, -1);
}
/*
* Add a circle on the video that fellow your colored object
*/

void addObjectToVideo(IplImage* image, CvPoint objectNextPos, int nbPixels) {
int objectNextStepX, objectNextStepY;
// Calculate circle next position (if there is enough pixels)
if (nbPixels > 10) {
// Reset position if no pixel were found
if (objectPos.x == -1 || objectPos.y == -1) {
objectPos.x = objectNextPos.x;
objectPos.y = objectNextPos.y;

}
// Move step by step the object position to the desired position

if (abs(objectPos.x - objectNextPos.x) > STEP_MIN)

objectNextStepX = max(STEP_MIN, min(STEP_MAX, abs(objectPos.x -
objectNextPos.x) / 2));

objectPos.x += (-1) * sign(objectPos.x - objectNextPos.x) *
objectNextStepX;

if (abs(objectPos.y - objectNextPos.y) > STEP_MIN) {

objectNextStepY = max(STEP_MIN, min(STEP_MAX, abs(objectPos.y -

objectNextPos.y) / 2));

objectNextStepY;

// -1 =

} else {

}
// Draw

objectPos.y += (-1) * sign(objectPos.y - objectNextPos.y) *

}

object isn't within the camera range
objectPos.x = -1;

objectPos.y = -1;

an object (circle) centered on the calculated center of gravity

if (nbPixels > 10)

cvDrawCircle(image, objectPos, 15, CV_RGB(255, 0, @), -1);

// We show the image on the window
cvShowImage("Color Tracking", image);

}
/*

* Get the color of the pixel where the mouse has clicked
* We put this color as model color (the color we want to tracked)

*/

void getObjectColor(int event, int x, int y, int flags, void *param = NULL) {

// Vars

CvScalar pixel;
IplImage *hsv;
if(event == CV_EVENT_LBUTTONUP) {

pixel

}

int main() {

// Get the hsv image

hsv = cvCloneImage(image);

cvCvtColor(image, hsv, CV_BGR2HSV);

// Get the selected pixel

pixel = cvGet2D(hsv, y, X);

// Change the value of the tracked color with the color of the selected

h = (int)pixel.val[@];
s = (int)pixel.val[1];
v = (int)pixel.val[2];

// Release the memory of the hsv image
cvReleaseImage(&hsv);

// Image & hsvImage
IplImage *hsv;

// Video Capture

CvCapture *capture;

// Key for keyboard event
char key = 'd';

// Number of tracked pixels
int nbPixels;

// Next
CvPoint

position of the object we overlay
objectNextPos;

// Initialize the video Capture (200 => CV_CAP_V4L2)
//capture = cvCaptureFromCAM(1);

capture

= cvCreateFileCapture("http://192.168.1.3/img/video.mjpeg");

// Check if the capture is ok
if (!capture) {

printf("Can't initialize the video capture.\n");

return -1;
}
// Create the windows
cvNamedWindow("Color Tracking", CV_WINDOW_AUTOSIZE);
cvNamedWindow("Mask", CV_WINDOW_AUTOSIZE);
cvMoveWindow("Color Tracking", @, 100);
cvMoveWindow("Mask", 650, 100);
// Mouse event to select the tracked color on the original image
cvSetMouseCallback("Color Tracking", getObjectColor);
// While we don't want to quit
while(key != 'Q' && key != 'q') {
// We get the current image
image = cvQueryFrame(capture);
// If there is no image, we exit the loop
if(!image)
continue;
objectNextPos = binarisation(image, &nbPixels);
addObjectTovideo(image, objectNextPos, nbPixels);
// We wait 10 ms
key = cviaitKey(10);
std::cout<<"h = "<<h<<" s = "<<s<<" v = "<gv<<"\n";
}
// Destroy the windows we have created
cvDestroyWindow("Color Tracking");
cvDestroyWindow("Mask");
// Destroy the capture
cvReleaseCapture(&capture);
return 0;

XBEE Serial Port Test

This code was found on the Google group for IMDL. This is used to send a message from the laptop to
the robot. This was used to make sure the XBEEs were operating, test how to manage messages, and
find the optimal delay to allow for precision turning.

#pragma once

namespace Serial Port_Tester {
using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;
using namespace System::I0::Ports;
/// <summary>
/// Summary for Forml
/// </summary>
public ref class Forml : public System::Windows::Forms::Form
{
public:

SerialPort” _serialPort; //global serial port variable
private: System::Windows::Forms::Button”® Start_Robot;
private: System::Windows::Forms::Button® Stop_Robot;
public:

int x;

Forml(void)

{
InitializeComponent();
//
//TODO: Add the constructor code here
//
b
protected:

/// <summary>
/// Clean up any resources being used.
/// </summary>

~Forml()
{
if (components)
{
delete components;
}
}
private: System::Windows::Forms::Button® List_Ports;
protected:
private: System::Windows::Forms::ListBox" Ports_List;

private:

/// <summary>

/// Required designer variable.

/// </summary>

System: :ComponentModel: :Container “~components;
#pragma region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

void InitializeComponent(void)

{

this->List_Ports = (gcnew System::Windows::Forms: :Button());

this->Ports_List (gcnew System: :Windows::Forms::ListBox());

this->Start_Robot = (gcnew System::Windows::Forms::Button());

this->Stop_Robot = (gcnew System::Windows::Forms::Button());

this->SuspendLayout();

//

// List_Ports

//

this->List_Ports->Location = System::Drawing::Point (35, 138);

this->List_Ports->Name = L"List_Ports";

this->List_Ports->Size = System::Drawing::Size(75, 23);

this->List_Ports->TabIndex = 0;

this->List_Ports->Text = L"List Ports";

this->List_Ports->UseMnemonic = false;

this->List_Ports->UseVisualStyleBackColor = true;

this->List_Ports->Click += gcnew System::EventHandler(this,
&Forml::List_Ports_Click);

//

// Ports_List

//

this->Ports_List->FormattingEnabled = true;

this->Ports_List->Location = System::Drawing::Point(12, 12);

this->Ports_List->Name = L"Ports_List";

this->Ports_List->Size = System::Drawing::Size(120, 95);

this->Ports_List->TabIndex = 1;

//
// Start_Robot
//
this->Start_Robot->Location = System::Drawing::Point(153, 12);
this->Start_Robot->Name = L"Start_Robot";
this->Start_Robot->Size = System::Drawing::Size(75, 23);
this->Start_Robot->TabIndex = 2;
this->Start_Robot->Text = L"Start Robot";
this->Start_Robot->UseVisualStyleBackColor = true;
this->Start_Robot->Click += gcnew System::EventHandler(this,
&Forml::Start_Robot_Click);
//
// Stop_Robot
//
this->Stop_Robot->Location = System::Drawing::Point (153, 41);
this->Stop_Robot->Name = L"Stop_Robot";
this->Stop_Robot->Size = System::Drawing::Size(75, 23);
this->Stop_Robot->TabIndex = 3;
this->Stop_Robot->Text = L"Stop Robot";
this->Stop_Robot->UseVisualStyleBackColor = true;
this->Stop_Robot->Click += gcnew System::EventHandler(this,
&Forml::Stop_Robot_Click);
//
// Forml
//
this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode =
System: :Windows: :Forms: :AutoScaleMode: :Font;
this->ClientSize = System::Drawing::Size(261, 187);
this->Controls->Add(this->Stop_Robot);
this->Controls->Add(this->Start_Robot);
this->Controls->Add(this->Ports_List);
this->Controls->Add(this->List_Ports);
this->Name = L"Forml";
this->RightTolLeft = System::Windows::Forms::RightToLeft: :No;
this->Text = L"Serial Port Tester";
this->ResumelLayout(false);
}
#pragma endregion
private: System::Void List_Ports_Click(System::0bject”® sender,
System: :EventArgs® e) {
Ports_List->Items->Clear();
array<String”>~ serialPorts = nullptr;

try
{

serialPorts = SerialPort::GetPortNames();
}
catch (Win32Exception” ex)
{

MessageBox: :Show(ex->Message);

}
for each(String” port in serialPorts)
{

Ports_List->Items->Add(port);
}

}
private: System::Void Start_Robot_Click(System::0Object” sender,

System::EventArgs® e) {

if (Ports_List->SelectedIndex == -1)

{
MessageBox: :Show("Please select a serial
port.");
}
else
{
String”® portChosen = Ports_List->SelectedItem-
>ToString();

_serialPort = gcnew SerialPort(portChosen,
115200, Parity::None, 8, StopBits::0One);

_serialPort->0pen();

_serialPort->Write("W");

_serialPort->Close();

}
}
private: System::Void Stop_Robot_Click(System::0bject” sender, System::EventArgs” e) {
if (Ports_List->SelectedIndex == -1)
{
MessageBox: :Show("Please select a serial
port.");
}
else
{
String”® portChosen = Ports_List->SelectedItem-
>ToString();

_serialPort = gcnew SerialPort(portChosen,
115200, Parity::None, 8, StopBits::0One);

_serialPort->0pen();

_serialPort->Write("X");

_serialPort->Close();

