
May 1, 1995

Name: Erik de la Iglesia

TA: Scott

Instructor: Dr. K. L. Doty

University of Florida

Department of Electrical Engineering

EEL 5934

Intelligent Machines Design Laboratory

Final Report

R2: Real-Time Contouring

Table of Contents

Abstract Page 3

Executive Summary Page 4

Introduction Page 5

Platform Page 7

Actuation Page 8

Sensors: Shaft Encoders Page 10

Sensors: Sharps Page 14

Sensors: Limit Switches Page 18

Sensors: CDS Cells Page 20

Algorithms and Behaviors Page 23

Partial Solutions Page 25

Experimental Layout Page 29

Conclusions Page 30

References Page 32

Appendix Page 33

Abstract

The author investigates a minimal sensor requirement for solid object acquisition

and contouring for a mobile autonomous robot. Solid object acquisition is a superset of

obstacle avoidance while contouring is a superset of wall-following behaviors requiring

the agent to perceive both the displacement from and normal vector to a piece-wise solid

surface. For the purpose of this research, a surface is considered to be bounded by a finite

perimeter of one surface type. A surface type is defined by having a given nonvarying

reflectivity. It is demonstrated that a differential sensor pair and a single tangential sensor

are sufficient to realize the aforementioned behaviors. The necessary calculations can be

significantly reduced by using imposed linearity upon non-linear sensors with variable

emitter currents. Finally, the concept of the partial solutions form of behavior algorithms

allowing for highly stable algorithms is discussed as a general method for agent behavior.

Executive Summary

The R2 agent is a Stalt derivative with many advanced features. High precision

shaft encoders, extensive sensor suite, and rotating sensor head capability allow for a

variety of behaviors and modes of operation. Over twenty sensors of four discrete types

allow for proximity and normal detection, battery level sensing, corner detection, head

positioning, and shaft encoding. Through effective use of these sensors, the agent can be

programmed for straight-line motion and solid face contouring. The objective of the

author is to establish a learning base platform from which many levels of software

development are possible. With the capabilities of the agent documented, focus shifted

towards the specific problem of contouring using a minimal sensor suite.

Contouring involves complex behaviors. Initial attempts showed that any

contouring algorithm functions best when some form of memory is utilized. The behavior

arbitrator of the agent can normally be thought of as a processor intercepting information

from the sensor groups and making decisions based on some criteria that then guide the

agent through a given scenario. Such an algorithm can be viewed as purely combinatorial

and is prone to instability. If the behavior arbitrator is provided with additional information

regarding the current state of the system, more stable behavior is possible. In fact, an

optimal algorithm involves a set of partial solutions and a memory table of past solutions.

When implemented, the partial solutions structure eliminates the need for

randomness in a behavior system. Repetitive executions which would normally indicate an

instability are identified as a series of unreached solutions and a new partial solution is

sought. The past solutions table can be implemented as a counter. Every attempt to

execute a partial solution incremented the associated counter. A “futility” limit determines

if after some number of attempts the execution is impossible and another method is

necessary. In practice, few algorithms require the partial solutions approach. However,

those that do are inevitably the most critical to the function of the agent.

Introduction

Mobile autonomous agents are explorers. The designer creates a platform capable

of some perception in the near environment and then programs some behaviors

appropriate to the goal of the agent. This code must compensate for any and all

possibilities that might occur in the target environment. The analogy presenting during the

first week of class seems highly appropriate here. If an agent were sent to Mars for

exploration, commands going to and from the agent would have a certain latency due to

the distance from the controller. If a crater were to sudden open up immediately in front of

the agent, the image of this impending catastrophe would reach Earth at about the same

time that the agent was destroyed as it hit the bottom of the hole. Accurate real-time

perception is vital for the survival of the autonomous agent.

In lab, the impending catastrophe may only be bumping into a wall or tipping over.

However, one must consider such a failure equally grave to falling into some alien trench.

In both cases, the ability of the agent to act autonomously is compromised. The only

difference is that one agent that can be picked up, brushed off, reprogrammed, and

probably costs less. One must accept that there is no such thing as limited autonomy.

Either the agent can achieve the goal it was programmed for, or it can’t. For the purpose

of contouring, bumping into an object may not be a critical flaw. Even if the agent requires

ten attempts to exit some interior concave surface, the fact that it eventually does indicates

that it succeeded in contouring. Even brushing against a surface means little if the agent

alignes itself properly after doing so.

The algorithms presented in this paper are goal oriented. Behaviors have a specific

purpose which drives the agent to seek a solution through a group of partial solutions.

Individual readings of sensors, accomplished through a sensor service routine can be

viewed as a group function or singularity. Since the singularity can not itself drive

behaviors, some intermediate decision layer must process the singularity information along

with the previous singularities, current state variables, and global variables. This layer is

referred to as the global variable preprocessor. All variables that are functions of

information gathered in a singularity are handled by this preprocessor. A priority arbitrator

then compares singularities and devises a partial solution based the desired goal as

expressed through system state variables.

This paper focuses on the development of a minimal system to contour a closed

surface. The platform built is by no means minimal since it was constructed as a learning

base. The premise is that by creating a full-feature agent, an idea of the minimal agent will

develop as unused sections are removed in future models. The sensing systems developed

include Sharp infra-red sensors for displacement and angle detection, Siemens sensors for

shaft encoding, CDS cells for corner detection, and limit switches for head movement.

Control algorithms were implemented using Interactive C on an HC11 architecture.

Platform

The R2 agent uses a Stalt derived circular wooden platform. The bottom of the

main dish houses two converter Futaba FP-S148 servo motors with incorporated shaft

encoders. The eight-cell battery pack is housed in a wooden casing which also supports

the castor build using Lego components. The wheels are placed directly over the center

axis and the battery pack is adjusted so as to provide the necessary rear-weight to prevent

tipping over. The main processing board features a variety of subsystems on one Vector

board with inverted B1\B2 type pattern. This pattern consists of a distributed ground

plane with isolated holes. A component is secured and grounded by simply soldering the

ground pin to the board. The board is mounted with one inch standoffs to a wooden board

of equal dimensions which slides in place via two vertical posts mounted horizontally over

the base. A support beam parallel to the circuitry but one inch higher strengthens the

structure and provides a means of securing the rotating head through the upper servo. The

longer shaft of the servo is mounted upside down to allow the motor to be placed on the

top surface of the head and have the shaft come through the center and lock to the support

beam. Some of the head base is removed to better allow the connecting wires to move

while the head is rotating into position.

The controlling circuitry is based on a CGN module serving as a host for the HC11

processor. Memory is expanded to 32K using the standard Jones / Flynn method. An

AMD PALCE22V10 serves as address decoder to the ram and the six digital ports and

display device. A one byte display is implemented using two TI311 chips with latches tied

to the PAL control lines. To reduce power consumption, the flash control is tied to the

20% duty cycle of the 40KHz generator implemented using a single 74HC390 decade

divider. The analog to digital reference voltages are brought out to potentiometers for fine

adjustment and all data lines are brought to test points at the edge of the board. To

preserve memory during a battery change, a Dallas battery-backed RAM module is used.

Twin L293 motor drivers control the Futaba drive motors and the head servo. A

single 74HC14 hex Schmitt trigger is included to clean any signals which to not meet HC

specifications.

Actuation

The two motor groups are controlled independently. All motors are powered

directly from the battery via the L293’s. Drive motors have the additional capability of

speed control achieved by pulse width modulation the enable control line. Head motion is

constant at full power. The circuit required to drive a motor device using low current TTL

level control lines is called a four quadrant controller, or H-bridge. A schematic of the H-

bridge follows using MOS technology parts.

When C1 is high (+5) and C0 low (GND), current flows across the motor from

right to left. When the control signals are inverted, current flows left to right. Equivalent

signals will cause zero current to flow. The inputs are level shifted from 5V to the battery

level via a depletion mode NMOS inverter. Level shifting is necessary to drive the signal

high enough to turn off the PMOS devices.

Because the motor is essentially a resistance in series with an inductance, a rapid

switching of direction will cause a problem. The field built up in the motor will oppose the

voltage forced by the H-bridge. This back-EMF is forced into the battery and causes a

massive spike on the power system. The diodes across the transistor terminals attempt to

limit this by allowing the current to escape directly. However, the diodes do not

completely solve the problem, and some IC versions of this device do not have protection

diodes. Software control can help reduce the power spikes by gradually updating motor

speed instead of instantaneously switching motor direction.

The reasons for developing a panning head are two-fold. First, using the Choi-

Jantz sensor placement standard, (see sensor section) most sensing is done in the forward

direction. This means that the agent must be facing the object being scanned. If the agent

is a few degrees off an intended course, forward scanning would completely miss an

acquire request. However, scanning in a 180 degree field from the right and left of the

agents trajectory would detect virtually any object within the sensor range. Second, the

minimal approach requires that as few sensors as possible be used to gather the most

information possible. Allowing sensors to perceive information in a 180 degree field is

certainly better than just a single linear ray.

Sensors

Shaft Encoders

Implementation of shaft encoders would be trivial if the agent could be designed to

move very slowly and devote great resources to sampling and correction. Unfortunately,

no behaviors are so fundamentally simple that an arbitrarily large time slice can be given to

a shaft encoder routine. One can thus form two important guidelines for shaft encoder

implementation. First, shaft encoders should provide a great deal of information (number

of counts) in the shortest possible time. This allows sampling and correction routines to

drain a minimum of processor resources. Second, the implementation should be one such

that the processor is relieved of as much of the control of the sensors as possible. Ideally,

the processor would simply read the sensors in an infinitely short period of time and

correct the motor PWM signals at an infinitely small percentage of the total system time

slice. Of course, such a shaft encoding system is not possible. However, one can approach

said system by making use of processor-native hardware to motor control using shaft

encoders.

The recommended method of implementing shaft encoders appears in the Jones-

Flynn book. Shaft encoder signals are read by PA7 and the IC3 input capture pin. An

interrupt routine must service every rising edge on the IC3 pin while the PA7 pulse

accumulator hardware automatically increments an eight-bit counter upon the edge

selected by a control register. Several problems can occur using this method. Since issues

relating to the sensor hardware are dealt with later, we will focus first on the immediate

problems within the HC11.

Interactive C (IC) runs as an interrupt driven multi-tasking shell. It is undesirable

on a processor of this scale to run many interrupt driven routines simultaneously. This is

equivalent to a modern PC running Windows and attempting to multitask several

programs each requiring protected mode features and using BIOS routines instead of the

INT 21 DOS services. Additionally, the functionality of the IC3 hardware is only 50%

exploited as it can capture both rising and falling edges while the pulse accumulator would

require a further interrupt routine to swap triggering modes. In short, the system is both

software-intensive and hardware-wasteful.

If the HC11 were equipped with two pulse accumulators, it would become trivial

to read each shaft encoder signal. The hysteresis buffering of the PA7 pin also makes it

ideal for reading a signal which may not necessarily by a perfect square-wave. An easy

implementation of this idea, not involving redesign of the processor, is to multiplex the

signals into the signal pulse accumulator. If sampling periods are held to a minimum, each

sensor could be read after the other giving very accurate readings. Additionally, the

software control is minimal. The count register can be zeroed by a single POKE command

and then read after an arbitrary delay. This is the solution that the author pursued. The

schematic of the shaft encoder signal multiplexer follows:

With the additional four pins available at the time of the shaft encoder design, the

PAL device becomes the necessary multiplexer. The control line is buffered via a

74HC374A memory-mapped output port located at $7000. By alternately selecting the

two signals, the pulse accumulator reads both sensors with no software overhead

involved. With a functional software and sampling method implemented, the researcher

attempted to perfect the mechanical portion of the shaft encoding system. The suggested

method of obtaining pulses from a driving motor was to use a partitioned disk similar to

the one shown.

An infrared emitter-detector, such as the Siemens

SFH905 that the researcher demonstrate earlier in the

semester, would detect each black line as an interruption

on the IR reflection and send this signal to the sensing

hardware. Naturally, the number of sections directly

correlates the number of counts acquired in a given time

period. (See diagram to right) The position of the sensor

and the location of this disk along the gear-train, among

other things, influenced the success of this implementation.

Other students reported problems with signal bounce and level earlier in the

semester using the Siemens sensor. The researcher chose to implement a high-speed disk

and signal correction circuit to supply the shaft encoder signals to the processor. Below is

a diagram of the system designed. Use of a classmate’s idea to place the sensory element

inside a servo motor was made.

Note also that the circuit used

does not have the base resistor

normally used for a common-

emitter amplifier. The 33K pull-

up resistor cannot drive the base

higher that the Vbe_sat level. All

possible bouncing of the signal at

higher sensor voltages is eliminated since the signal clamps at about 0.8V. The sensor does

not sustain damage from this method.

Even at very high speeds, a nearly perfect square-wave is present at the signal

node. To allow for very rapid sampling, the Siemens sensor is placed inside the converted

Futaba servo by drilling a hole through the plastic casing and allowing the sensor to reflect

off of the primary gear. The above schematic illustrates how this is done.

It is important to note that simply painting the

primary gear in partitions is not enough. The researcher

found that the plastic gear is actually partially translucent

to IR light. Initially, an unpainted section will not reflect

sufficient IR to trigger the sensor. After repeated use

however, the buildup of grease on the opposing side will

make the unpainted areas partially reflective. The only

solution to this dilemma is to use a reflective paint over the

remaining sections of the gear. Testors brand silver and flat

black paints are ideal for this. It is also vital to completely

cover the wheel surface. Border regions should be handled

by applying the second paint over the first thus eliminating

any possibility of the old plastic surface showing.

A finite bounce still occurs using this system. Since any high frequency bouncing

that is seen through the multiplexer is corrected as actual signal by the PAL, it is necessary

to filter the incoming signal to eliminate said bouncing. Experimentally, anywhere from

two to seven bounces per active signal edge can be seen. The immediate solution, which

works very well, was first discovered by a classmate and used here to a much larger

extent. A large capacitor is placed directly at the input of the pulse accumulator. The

reason for this placement is two-fold. First, the PAL input is much more sensitive that an

HC11 input and should not be “modified” unless absolutely necessary. Second, the inbuilt

hysteresis correction of the pulse accumulator input makes such modification possible and

acceptable. Experimentally, a value greater than 1.0uf over the pulse accumulator input

will eliminate the bouncing and properly condition the signal.

If constructed well, the aforementioned configuration can give about thirty counts

per 50ms sampling time. This number depends greatly on the number of sections painted

on the first gear. The researcher feels that eight sections is the most physically allowable

due to the nature of the sensor dimensions. In the agent designed, six sections are used.

Sharps

The Sharp hack provided an easy and inexpensive method of distance

measurement using a pulsed 40KHz Infra-red LED and a modified sensor. This hack was

demonstrate during the first two weeks of class and had been well established as the

predominant distance measuring technology. However, a significant flaw existed. The

analog signal recovered from the sensor had a significant rise and fall time making

successive measurements very slow or nearly impossible at acceptable speeds. An analysis

conducted by David Novick confirmed these characteristics. Rise and fall times around

100ms could be expected when using the sensor. Although certain situations allowed for

times only one quarter of this, reliable measurements could only be taken if the software

conforms to this hardware limitation.

After extensive experimentation by this researcher, a solution to this dilemma

presented itself. The analog signal taken as part of the Sharp hack was forced over a

surface mount capacitor of value 0.1uf. Removing this capacitor should shorten the rise

and fall times. After confirming that the surface mount capacitor was indeed integrating

the signal, the researcher cut the capacitor and re-evaluated the output signal.

Unfortunately, the resulting signal was far too unstable to be of any use.

Theoretically, some value of capacitance below 0.1uf should have been able to

correct the instability. Several values tested showed interesting results. A value less than

500pf produced unstable output. However, a value of 0.01uf produced a stable signal with

rise and fall times of only 2-3ms. After demonstrating this innovation to several

coworkers, the researcher presented the findings to Dr. Doty who subsequently confirmed

them. The new hack showed sufficient promise to warrant incorporation into the sensors

of future Sharp user. Another significant advantage of the new hack was its preservation

of the digital output. This, in theory, would allow digital communication and analog

sensory measurement using the same sensor, although not simultaneously.

Unfortunately, the arrival of the sensors to be used for this years class brought an

unexpected surprise. The newer sensors were redesigned containing fewer surface mount

components. This researcher set out to characterize the newer sensors and document the

functionality of the old hack and the recent improvement on the new sensors. The initial

results showed that the hack was equally effective on the new sensors and that rise and fall

times remained in the 2-3ms range using the 0.01uf replacement capacitor. Several

problems soon became apparent however.

Primarily, the digital signal was thought to be undisturbed by the analog tap. This

proved incorrect. As soon as the analog tap was loaded, even with only the 20pf scope

input capacitance, the digital output lost its 50% duty cycle and became a pulse width

modulated waveform. When the original sensors showed similar destruction of the digital

signal, it became apparent that digital communication through the “analog” sensor might

be impossible. Dr. Doty theorized that it might be possible to rectify the analog signal into

the original digital waveform using a Schmitt trigger. This solution has yet to be tested.

As soon as the digital loading problem became apparent, the researcher set up

another experiment to extensively test the new sensor. This experiment supplied the

emitter resistor and sensor capacitor to a breadboard for easy altering of parameters.

Testing began on 2-10-95 and produced immediate interesting data. The newer sensor

lacked the distance resolution of the earlier version.

Tae Choi tested his parameters which were successful on his class robot the

previous semester and found that the range was half that expected. The “blind spot”

immediately in front of the emitter was still the same, (roughly two inches) but the range

dropped from over thirty six inches to about fourteen inches. By varying the focal

distance, a term used here to describe the distance at which the sensor first reaches

saturation, many different ranges were observed. Range seemed to increase by about six

inches per one inch of focal distance compromise. Tests continued and consistently

demonstrated the new sensors’ inferiority to the older model.

Additional experiments were initiated to examine the feasibility of providing

software control over the IR emission intensity. Since a standard D/A chip cannot handle

the necessary current levels, discussion focused on creating an effective D/A with higher

loading capability. Current levels up to about 35mA had to be available. Tai Choi and

Scott Jantz collaborated on a novel method of producing such a device. The researcher

was able to test and verify the performance of the design as well as extend it to allow the

first quantization of multi-level IR distance measurement. The schematic of the design

devised from the original Choi / Jantz design follows:

The IR

LED Array can

be a single LED

is a series string

if LED’s. Since

the voltage drop

across the

LED’s is over

1V however, the resistances used must also decrease and no more than three LED’s

should ever be used in series. The initial current limiter Rx can be a short if desired. The

researcher in general prefers to place resistances on all digital outputs to avoid a short-

circuit situation. Since all resistances can be socketed using high profile sockets, the initial

resistance Rx can be shorted after the assembly of the secondary resistance branches.

The range of the Sharp sensors can now be modeled as the complete range from

the saturation of the low current setting to the first detection of the high current setting.

Experimentally, the low current setting has a full deflection range covering about 12

inches with a saturation length within the perimeter of the agent. The high current setting

can detect reflections at distances greater than 30 inches. Adaptive algorithms can request

a data value by selecting the high current setting, and dropping to a lower level if

saturation occurs. With the modification of the reference voltages of the A/D converter,

six bits of precision are available over the eight ranges.

The issue of sensor placement was not thoroughly research. Instead, the Tae Choi

model was combined the Scott Jantz zonal distribution method to develop the following

sensor suite. On the following page, the black boxes are the Sharp sensors whereas the

smaller black and white objects are noncollimated and collimated IR emitters respectively.

Since the agent has the capability to pan its head one quarter revolution to each

side, the two lateral sensors become front sensors when the head is completely turned. The

possibility of adding uncollimated emitters to these sensors is being explored, since any

objects in the agents way must be picked up by these sensors alone when in pan mode.

Since a vast majority of sensing capability is concentrated towards the front of the

head, constant use of the panning feature must be used in order to fully analyze an

environment. It is expected that the panning feature will allow for high speed wall

following and “passing analysis” of objects.

Limit Switches

One major obstacle to the design of an effecting panning head was the position

sensing of the head. The

servo-pot used to

mechanically turn the

head does not have a

standard center-tap

potentiometer and so did

not allow for a single

analog reading of

position. About twenty

combinations of the seven

taps available were fully tested with very limited success. In each case, the nonlinear

nature of the device gave higher resolution on one turn side. The slip of the device also did

not allow for precise positioning. The researcher determined that a digital means of

position detection should be implemented. The standard limit switch configuration is

shown. Because of the extended ground-plane present of the agents main board, the active

high solution was implemented. A diagram of the specific implementation chosen follows

on the next page.

The hot contracts are tied directly to Vcc while each detect line is tied to an HC11

input port with a resistance to ground. Left and right detect pods are made using metal

pins and the hot contact using tempered “blue steel” plates. The rigidity of the plates

serves two purposes. First, the plates are strong enough to absorb the inertia of the head

when hitting a limit contact, thus allowing for more precise positioning. Second, the

nature of the material allows the material to be bent along its grain into shapes which are

held indefinitely. This becomes critical when construction the center hot tap. The switch

must give a clear signal but not interfere with the free rotation from either extreme to the

other. By bending the steel into a miniature parabola and using a third pin head to

“scratch” the surface, virtually no interference occurs during a full sweep.

CDS Cells

CDS cells are basically variable resistors controlled by ambient light. For

application to the agent, the cells will be colimated and used to give a digital response.

There are two reasons for this decision. The range or responses given depend greatly on

the ambient room light. Thus, any algorithm using the cell as an analog input must account

for a variety of possible environments. Having the sensor trigger a threshold device to give

a digital signal is possible if a high intensity light source parallel to the colimation chamber

is reflected off a close object. In short, the objective of this researcher is to create a

functional equivalent of the digital Sharp sensor at a fraction of the price.

The immediate applications for this agent involve corner detection. The panning

ability of the sensor head should make wall following very simple. However, proper

alignment after making an angled turn is critical to reacquiring a surface. This can be done

by analog sensors, but could also be done far more simply using digital proximity sensors.

A proposed diagram follows.

Because the agent’s wheels are located on the central axis, proper alignment can

be done using an under-turn-over-compensate procedure. The agent would first turn

somewhat less than 90 degrees and then adjust inward until the surface is reacquired. With

proper placement, it may only be necessary to perfect the turning angle as the sensors

could determine the proper extension beyond the surface.

A further application could be the corner exit solution problem. When an agent

enters a corner with the exit vector greater than 90 degrees from the entrance vector,

instability and “jamming” can occur. To avoid this, the following procedure is suggested:

A partially acquired surface on the opposing side of an acquired surface would

indicate that the above condition is satisfied. The agent could then back up, turn 90

degrees to the side, and attempt to acquire the new surface at an angle of 90 degrees less

than the previous angle. Again, this is feasible only when the agent can turn very tightly.

After two weeks of testing, it was concluded that the analog equivalent shown

below is a superior method since minimal hardware control is required. Because the

analog comparators are essentially op-amps in open loop configuration, this circuit can be

realized using only a single 14-pin IC making it ideal for small boards.

Algorithms and Behaviors

In order to accommodate the contouring behavior sought, a novel control

architecture was designed. Specifically, two experimental methods were implemented to

assist the anemic HC11 in handle real-time contouring. Imposed linearity corrects for

nonlinear sensors which can vary supply current. Calculations are greatly simplified of the

displacement to analog reading conversion can be linearized. Overall control uses a system

of partial solutions to eliminate instability.

Imposing linearity on a multilevel system required that all levels have similar

emission relationships. For infrared emitters, we assume and find experimentally, that a

specific reading and displacement x can be related to any other reading of the same

emission level by an equation of the form given in equ. 1.

A A A ex offset
cx= − −

0 equ. 1

Other levels will differ only in the initial offset constant and the decay constant c.

The mathematics of converting to equal decay constants will not be discussed as this is not

necessary for this application. The important factor is that some portion of this curve is

almost linear. This section is found where the derivative approaches unity, or

cA e cx
0 1− = equ. 2

The solution reduces to an x such that

()
x

cA

c

cA

c
=











−
=

ln
ln

1

0 0 equ. 3

For the R2 agent, there are eight seven active levels of emission, so seven such

equations must be found and solved. Since on overall resolution of eight bits is required,

each linear section required 256 divided by 7 or 36 values. The section thus consists of a

central value with a deviation of 17 in each direction. The level offset can then be

computed by realizing that the level must be shifted to the 36*(n-1) position along the

overall resolution curve. For level 4, this would mean than a zero value would be assigned

36*3 as a base and the full deflection value of the central value +18 would be assigned

(36*4)-1.

The result will be a piecewise linear system of seven emission levels created from

independent non-linear curves. The control software need only determine the correct level

to use and then apply the appropriate offset. This is done by starting at the highest level

and detecting the overshoot. The exponential nature or the curves cause the higher side of

the linear sections to deviate more and should thus be used. If too high a reading is

returned, the emitter controllers drop the level by one and rescan. This is repeated until a

satisfactory level is achieved.

Partial solutions

The system of partial solutions was developed to add stability to behaviors prone

to instability problems: wall following and contouring. Partial solutions is similar to a

bottom-up program style but with important differences. The algorithm to control an

overall function such as contouring is referred to as a goal. To achieve a solution to this

goal, several partial solutions must be achieved. These include wall following, corner

detection, convex turning, concave turning, barrier detection, and alignment.

A typical approach to contouring using two lateral and one forward sensor might

be structured as follows. The agent detects an object and aligns to it. Forward linear

motion is started and compensated with the distance is to great or to small. If an object is

detected immediately in front of the agent, the agent turns in place until there is no object

and then continues. One immediately notices several problems. First, what happens when

the agent attempts to corner? The turning will certainly leave the agent too far away from

the wall and the correction inward will engage. Once started, this behavior does not stop

until the wall is found and the agent is an acceptable distance away. Unfortunately, the

inward turn will cause the sensors detecting the wall to be brought tangent to the surface

and the agent will attempt to run through the surface until a wall is reacquired.

The equivalent partial solutions approach is much different. Using the same sensor

arrangement, the agent makes steady corrections to the wall via the partial solution of

correcting inward when too far away and outward when to close. By using the differential

measurement, angle to the surface is also recorded. The instability of the aforementioned

situation is avoided by switching to another partial solution: angle correction. If the agent

is to far away, it is imperative that the agent be running tangent to the surface for the

distance measurement to be meaningful. This, the first partial solution is to align with the

surface. The partial solution of adjusting to the distance can now be done. As soon as a

small correction is made in distance, the angle partial solution takes over and again forces

tangential alignment. Cornering is slightly more complex as the possibility of the agent

loosing the surface does exist. Since two partial solutions are insufficient to corner

sharply, a third partial solution is incorporated. As soon as the distance to the surface

jumps between successive readings, a corner is confirmed and the distance correction

partial solution is stopped. The cornering partial solution is to rotate towards the corner

with a small sideways displacement. As long as the distance to surface is high, the second

face of the surface has not been found and the partial solution is to rotate until a minimal

distance is found. The head is then pointing directly at the corner of the object and the

second partial solution of achieving a tangential alignment starts. As soon as the corner is

list, the partial solution is again to reacquire the corner. When a satisfactory distance is

achieved while the angle to surface is perpendicular, the partial solution of cornering has

been achieved and the distance correcting partial solution for wall-following is employed

again.

Because the partial solutions used to achieve a goal are controlled by current and

past values of functions of global sensor value, the priority arbitration must be separate

from the global variable processing. A wall following routine will communicate with the

priority arbitrator and global variable preprocessor as a group of partial solutions to the

contouring algorithm. Sensor and motor service routines are completely separate from the

behaviors. The diagram on the following page illustrates this architecture.

Contouring is thus treated as a simple problem with one solution. Other more

complex behaviors may require two solutions. The important concept is that all partial

solutions can be arbitrarily used or ignored depending on previous results. In fact, one can

almost picture a type of learning in which several partial solutions are attempted and the

one that do not advance the agent towards the general solution are deleted or randomly

altered. The applications for genetic algorithms are also considerable because the best

partial solution can be represented as a systematic combination of several partial solutions.

Each agent has access to all partial solutions, so one might picture two agents which

explored different regions of a structure and can transmit some code identifying the

structure from another area of the structure and the sequence of partial solutions used.

Experimental Layout

To test the

contouring algorithm,

for environment shown

was constructed. All

boxes used were

cardboard and had

approximately equal

reflectivities. The agent

was released in an

approach vector which

would contact a side of

the surface. Using the

algorithms described,

the agent then aligned

itself with the surface,

turned and rotated its head towards the surface, aligned itself again, and started

contouring. The surface used tests all aspect of the algorithm as concave and convex

corners are used throughout. The nonperpendicular edges test the partial solutions

technique by proving that arbitration between distancing and angular alignment can

contour any angled surface.

Conclusions

The demonstrations shown during the last week of class up to and including the

required demonstration date verified the ability of the R2 agent to contour a surface of

considerable complexity. After running for thirty minutes, it was determined that the

algorithm is nearly fault-free. Manual corrections were necessary only about once per

three circumnavigations. It is pertinent to point out that these manual corrections may not

have been necessary. On certain occasions, the agent clipped a wall and was knocked off-

course. The arbitration successfully corrected for this and it is possible that eventually, the

partial solutions system would correct for even an extreme instability such as a frontal

collision. The manual intervention was necessary to prevent damage to the agent since the

prototype agent is not robust and might easily knock loose sensitive hardware.

As with a simulation, the algorithm structure developed works best when the agent

is small compared to the surface covered. In this situation, there are many opportunities

for correction after completing a turn. In the test environment, this was not the case. The

agent sometimes had not fully compensated for a previous turn before another corner had

to be handled. For the R2 agent, a minimal flat surface length of twice the agent length is

preferable although constant arbitration will correct for faster changing surfaces. If speed

is sacrificed, even tighter control is possible.

The author feels that the partial solutions architecture would greatly benefit from a

better interfacing with a linearly enforced displacement sensor system. For instance, if the

agent could realize that it is exactly two inches too far from a surface as opposed to just

too far, then much quicker correction is possible. Also, with linearity, the differential

reading could be translated into a crude angle measurement. Partial solutions also works

best when many solutions are available. If more sensors could be added for the critical

portions of contouring such as cornering, efficiency would certainly be higher. The success

of the partial solutions architecture was not expected. The system actually rose from a

simpler arbitration system in which different subroutines were used for a predetermined

time and then made dormant. The active arbitration of these subroutines lead to the

development of the partial solutions architecture.

One note of importance is that when debugging behaviors of any kind, the agent

must be running in real time. It is often difficult to assess what the agent is or is not doing

and what particular behaviors, if any, are working. The author strongly encourages the use

of the memory mapped single byte display. While debugging, the display can flash the

current state variables, the subroutines in action, or the number of times a certain routine

has executed. This is vital when an arbitration is used. Since several solutions are being

implemented at once, any failure cannot be directly attributed to one specific routine.

However, by displaying some code unique to each routine, the programmer can see

immediately what was executed when the algorithm became unstable. Were it not for the

current requirements, the author would have included several such displays or an LCD.

References

[1] Joseph L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to Implementation

K. Peters 1993

[2] Pattie Maes. Designing Autonomous Agents

MIT / Elsevier 1990

[3] Fred Martin. The 6.270 Robot Builder’s Guide

Epistomology and Learning Group, MIT 1992

[4] M68HC11 Reference Manual

Motorola 1991

[5] MC68HC11E9 Technical Data

Motorola 1991

[6] High-Speed CMOS Data

Motorola 1993

Appendix

Program Code

Global Variables

int base_line=0x40;
int wall_follow_wait=50;
int flood_dif_stable=10;
int side_hit=0x50;
int ok_to_follow=1;
int wall_follow_speed_high=100;
int wall_follow_speed_med1=80;
int wall_follow_speed_med2=80;
int wall_follow_speed_low=30;
int flood_bias=4;
int sat=0x75;
int wall=0x92;
int notwall=0x8A;
int encoder_bias=35;
int msnum=5;
int s0=0;
int s1=0;
int s2=0;
int s3=0;
int s4=0;
int s5=0;
int s6=0;
int right_hard=165;
int left_hard=170;
int desired_right=0;
int desired_left=0;
int current_right_speed=0;
int current_left_speed=0;
int current_4000=0;
int current_5000=255;
int current_6000=255;
int current_7000=0x40;
int right_side=0;
int front_hit=0x6e;
int flood_dif=0;
int col_dif=0;
int ok_to_run=1;
int crit=0x65;

Behaviors

void main()
{
 start();
 aaa();
}

void start()
{
 start_process(ms());
 start_process(ss());
}

void aaa()
{
 while (s0<crit) {}
 head_left();
 head_center();
 straight();
 head_left();
 slam_right();
 halt();
 wait(400);
 align_to_wall();
 desired_left=wall_follow_speed_low;
 desired_right=wall_follow_speed_low;
 while (1) {keep_on_wall();};
}

void keep_on_wall()
{
 follow_wall();
 align_to_wall();
}

void align_to_wall()
{
 if (flood_dif>0) {while (flood_dif>0)
 { desired_left=10;
 desired_right=-10;
 }
 }
 else {while (flood_dif<0)
 { desired_right=10;
 desired_left=-10;
 }
 }
 halt();
 wait(200);
}

void follow_wall()
{
 while (ok_to_follow)
 {
 if (flood_dif<(-flood_dif_stable))
 { desired_right=wall_follow_speed_high;
 desired_left=0;
 wait(wall_follow_wait);
 desired_right=wall_follow_speed_low;
 desired_left=wall_follow_speed_low;
 set_display(1);
 }

 else if (flood_dif>flood_dif_stable)
 { desired_left=wall_follow_speed_med1;
 desired_right=0;
 wait(wall_follow_wait);
 desired_left=wall_follow_speed_low;
 desired_right=wall_follow_speed_low;
 set_display(2);
 }
 else if (s0<notwall)
 { desired_right=wall_follow_speed_med1;
 wait(wall_follow_wait);
 desired_right=wall_follow_speed_low;
 set_display(3);
 }
 else if (s0>wall)
 { desired_left=wall_follow_speed_med1;
 wait(wall_follow_wait);
 desired_left=wall_follow_speed_low;
 set_display(4);
 }
 else if (flood_dif<0)
 { desired_right=wall_follow_speed_med2;
 wait(wall_follow_wait);
 desired_right=wall_follow_speed_low;
 set_display(5);
 }
 else if (flood_dif>0)
 { desired_left=wall_follow_speed_med2;
 wait(wall_follow_wait);
 desired_left=wall_follow_speed_low;
 set_display(6);
 }
 else {set_display(7);};
 }
 slam_right();
 halt();
 wait(200);
 align_to_wall();
}

Diagnostic Algorithms

void check()
{ while (1)
 {
 set_display(s0);
 wait(1000);
 set_display(flood_dif);
 wait(1000);
 }
}

int check_left()
{
 select_encoder(0);
 wait(200);
 return (peek(0x1027)-encoder_bias);
}

int check_right()
{
 select_encoder(1);
 wait(200);
 return peek(0x1027);
}

Straight Line Motion Algorithm

void straight()
{
 int x;
 if (ok_to_run) {desired_right=70;
 desired_left=70; }
 while (ok_to_run)
 {
 x=check_left()-check_right();
 set_display(x);
 if (x>0)
 {desired_right=50;}
 else if (x<0) {desired_right=90;}
 else desired_right=70;
 }
 halt();
 wait(200);
}

Service Routines

void ss()
{
 while (1)
 {
 floods(1,1);
 collimateds(1,1);
 laterals(1);
 set_flood_level(3,3);
 wait(5);
 if (s0>sat) {set_flood_level(1,1);
 wait(5);
 s0=analog(0)+20;
 s1=analog(1)+20;
 s2=analog(2)+20;
 }
 else {
 wait(5);
 s0=analog(0);
 s1=analog(1);
 s2=analog(2);
 }
 flood_dif=(s1-s2+flood_bias);
 ok_to_run=((s0<crit)&(s1<crit)&(s2<crit));
 set_flood_level(0,0);
 set_collimated_level(7,7);
 wait(5);
 s3=analog(3);
 s4=analog(4);
 col_dif=(s3-s4);
 set_collimated_level(0,0);
 set_lateral_level(5);
 wait(5);
 s5=analog(5);
 s6=analog(6);
 set_lateral_level(0);
 ok_to_follow=((s0>base_line)&(s5<side_hit));
 }
}

void ms()
{ while (1)
 {
 { if (desired_right>current_right_speed)
 {motor(0,(current_right_speed+msnum));
 current_right_speed=current_right_speed+msnum;}
 else
 {
 if (desired_right<current_right_speed)
 {motor(0,(current_right_speed-msnum));
 current_right_speed=current_right_speed-msnum;}
 else {};

 };
 };
 { if (desired_left>current_left_speed)
 {motor(1,(current_left_speed+msnum));
 current_left_speed=current_left_speed+msnum;}
 else
 {
 if (desired_left<current_left_speed)
 {motor(1,(current_left_speed-msnum));
 current_left_speed=current_left_speed-msnum;}
 else {};
 };
 };
 };
}

void wait(int m_seconds)
{
 long stop_time;
 stop_time=mseconds()+(long)m_seconds;
 while(stop_time>mseconds()) defer();
}

void halt()
{ desired_right=0;
 desired_left=0;
}

Turning Routines

void slam_right()
{
 desired_right=0;
 select_encoder(1);
 desired_left=80;
 while (peek(0x1027)<right_hard) {defer();};
 halt();
}

void slam_left()
{
 desired_left=0;
 select_encoder(0);
 desired_right=80;
 while (peek(0x1027)<left_hard) {defer();};
 halt();

}

Control Routines

void select_encoder(int var)
{ poke(0x1026,0x50);
 current_7000=(current_7000&0x7f)+(128*var);
 poke(0x7000,current_7000);
 poke(0x1027,0);
}

void head_motor(int var)
{
 current_7000=((current_7000&0x9f)|var);
 poke(0x7000,current_7000);
}

void head_left_main(int var)
{
 head_motor(0x20);
 while (!(peek(0x1000)&var)) {defer();};
 head_motor(0x40);
 right_side=0;
}

void head_right_main(int var)
{
 head_motor(0x00);
 while (!(peek(0x1000)&var)) {defer();};
 head_motor(0x40);
 right_side=1;
}

void head_right()
{ head_right_main(1);
}

void head_left()
{ head_left_main(4);
}

void head_center()
{
 if (right_side)
 {
 head_left_main(2);
 while (peek(0x1000)&0x02) {defer();};
 wait(500);
 head_right_main(2);
 }
 else
 {
 head_right_main(2);
 };
}

void set_flood_level(int right,int left)
{
 int x;
 x=(current_6000&0x1f)+((7-right)*32);
 current_6000=x;
 poke(0x6000,current_6000);
 x=(current_5000&0xe3)+((7-left)*4);
 current_5000=x;
 poke(0x5000,current_5000);
}

void set_collimated_level(int right,int left)
{
 int x;
 x=(current_6000&0xe3)+((7-right)*4);
 current_6000=x;
 poke(0x6000,current_6000);
 x=(current_5000&0x1f)+((7-left)*32);
 current_5000=x;
 poke(0x5000,current_5000);
}

void set_lateral_level(int level)
{
 int x;
 x=(current_5000&0xfc)+(((16-level)&0x0c)/4);
 current_5000=x;
 poke(0x5000,current_5000);
 x=(current_6000&0xfc)+((16-level)&0x03);
 current_6000=x;
 poke(0x6000,current_6000);
}

void set_leds(int value)
{
 int x;
 x=(current_4000&0xf8)+value;
 current_4000=x;
 poke(0x4000,current_4000);
}

void set_display(int value)
{
 poke(0x3000,value);
}

void collimateds(int right,int left)
{
 int x;
 x=(current_4000&0x3f)+(128*left)+(64*right);
 current_4000=x;
 poke(0x4000,current_4000);
}

void floods(int right,int left)
{
 int x;
 x=(current_4000&0xcf)+(16*left)+(32*right);
 current_4000=x;
 poke(0x4000,current_4000);
}

void laterals(int value)
{
 int x;
 x=(current_4000&0xf7)+(value*8);
 current_4000=x;
 poke(0x4000,current_4000);
}

