
JACO
Trash Retrieval Robot

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machine Design Laboratory

Aaron Grassian
April 29, 1997

Instructor:  Keith L. Doty



TABLE OF CONTENTS

3…………………………………….ABSTRACT

3-4…………………………………..ROBOT OPERATION AND BEHAVIOR

4…………………………………….ADDITIONAL MOTORS

5…………………………………….TRASH RECEPTACLE SENSOR MECHANICS

5-6………………………………….TRASH RECEPTACLE CIRCUIT DESCRIPTION

6…………………………………….SOFTWARE CONSIDERATIONS

7……………………………………CONCLUSION

10……………………………………APPENDIX



ABSTRACT

The goal for this project is to create a robot that will g enerate the first step leading  to the
replacement of manual labor.  In this specific case, the task intended to be eliminated is that of
cleaning a floor space.  Two basic thing s can  accomplish this goal with an autonomous robot
built within the limitations of this class: vacuuming and trash disposal.

ROBOT OPERATION and BEHAVIOR

Jaco’s trash retrieval system consists of two components, a vacuum and a conveyer belt.

These two modules work in conjunction with each other to perform the task of cleaning a set

area.  Jaco begins its operation in cleaning mode where it utilizes the vacuum and performs an

increasing spiral pattern across the cleaning area.  This ensures that the vacuum does not  miss

any areas.

Ideally, the surface to be cleaned would be lacking  in obstacles and have a boundary  of a

perfect circle.  Since this will never be the case, the robot was prog rammed to perform in a more

realistic environment.  During the spiral behavior, the robot constantly  uses infra-red emitter-

detector pairs and bumper switches to ‘see’ and ‘feel’ its environment.  Depending  on which of

these sensors detects an obstacle governs what action the robot will take to move out of the way .

After the robot has completely navigated around the obstacle, it continues in its spiral behavior.

An extra IR sensor determines whether the object blocking  the robot’s path is a piece of

garbage or an obstacle.  Whenever a piece of trash has been located, the robot needs to pick it up.

The robot shuts down the vacuum, and turns on its convey er belt system.  The robot then spins

on its axis for two seconds.  During  this spin routine, the piece of trash, which is made partially

of Velcro, is picked up by  the Velcro mate conveyer belt.  The trash moves up the convey er belt

and is ripped off by  a metal stopper.  The g arbage then falls into a trash can.  The trash can is

affixed to a lever which is connected through a rotor to a  potentiometer.  The micro-controller



monitors the position of this potentiometer whenever it has discovered a piece of trash and can

determine when trash has entered the receptacle.

Once a piece of trash has fallen into the trash bucket, the convey er belt is turned off and

the robot enters a patrol mode.  This mode consists of the robot following  the walls of the

cleaning area.  During this time, both the vacuum and conveyer belt are off.  This mode is used to

free the cleaning area of robots and allow human traffic.  The patrol mode is a timed mode

utilizing a counter within software.   Whenever this counter has elapsed, the robot returns to

cleaning mode.  Figure 1 shows the behavior integration in flow chart form.

ADDITIONAL MOTORS

Two additional motors were added to the traditional Talrik configuration.  This was

accomplished by using the output port address $7000 as a control for relay s.  The first step that

had to be taken was to chang e the jumper that modulated the 40 kHz  of the latch to ground,

enabling the latch at all times.  This returned the address $7000 to a mode which could be turned

either to Vdd or ground with the poke statement in software.  All of the IR LEDs (four) that were

tied to this port and were being  latched on at 40kHz   were now sunk throug h the 40 kHz  pin

originally jumped to the latch. There are now four ex tra pins that could be used to control other

modules.

This robot uses two of the remaining  four pins to control the switching  on and off of the

vacuum and conveyer belt.    A common way  of controlling switching is using relays, but, the

current coming from the HC11 was not strong enough to energize the coil.  Therefore, transistors

had to be used to amplify the current, see Figure 2.



TRASH RECEPTACLE SENSOR MECHANICS

The trash receptacle consists of a pl astic cup cut  so t hat objects coming off of t he

conveyer belt will fall inside.  Attached to the cup is a long  bar.  A rotor assembly  is mounted

onto the base of the robot so that the rotor is horiz ontal to the platform of the robot.  The middle

of the bar is attached to this rotor allowing  it to spin perpendicular to the base of the robot, see

Figure 3.

On the opposite end of the rotor is a potentiometer.  Any  spinning of the bar translates

into actuation of the potentiometer.  I n order for the bar to remain fix ed with respect to the robot

when the receptacle is empty, a counter force must be applied to the side opposite of where the

basket is attached.  This force is realiz ed with a rubber band attached to the base of the robot.

This downward directed force is equal and opposite to the force ex hibited by the weight of the

trash receptacle. Figure 1.  Trash Receptacle Sensor Mechanical Schematic

The sensor is calibrated so that when the trash can is at its maximum capacity, the potentiometer

is actuated to its fullest resistance (where the stop tab prevents it from being turned any further).

The potentiometer is attached to an analog port of the  micro-controller which, therefore, allows

the nerve center of the robot to detect any change in the weight of the receptacle as well as when

it is at full capacity.

TRASH RECEPTACLE CIRCUIT DESCRIPTION

The potentiometer has a full operating  range of 144.47 Ω to 5.00 kΩ.  The actuation of

the bar from the hig hest to lowest trash receptacle point is 4.5 k Ω  to 5.00 k Ω.  The

potentiometer resistance is linearly  dependent on turning  of the knob.  This, in turn, makes it a

linear function of the turning of the trash can bar.



The circuit for this sensor, see F igure 4, involves one resistor equal to the averag e of the

high and low resistance of the operating range of the potentiometer.  One lead of this resistor is

wired directly to five  volts.  The  other is connected to a potentiometer lead and the micro-

controller analog port.   The second lead of the potentiometer is connected to g round.  This

simple voltage divider circuit g ives an output to the micro-controller of: 5*(RPOT)/(R+ RPOT).

When the receptacle is full, the analog port will read 2.56 volts.  Any other time, the reading will

be somewhere in between 2.43 and 2.55 volts. Although this is a small voltage range, the robot is

only looking for when a change occurs in this value and not specific values.

SOFTWARE CONSIDERATIONS

The software for Jaco, located in the appendix , controls and integ rates several behaviors

at one time.  This is done throug h an arbitrater.  All behaviors are set each time the prog ram

completes one tasking cycle.  The arbitrater, however, is the module which sets how the robot

will behave.  This is accomplished through the setting and clearing of priority flags due to what

the robot’s environment is or what the software is processing.  A clear ex ample of the arbitrater

at work is the differentiater between spiral mode and collision avoidance.  B oth of the se

behaviors work simultaneously.  As the robot passes through each iteration of code, motor values

are set for spiralling  and collision avoidance to dummy  variables.  I n an ordinary situation, the

spiralling priority is set and the motors are set to the spiralling motor dummy variables.  If the

sensors detect an object within a certain threshhold, thoug h, the collision avoidance flag is set

and that behavior takes over within the  arbitrater until the  object is c lear of the  sensors.  The

spiral routine then takes over where it left off.



CONCLUSION

The knowledge and experience that I have gained in this class in the construction of this

robot as well as the implementation of a controlling nerve center for an autonomous machine has

been tremendous.    The final demonstration of the robot showed that the orig inal goals of the

project were met, but with some  difficulties.  Re lays worked correctly for a ctuation of both

motors, but a wiring problem prevented the vacuum from being powered.  The trash made for the

conveyer belt was too lig ht and ended up being  smacked away  by the robot instead of being

collected.



Figure 1. Behavior Integration Flow Chart

Figure 2. Additional Motor Controller Circuit



Figure 3. Trash Receptacle Sensor

Figure 4. Trash Receptacle Sensor Circuit



APPENDIX

/*Aaron Grassian*/
/*IMDL 5666 Spring 1997*/
/*JACO Code*/

/*---------------------------------------------------------------*/
/*global initializations*/
/*collision avoidance sensor variables*/
int left_eye;
int right_eye;
int center_eye;
int bump;

/*trash pickup state variables*/
int trash_can;
int trash_found;
int trash_in_can;
int height_eye;
int ptrash_can;
int got_it;

/*test motor flags*/
int vacuum=1;
int belt=0;
int ir=1;

/*arbitraters*/
int bump_delay=0;
int ca_pri=0;
int spiral_pri=1;
int wall_follow=0;
float counter=0.0;
float actual_left;
float actual_right;
float ca_left;
float ca_right;
float spiral_right;
float spiral_left;
float wall_follow_right;
float wall_follow_left;
/*----------------------------------------------------------------*/
/*time delay function*/

void wait(int milli_seconds)        /*wait function definition*/
{

 long timer_a;
 timer_a=mseconds() +(long) milli_seconds;
 while(timer_a > mseconds())
{
 defer();
}

}
/*---------------------------------------------------------------*/

/*sensor module*/

void sensor_module()



{
while(1)

{
left_eye=analog(2);     /*read sensors into globals*/
center_eye=analog(1);
right_eye=analog(0);
bump=analog(4);
height_eye=analog(3);
trash_can=analog(5);
}

}

/*----------------------------------------------------------------*/

void collision_avoid()           /*collision avoidance routine*/
{
while(1)

{
bump_delay=0;
ca_pri=0;
if (center_eye>=100 && height_eye>=95)

 {      /*if center detects a close object*/
 ca_pri=1;
 ca_left=-75.0;        /*back up and turn to the right*/
 ca_right=40.0;        /*right slow back, left fast back*/
 }

else if (right_eye>95)
{    /*if the right eye detects a close object*/
ca_pri=1;
ca_right=0.0;        /*swiftly turn left away from object*/
ca_left=-50.0;         /*right=speed up, left = slow down*/
}

/*   else if (left_eye>115){ */   /*if the left eye detects a close
object*/

/*  ca_pri=1;      */
/*  ca_left=100.0; */       /*swiftly turn right away from object*/
/*  ca_right=20.0; */        /*left=speed up, right=slow down*/
/*  }  */
else if (bump>70 && bump<90)

{  /*if center bump turn back*/
ca_pri=1;
ca_left=-80.0;
ca_right=-10.0;
bump_delay=1;  /*set delay in arbitrater*/
}

else if (bump>115 && bump<140)
{
ca_pri=1;                      /*if right bump turn back*/
ca_left=-100.0;
ca_right=-20.0;
bump_delay=1;  /*set delay in arbitrater*/
}

else if (bump>30 && bump<50)
{  /*if left bump turn back*/
ca_pri=1;
ca_right=-100.0;
ca_left=-20.0;
bump_delay=1;          /*set delay in arbitrater*/
}

defer();
}



}

/*-------------------------------------------------------------*/
void cleaning_mode ()
{
while(1)

{
if(spiral_pri==0) /*if just entering cleaning mode, reset spiral*/

{          /*vacuum should be on*/
spiral_right=90.0;
spiral_left=0.0;
}

else if(spiral_left<70.0)    /*until right=90 and left=70*/
{
spiral_right=90.0;
spiral_left=spiral_left + 0.01;
}

if(left_eye<=95 && right_eye <= 95 && center_eye>=95
   && center_eye <=100 && height_eye<95 && spiral_pri==1)

/*if large trash object detected, set trash found flag*/
{
trash_found=1;                  /*vacuum should be off*/
spiral_pri=0;

            }
defer();
}

}
/*-----------------------------------------------------------*/
void trash_can_sense ()
{
while(1)

{
if(trash_in_can==1)

{
trash_can=analog(5);
got_it= ptrash_can-trash_can;
if(got_it>=10)

{
spiral_pri=0;
wall_follow=1;
trash_in_can=0;
}

}
defer();
}

}

/*----------------------------------------------------------*/
void arbitrate ()
{
while(1)

{
if(ca_pri==1 && spiral_pri==1)

{
            poke(0x7000,0b11111110);

vacuum=1;
belt=0;
ir=1;
motor(1,ca_right);
motor(0,ca_left);



if(bump_delay==1)
{
wait(1000);
bump_delay=0;
}          

}
else if(spiral_pri==1 && ca_pri==0)

{
            poke(0x7000,0b11111110);

vacuum=1;
belt=0;
ir=1;
motor(1,spiral_right);
motor(0,spiral_left);
}

      else if(wall_follow==1)
{

            poke(0x7000,0b11111111);
            vacuum=0;
            ir=1;
            belt=0;

motor(1,wall_follow_right);
motor(0,wall_follow_left);

            if(bump_delay==1)
            {
                  wait(1000);
                  }

}
      else if(trash_found==1)
      {
            poke(0x7000,0b11111101);

belt=1;
vacuum=0;
ir=0;
motor(1,-50.0);
motor(0,50.0);
wait(2000);
spiral_pri=0;
ca_pri=0;
trash_found=0;
trash_in_can=1;
trash_can=analog(5);
ptrash_can=trash_can;
}

else if(trash_in_can==1)
{

            poke(0x7000,0b11111101);
belt=1;
vacuum=0;
ir=0;
motor(1,0.0);
motor(0,0.0);
}

defer();
}

}
/*-----------------------------------------------------------*/
void wall_following ()
{
while(1)

{



bump_delay=0;
      if(right_eye>=95 && right_eye<=100)

{
wall_follow_right=75.0;
wall_follow_left=75.0;
}

      else if(right_eye>100 && right_eye<110)
{
wall_follow_right=100.0;
wall_follow_left=0.0;
}

      else if(center_eye>=105)
{
wall_follow_right=-20.0;
wall_follow_left=-80.0;
}

else if(center_eye>=100 && right_eye>=95)
{
wall_follow_right=50.0;
wall_follow_left=-50.0;
}

else if (left_eye>=100)
{
wall_follow_right=40.0;
wall_follow_left=85.0;
}

      else if (bump>70 && bump<90)
{  /*if center bump turn back*/

            wall_follow_left=-80.0;
            wall_follow_right=-10.0;
            bump_delay=1;  /*set delay in arbitrater*/
            }
      else if (bump>115 && bump<140){
            wall_follow_left=-100.0;
            wall_follow_right=-20.0;
            bump_delay=1;  /*set delay in arbitrater*/
            }
      else if (bump>30 && bump<50)

{  /*if left bump turn back*/
       wall_follow_right=-100.0;
            wall_follow_left=-20.0;
            bump_delay=1;          /*set delay in arbitrater*/
            }

defer();
}

}
/*------------------------------------------------------------*/
void mode_setter ()
{
while(1)

{
if(spiral_pri==1)

{
            counter=0.0;

}
else if(wall_follow==1)

{
            counter=counter + 0.1;
            }
      if(counter>=500.0)

{



spiral_pri=1;
wall_follow=0;
}

defer();
 }

}

/*------------------------------------------------------------*/
void main()
{
start_process(sensor_module());      /*load in values every 100 msec*/
start_process(mode_setter());
start_process(collision_avoid());    /*actuate motors*/
start_process(cleaning_mode());
start_process(wall_following());
start_process(trash_can_sense());
start_process(arbitrate());
}
/*FIN*/


