
AMY PURKEY

INTELLIGENCE MACHINE DESIGN LABORATORY
SNARF – IMDL COMPETITION

SPRING 1998

April 25, 1998

2

TABLE OF CONTENTS

ABSTRACT 3

EXECUTIVE SUMMARY 4

INTRODUCTION 5

INTEGRATED SYSTEM 6

MOBILE PLATFORM 7

ACTUATION 9

SENSORS 11

BEHAVIORS 13

EXPERIMENTAL LAYOUT AND RESULTS 15

CONCLUSION 16

APPENDICES 18

3

ABSTRACT

I designed an autonomous robot, Snarf. The robot was designed to enter in to the IMDL
competition in the Spring semester of 1998. The robot will autonomously navigate
around a playing field. It will pick up three different objects, six ounce can of tomato
paste, small box of tea bags, and a one pound bag of rice. The robot will distinguish
between these items and dump them into an appropriate bin.

The body was made out of one-quarter inch birch plywood. The scoop was made out of
an aluminum rain diverter panel. I used two 40 oz-inch servos to power the wheels and
two 40 oz-inch servos to power the scoop. I used a Talrik electronics kit. This kit
included a MRC11 board, a MRSX01 board, and a MB2325 board. I used IR sensors for
navigation. I also used bump switches, and limit switches for control. I also used a
G2D05 sensor from Sharp electronics.

4

EXECUTIVE SUMMARY

I designed an autonomous robot for the IMDL Spring 1998 competition. The robot was
called Snarf. The robot was designed to navigate a playing field finding three different
objects and dumping them in their appropriate bin.

Snarf was designed on a square platform made of one-quarter inch birch plywood. The
items were to be picked up by a rectangular scoop made of aluminum rain diverter. Snarf
navigated by use of IR sensors. A G2D05 sensor made by sharp electronics detected
items in the scoop.

I used a Talrik electronics kit in the robot. This kit included a MRC11 board, a MRSX01
board, and a MB2325 board. I used an interpreted language, IC to communicate through
the communication board to the robot.

I accomplished navigating the arena by wall following, picking up objects and depositing
them in the bins. It did not all come together perfect though.

5

INTRODUCTION

I am designing an autonomous robot to enter into the IMDL Spring 1998 competition.

The competition consists of navigating around a confined arena, gaining control of three

objects, and placing the objects in their appropriate bins.

I will use electronics from a Talrik electronics kit. The kit includes a MRC11 board, a

MRSX01 board, and a MB2325 board. I will use the communication board to

communicate with the robot through an interpreted language, IC.

I will design the robot using a square platform made out of birch plywood. The robot

will gain control of the items through use of a scoop. The scoop will be made of

aluminum rain diverter. I will use two wheels mounted on two servos to drive the robot.

I will also use two additional servos to power the scoop.

I will be using four different types of sensors. I will be using limit switches to control the

servo. I will be using IR sensors to navigate around the arena. I will be using bump

switches to know when I am against a wall. I will also be a sensor made by Sharp, the

GP2D02, to detect if I have something in the scoop.

The robot will navigate the arena by wall following in two different directions. The

scoop will be raised by pivoting about an axle at approximately 120 degrees. It will also

be lowered in the opposite direction.

6

INTEGREATED SYSTEM

I have designed an autonomous robot to enter into the IMDL Spring 1998 competition.

The robot is powered by two 40 oz-inch servos. It is built on a square base and uses a

scoop to lift objects. The scoop is powered by two 40 oz-inch servos.

The scoop is centered in the front of the robot and rotates about an axle approximately 9

inches above the ground. The scoop rotates 120 degrees from its horizontal position and

dumps the objects over the body itself and into the bin.

The scoop will be stopped on both ends using limit switches. The limit switches give

either a five-volt reading or a ground reading.

I am using IR sensors to detect my distance from the wall. I will use my initial IR

readings to keep me that distance from the wall. I will perform a wall following behavior

using these sensors.

I will detect if my robot has run into a wall by using bump switches. These bump

switches react the same way as the limit switches. They give a five-volt reading if the

switch has been hit and a ground reading if it has not been hit.

I will be using a Sharp GP2D05 sensor to detect if anything is on my scoop. This sensor

uses IR but unlike the regular IR sensors this sensor can be limited to a specific distance

from 10cm to 80cm.

7

MOBILE PLATFORM

My robot was built on a square platform using birch plywood. From the platform I cut

out four-inch blocks from the back corners to mount my wheels. I used a square platform

because I knew I wanted to wall follow and I thought that straight edges on the robot

would make this task easiest. I also knew I was using a scoop to pick up my objects and

thought a scoop would fit best on a squared front platform. I also added two castor

wheels to the front of the platform for stability.

The scoop of my platform extended one-half of an inch outside of the robot. I did this

because I wanted to keep my wheels from rubbing the wall while wall following but I

still wanted to have my scoop close enough to the wall to pick up any thing close to the

wall. When designing my scoop I made it about 18 inches tall. I did this so I could pull

the scoop from the top and have it rotate about an axis approximately half way up and use

leverage to avoid some of the problems of lifting the maximum three pounds of weight.

The scoop rotates 120 degrees and the objects in the scoop slide down the back wall of

the scoop and into the bin.

I ran into several problems with my platform design. The main problem I ran into was

having the two castor wheels. Three points define a plane and with two wheels and two

castor wheels I always had one wheel off the ground. My main problem here was the

wheel that mainly stayed off the ground was one of my driving wheels. I eventually

fixed this problem by moving the driving wheels up front and having only one castor

wheel in the back. I tried having only one castor wheel up front but the platform was too

8

unstable. I was also using driving wheels that had very little surface area touching the

ground. Using a thicker wheel may have solved this problem.

I also ran into problems with my scoop being too large up front. It was difficult to turn

corners while wall following because with the large scoop my robot was essentially blind

up front. I solved this problem by wall following until the bump switches located on the

front of the scoop were activated. Then I reversed the robot for a specific time and turned

the corner and continued to wall follow. Also the scoop made it difficult to wall follow

because since it extended about 15 inches past the wheels when I would wall follow and

the front end would get too far from the wall the code said to turn back towards the wall.

The angle the front was turned into the wall the scoop would sometimes hit before the

front sensor read the appropriate value. I somewhat solved this problem by adjusting the

speed in which the robot turned back towards the wall.

9

ACTUATION

I used four 40 oz-inch servos to actuate my robot. Two of the servos were used to drive

the robot. The other two were used to drive the scoop. I mainly chose these servos

because they were cheap. I felt that they would efficiently drive my robot. I also felt that

if I used the correct pulley system that they would also have enough power to pick up the

maximum weight of three pounds.

In servos controlling the driving wheels I used a Talrik hack. This allowed me to use the

servos as motors. This hack is located in the TJ assembly manual. I did not need high-

powered motors. I did learn that these particular servos bogged down in certain

situations and I think motors with a little more torque should have been used.

For the motors I used mainly six different algorithms. I used an algorithm for both

motors forward, both motors backwards, left motor forward, left motor backward, right

motor forward, right motor backward. The code is shown in the appendix.

The servos controlling the scoop were hacked using the hacking technique out of the TJ

manual. This allowed me to essentially use the servos as motors but run them off of the

servo ports. With this hack I did not have control of the position of the servo. The servo

rotated 360 degrees freely. With this hack I did have control of the speed of the servos.

The center position of the servo is 90 degrees. If you activated it at an angle of less than

90 degrees it would rotate in one direction. If you activated it at an angle of greater than

90 degrees it would rotate in the opposite direction. The closer you chose to 90 degrees

the slower the servo would turn. The farther you chose from 90 degrees the faster the

10

servo would turn. This feature was needed in my robot design because I wanted to lift

the objets as fast as possible. Although the scoop was returned to its starting position by

its own weight. In this instance I needed the servos to turn slower so it would keep

tension on the string while the scoop was falling.

The only problem I had with this approach was the servos had to be centered at 90

degrees to have accurate control of the speed and direction of the servos. Over short

periods of time they would bounce and become centered at different points. This would

cause one servo to rotate faster than the other or possibly in a different direction.

For the servo actuation I used two basic algorithms. I used one algorithm using a faster

rotating servo command to raise the scoop. I also used a slower rotating servo command

rotating the opposite direction to lower the servo. This code is located in the appendix.

11

SENSORS

IR Sensors

In this project I used four main sensors. The first and most abundant sensor I used was

IR. I used seven of these sensor to wall follow and to detect when I was in front of the

bins. The IR receivers were hacked using the IR hack given in the Talrik manual.

The code I wrote for the wall following was to initially read the values of my sensors,

then if the new values of the sensors differed from the initial readings to move in the

appropriate direction. The code I wrote for detecting the bins was I had one sensor on the

bottom of the platform. When this sensor got to the center bin it would see nothing. So I

had a piece of code that read when that sensor was below 90 and I knew it was then in

front of the bin.

The biggest problem I had with this sensor was it is not consistent in its readings.

Depending on different light settings you would get different readings. Also I found

when you would get extremely close to the wall the receiver would not pick up any of the

light the IR emitter was giving off. This problem was fixed by moving the emitter on top

of the receiver.

Limit Switches

The second sensor I used was the limit switch. This sensor was used to stop the servo.

Since I hacked the servo I had no control over when they stopped because I could not

stop them at a specific degree. So I used limit switches to do this. I had one switch at

each maximum position of my scoop. The code I wrote for this sensor simply stopped

12

the scoop when the limit switch was triggered. The only problem with this switch was

that if it were not triggered in the right spot sometimes it would not be activated.

Bump Switch

The third switch I used was a bump switch. I used this sensor to tell if my robot had run

into a wall. If the bump switch was triggered the robot was at a wall. The code for this

sensor read the switches and if one was activated it performed the task related with that

particular switch being activated. This switch had the same problem as the limit switch

in that it was not always activated properly.

Sharp GP2D05

This sensor uses IR. It is given a pulse from the out1 pin through a voltage divider and

sends IR pulses. This sensor was used to detect if something was on my bin. This sensor

is superior to the general IR sensors in that you can fine-tune them to a specific distance

by turning a screw that activates a potentiometer. This sensor ranges from 10 cm to 80

cm. The main problem with these sensors is you have to give them a pulse you create but

it has to be within the limits of the specifications for the sensor. The sensors also blew

out very quickly. I had to write code for the pulse given to the sensor and also code to

tell if something was in my scoop.

All code and circuit diagrams for all sensors are given in the appendix.

13

BEHAVIORS

I had several behaviors in my program to complete the project. My main behaviors were

wall following, finding the bins, raising the scoop, and lowering the scoop. I also had

several other behaviors that integrated the different sensors.

Wall Following

In my program I needed to wall follow in both directions. I needed to wall follow to the

left to be able to find the objects. I needed to wall follow to the right to make sure that

after I picked up an object I did not run into any other ones.

Raising the Scoop

I used a simple algorithm to raise the scoop. This consisted of turning the servo at a

quick speed in a clockwise direction. I used the limit switches above to tell when the

scoop was at its maximum raised position. I ran into problems using the servos and the

motors at the same time. The program IC does not like to run the servos at the same time

it runs the motors. This will cause the motors to shake and not drive properly. If you do

this you must use the sefvo_off() command to turn off the servos before turning on the

motors.

Lowering the Scoop

I used basically the same algorithm to lower the scoop as I did to raise it. The difference

being I activated the servos in a counter clockwise direction at a slower speed. I also

14

used a limit switch at the opposite end to know when the scoop was at its maximum

lowering point.

Finding the Bins

I found the bins by detecting when my sensors located under the platform read a value

less than it normally read. This was accomplished by having the sensors low enough so

that they would see under the center bin and not reflect any IR.

All code for all behaviors is given in the appendix.

15

EXPERIMENTAL LAYOUTS AND RESULTS

The main experiment I performed dealt with navigating around the arena. Wall following

was the biggest one. I had to figure out a way to navigate around the arena and pick up

the objects. I chose to do this by wall following. I had to use different speeds to move

my robot away from the wall if it was too close. I had to also experiment with what

speeds moved the robot back towards the wall if it was too far away. I also had to

experiment with different speeds with respect to different values of IR readings.

I also had to experiment with the Sharp sensor. I had to find a pulse that would

correspond with the sensor. I also had to experiment with the different distances I needed

for detecting objects on my scoop.

16

CONCLUSION

In this project I accomplished many of my goals. I designed and built an autonomous

robot. I came up with a plan to navigate the arena and score points and my plan worked.

I used different sensors to accomplish different tasks like wall following and scoop limits.

I developed algorithms such as wall following in two directions, lifting my scoop,

lowering my scoop, and finding the bins. I learned a great deal about the boards I was

using. I learned the limitations of certain aspects of the board such as having to mux out

analog ports and using the cds cells. I also learned limitations of IC such as not being

able to use the servos and motors at the same time. I also learned how different chips on

the board worked and how different ports on the board worked. I also learned how

processes work using IC and other aspects of coding.

Although I accomplished a lot in the project I did not accomplish everything I had hoped

to accomplish. I had intended to detect which items were on my scoop by the amount of

current flowing through the motors. I did not accomplish this task. I did accomplish a

good wall following routine. However because of last minute design changes to my

robot the routine I originally had did not work as good for my new design. I also failed to

be able to pull everything together at one time. Each individual part of my robot worked

but pulling it all together was the tricky part. I could pick up objects and put them in the

bin but things did not always go as planned.

17

I would like to finish pulling everything together in my robot. I would like to get it to

navigate the entire playing field and not just part of it. I would like to change my

platform somewhat to make it better suit the needs of the contest. I would do this by

using thicker wheels as well as finding a way to only have three wheels on the robot.

18

APPENDIX

/*motor routines*/

 int m=0xff;
 int v=peek(0xffb8);
 int q=(v|0x1f);

 void forward()
 {
 poke(0xffb8,m);
 motor(0,81.0);
 motor(1,100.0);
 }
 void motor1bk()
 {
 int m=(m&0xbf);
 poke(0xffb8,m);
 motor(1,100.0);
 }
 void motor0bk()
 {
 int m=(m&0x7f);
 poke(0xffb8,m);
 motor(0,100.0);
 }
 void motor1fd()
 {
 int m=(m|0x40);
 poke(0xffb8,m);
 motor(1,100.0);
 }
 void motor0fd()
 {
 int m=(m|0x80);
 poke(0xffb8,m);
 motor(0,100.0);
 }

 void bothback()
 {
 poke(0xffb8,0x3f);
 motor(0,100.0);
 motor(1,100.0);
 }

/*Scoop dump and return code*/

int pid;
int m =(0xff);
void scoop()
{

19

 int done = 0;
 servo_deg(180.0);
 servo_on();
 m=(m|0x1f);
 m=(m&0xea);
 while(!done)
 {
 poke(0xffb8,m);
 if (analog(0)>100)
 done = 1;
 }
 servo_off();
 msleep(6000L);
 servo_deg(70.0);
 servo_on();
 m=(m|0x1f);
 m=(m&0xeb);
 done = 0;
 while(!done)
 {
 poke(0xffb8,m);
 if (analog(0)>100)
 done = 1;
 }
 servo_off();
}

void main()
{
 pid=start_process (scoop());
}

/*Wall following routine*/

void main()
{
 int default_front = analog(3);
 int default_back = analog(6);
 int done = 0;
 int finish = 0;
 int exit = 0;
 while(!done)
 {
 int IR_front = analog(3);
 int IR_back = analog(6);
 m=(0x1f|m);
 m=(0xec&m);
 poke(0xffb8,m);
 if (analog(0)>100)
 {
 m=(0x1f|m);
 m=(0xed&m);
 poke(0xffb8,m);
 if (analog(0)>100);

20

 {
 m=(m&0x3f);
 poke(0xffb8,m);
 motor(0,100.0);
 motor(1,0.0);
 msleep(1000L);
 done = 1;
 }
 }
 else if (default_front - IR_front > 1)
 {
 motor(0,50.0);
 motor(1,100.0);
 }
 else if (IR_front < 90)
 {
 motor(0,100.0);
 motor(1,60.0);
 }

 else if ((IR_front - default_front) > (IR_back -
default_back))
 {
 motor(0,100.0);
 motor(1,50.0);
 }
 else if ((IR_front - default_front) < (IR_back -
default_back))
 {
 motor(0,100.0);
 motor(1,100.0);
 }
 else
 {
 motor(0,100.0);
 motor(1,60.0);
 }
 }

int m = (0xff);
void main()
{
 int default_front = analog(7);
 int default_back = analog(5);
 while(1)
 {
 int IR_front = analog(7);
 int IR_back = analog(5);
 m=(0x1f|m);
 m=(0xec&m);
 poke(0xffb8,m);
 if (analog(0)>100)
 {
 m=(0x1f|m);
 m=(0xed&m);

21

 poke(0xffb8,m);
 if (analog(0)>100);
 {
 m=(m&0x3f);
 poke(0xffb8,m);
 motor(0,100.0);
 motor(1,100.0);
 msleep(2000L);
 }
 }
 else if (default_front - IR_front > 1)
 {
 motor(1,0.0);
 motor(0,100.0);
 }
 else if ((IR_front - default_front) > (IR_back -
default_back))
 {
 motor(1,100.0);
 motor(0,65.0);
 }
 else if ((IR_front - default_front) < (IR_back -
default_back))
 {
 motor(1,40.0);
 motor(0,100.0);
 }
 else
 {
 motor(0,100.0);
 motor(1,90.0);
 }
 }
}

