[image: image1.wmf]IR sensor test

90

95

100

105

110

115

120

125

130

135

0

5

10

15

20

25

30

35

distance (in)

analog reading

ldark

llight

rdark

rlight

[image: image2.wmf]
Andor Almasi

April 25, 1998

Prof. Antonio Arroyo

Table of Contents

3ABSTRACT

EXECUTIVE SUMMARY
3
INTRODUCTION
4
HARDWARE DESIGN
5
Platform design
5
Leg design
5
Body design
7
Electronic hardware
8
SOFTWARE DESIGN
9
Overview
9
Sensor Reading
10
Control
12
Walking
12
PWM generation
13
CONCLUSION
14
Accomplishments
14
Failures
14
Future work
14
Thanks
15
APPENDIX A – Mobile Platform Plans
16
APPENDIX B – Software source code
21
Header
21
Sensor Acquisition
22
Controller
26
Movement generator
33
SCI system
36

 ABSTRACT

The Not So Evil Bug is a six-legged mobile platform designed to walk and climb/descend high obstacles. The bug is controlled by two HC11s, one for servo control, another for everything else. The current behaviors consist of object-avoidance.

EXECUTIVE SUMMARY

This robot is based on a six-legged platform designed to allow the ascent/descent of tall objects. I designed the platform in AutoCAD and cut it out of plywood on the T-Tech machine. I modeled the legs after the grasshopper’s hind legs. They use two servos each, and have two degrees of freedom.

The robot is controlled by two Motorola 68HC11 microprocessors. One of them is housed in a MB2325 board. This processor runs in single-chip mode, and generates the PWM signals controlling the servos. The other HC11 is on the EVBU board, running in expanded mode. This processor runs all the other code, including sensor reading, object avoidance, movement coordination.

I successfully designed and built the platform, and wrote the software that would enable my robot to do everything advertised. Unfortunately, the platform turned out to be way to heavy, and the robot could not support itself while walking. This is a major failure, since the planned behaviors of the robot rely on the specific platform I designed.

INTRODUCTION

Most mobile platforms used for robots employ wheels as a mode of propulsion. Although wheels are a very efficient mode of propulsion, they do have their drawbacks. One of these is their inability to traverse extremely rough terrain. Legged platforms on the other hand do not rely on a constant contact point with the surface, and are thus the better platform to use over rough terrain. I chose to push this idea a bit further and attempted to design a robot that could climb up/down an obstacle about one half the robot’s standing height. In order to do this, the robot needed a way to detect an object’s height/depth and enter a crawl mode in which it would execute a specialized two-legged walk, instead of the normal three-legged walk. The planned behaviors for the robot are object avoidance and climbing.

HARDWARE DESIGN

The robot hardware includes the body, legs, servos, battery, sensors and microprocessor boards.

Platform design

The robot is based on a six-legged mobile platform. My inspiration for this platform was Robobug, designed/built/programmed by David Novick and Jennifer Laine. I first saw Robobug at a demo in 4744, and thought that it was the coolest thing since (apple pie?) The ideas for my own robot started to develop in the coming weeks, during some oh-so-dull 4712 classes. By the start of this semester, I had a good idea of what I wanted my platform to look like. I did the actual design in AutoCAD version 14. The entire platform is built from wood, cut on the T-tech machine in the Intelligent Machines Design Laboratory lab. The design sheets for the cutouts can be found in appendix A.

Leg design

[image: image3.png]

The most important consideration in designing the legs was to make them long enough to allow the robot to climb over fairly high objects. The robot has six identical legs, two facing forward and four facing toward the rear. The legs have two degrees of freedom, one rotational and one lateral (figure 1). The legs move in a plane parallel to the length of the body. The idea for the general shape and function is most closely related to the rear leg of a [image: image4.png]

grasshopper (figure 2). The upper leg (thigh) holds the servo actuating the lower leg. It is attached to the body via a servo horn on the inner surface of the thigh. The lower leg is actuated by a linkage system. This linkage is designed to magnify the servo’s range of motion. The servo connects to the linkage by a length of 1/16th inch diameter piano wire. The leg pieces are designed to easily fit into each other during assembly, and to provide good structural support once built. A tubular joint made from 1/8th inch thick aluminum connects the upper and lower legs. The large diameter of the tubing ensures that the joint will be strong and smooth rolling. I originally considered using ball bearings in the joint, but after testing one of the above joints, I decided the added weight and complexity were not worth the minute gain in smoothness. I had to redesign the legs after the first cutout, because I made the notches that connect the pieces incorrectly. I also made the attachment points for the linkages at the wrong place. The first version of the legs served as a prototype for the redesign, and helped point out some of the pitfalls that I would likely encounter in latter designs. One of these was that the notches that connected the pieces together only fit if I used a new drill bit in the T-tech. Most of the time the bit wear can be neglected, but in this case the effects of bit wear are actually doubled. This is because if the bit is thinner than expected, the notch comes out thicker and the hole it fits into comes out thinner. This leads to a warm relationship with the Dremel tool, which I often used to correct the above problem. A late addition to the legs was the feet (figure 3). They prevent the legs from slipping and serve as touch sensors. Some very tacky rubber (from a lint-removing roller) is glued on the bottom of the feet to ensure a good contact with the ground. The foot surfaces are currently too small and make the feet unstable.

[image: image5.png]

Body design

The purpose of the body is to provide an attachment point for the legs and to hold all the other components (microprocessor boards, batteries). The body design is centered around the servos and the battery pack. I built a cardboard prototype of the body to avoid any clearance problems in the final design. Extraneous pieces of wood in the body were cut out to save weight. I added notch attachment points throughout the body to allow for further expansion. The EVBU board rests in the middle of the body, attached by four metal posts. The servo control board rests on the rear of the body, attached by four screws and rubber feet.

Both the legs and the body are painted with flat black spray-paint. This serves as a waterproof barrier and a cosmetic enhancement.

Electronic hardware

[image: image6.wmf]The robot uses two microprocessor boards. One is the EVBU board, the other is an MB2325 board. The EVBU board has the 32k memory expansion, two output ports, one input port and a 40kHz signal generator. The EVBU is powered from the MB2325, which has a 5V voltage regulator on it. The MB2325 is directly attached to a 7.2 volt battery pack (6 subC NiCad cells). Leg movement is provided by two servos per leg (one inside the body, one inside thigh). I am using Hitec SuperSport servos purchased from Mayor Hobby (www.majorhobby.com). The servo specifications are listed in table 1. The servos are powered by a 6 volt voltage regulator attached to a heat sink on the bottom of the robot. Two IR emitter-receiver pairs are attached to the front of the robot, as well as sensor switches actuated by whiskers. There are a total of three whiskers, two in a cross configuration pointing forward and one pointing down. The whiskers are made of thin piano wire that bends some on contact. This ensures that nothing breaks when the robot walks into a wall. As an added benefit, the whisker switches activate over a wide range of approach angles. The switch sensors (whiskers and foot) are broken up into groups of three, each driving a voltage-divider network. This network reduces nine digital inputs to three analog inputs.

SOFTWARE DESIGN

Overview

[image: image7.wmf]IR sensor test

90

95

100

105

110

115

120

125

130

135

0

5

10

15

20

25

30

35

distance (in)

analog reading

ldark

llight

rdark

rlight

All of the software running on the robot is written in assembly. I chose assembly over IC or ICC because it gives me precise timing control crucial in coordinating leg movements. The software can be broken up into the hierarchical structure shown in figure 4. The software is broken into three parts. The sensor reading process includes reading all of the sensor inputs and converting them to a more usable form. The control process coordinates movements and behaviors based on sensor outputs. The walk generator process generates the appropriate leg movement sequences for the action requested by the control process. The PWM generator uses those sequences to directly control the servos. All but the PWM generator code is loaded into the SRAM on the EVBU board. The PWM code is running on the MB2325 board, in EPROM. See Appendix B for a complete software listing.

Sensor Reading

[image: image8.png]

[image: image9.png]

This process has the job of reading any and all sensor data and preparing it for use by the control process. For the IR sensors it uses a lookup table to distinguish among five different IR level readings. The final output is in the form of a single 8-bit variable. Four bits are dedicated to each IR sensor. The possible IR readings and their meanings are listed in table 2. This method allows calibration of the IR sensors completely transparently to processes using these readings. The only things that need to be changed in case the sensors need recalibrating are the lookup table values within this procedure. In fact, the IR sensors could be replaced with a completely different type of sensor, without any effect on other methods. T he IR readings are often unreliable, since surface color greatly affects the reflectance of IR. Figure 5 shows the difference in reaction between a white and a dark surface.

The whisker sensors compensate for any errors the IR sensors make. The output format for all the switch sensors is binary. In theory, the analog readings coming from the switch voltage divider network should wiggle one specific bit of the digitized reading for a specific switch. Unfortunately, due to mismatch in resistances this does not work out quite well. Therefore, a lookup table is used to simulate the desired effect. The added benefit of this method is transparency. Once again, any of the foot or whisker sensors could be changed to a different type, without having to change the output.

The foot sensors give feedback about leg position for a dynamically generated walking algorithm. They work the same way as the whiskers above.

My special sensor was going to be an IR range finder. These are used in autofocus cameras to measure the distance between the camera and the subject. They work by emitting a highly localized pulsed IR spot (about six inches diameter at five feet) and measuring the offset of the spot on a specialized IR receiver. This receiver’s current output varies according to where on its surface the IR reading is the highest. Lenses focus both the outgoing and incoming IR beams. A decoder chip takes as input the IR emitter frequency and the IR receiver output and converts it to a more usable form. Unfortunately, I have little idea what that form is. I obtained three cameras that had this sensor in them, but could not get any of the manufacturers (Kodak, Canon, and Pentax) to release any useful information. I also tried contacting the decoder manufacturers (Sharp and Hamamatsu Corp) for a datasheet without success. I managed to figure out how the Pentax sensor works. I found that pin 13 on the Sharp IR3S43A decoder emitted a PWM signal whose duty cycle was relative to the distance to the object. The signal varied linearly with distance, duty cycle decreasing until object distance of about 1 foot, increasing for closer and further distances. I was going to use this sensor as an edge-of-the-world detector that would prevent my robot from walking off a table, and allow it to judge if it can walk off a platform or not. Unfortunately while trying to separate the sensor from the rest of the robot I managed to fry some mystery component and could never get the sensor to work again. I did not have any success finding an output on the other two sensors.

Control

The control method evaluates the sensor readings and makes a decision on the next action to send to the legs. The decision process is currently in two phases. In the first phase, IR sensor outputs are evaluated and a recommendation is made to the second phase. The second phase checks the more accurate sensors (whiskers, and depth sensor, if it worked) and makes sure that they do not conflict with the phase 1 recommendation. If so, the recommendation is promoted to an action and is passed on to the walk generator. In case of a conflict, phase 2 reevaluates the possible actions based on its sensor inputs and generates an action. The actions generated by the two control phases emerge into a basic object-avoidance behavior.

Walking

The walk generator takes the action and turns it into a sequence of servo movements. There are two possible walking methods. The first is to use a hardcoded sequence of movements for each action. The second is to dynamically generate movement sequences based on the action and foot switch inputs. The latter allows would allow to self-compensate for uneven terrain, but is much more difficult to implement. I chose to implement the first method.

Actions are commands like walk fwd, turn, climb, etc. An action is made up of sequences. The time delay between two sequences determines the speed of the action. A sequence is 16 servo position values that are fed into the servo controller. Each sequence is sent to the PWM generator five times. A complete action is treated much like a character string. The sequences from the start of the action are sent to the PWM generator until and ENDACT (end-of-action, $FF) character is encountered. Actions are kept as short as possible. This means that a single execution of the walk action, for example, will move the robot forward one step.

Walking is achieved by lifting up three opposing feet, moving them forward and doing the same for the other three feet. Climbing is achieved by moving opposing pairs of feet onto the object to be climbed. I have not found a good turning algorithm for the robot yet. The most likely possible turning method will move one side of the robot less than the other, much like on a tank.

PWM generation

The MB2325 board is running the servo control code. The input format is BBCx$yy, where x is the servo number, yy is the servo position in the range of 00 to A4. The input is passed through the SCI port. The output is a constant PWM signal on ports B and C. The servo control code was developed and written by Jenny Laine.

[image: image10.png]

CONCLUSION

Accomplishments

I have built and designed the platform, installed the basic object-avoidance sensors, written the object-avoidance code and interfaced to the servo controller.

Failures

The mobile platform turned out to be too heavy. As of now, the robot can stand on all six feet, but falls over as soon as three feet are lifted. This is a major design flaw, and has prevented me from developing all the planned movement actions into the robot. As much as I wish otherwise, I discovered that the laws of physics apply to my robot just as much as everyone else’s.

I was not able to get my special sensor working. This is a minor setback, considering that the robot does not walk.

Future work

The next step in the robot’s development will be to try a five-legged walk. This involves moving one leg at a time, until a full step is taken. Another alternative is to get some 80 oz/in servos. These would be strong enough to allow the robot to stand stable on three legs.

If neither one of these will work, I will be forced to redesign my platform completely.

I am also planning to integrate the sensor I developed for my senior project onto the robot platform. This will eliminate the need for my current special sensor.

Thanks

I wish to thank Jenny Laine for developing and letting me use the servo controller code I am running on the MB2325 board.

[image: image11.png]

APPENDIX A – Mobile Platform Plans

[image: image12.png]

APPENDIX B – Software source code

Header

*< Assembly file header

* Includes all registers as 8 bit offsets

* Includes important addresses as 16 bit values

* Includes single bit masks

* Place at end of new assembly programs

*>

SRAM EQU $2000 ; start of external RAM on EVBU

CRAM EQU $0000 ; start of internal RAM

EPROM EQU $D000 ; start of eprom

EEPROM EQU $B600 ; start of eeprom

BIT7 EQU %10000000 ; single bit masks

BIT6 EQU %01000000

BIT5 EQU %00100000

BIT4 EQU %00010000

BIT3 EQU %00001000

BIT2 EQU %00000100

BIT1 EQU %00000010

BIT0 EQU %00000001

INV6 EQU %10111111 ; inverses

INV5 EQU %11011111

INV4 EQU %11101111

INV3 EQU %11110111

INV2 EQU %11111011

INV1 EQU %11111101

INV0 EQU %11111110

BASE EQU $1000 ; register base

ADCTL EQU $30 ; A/D Control/Status

ADR1 EQU $31 ; A/D Result

ADR2 EQU $32 ; A/D Result

ADR3 EQU $33 ; A/D Result

ADR4 EQU $34 ; A/D Result

BAUD EQU $2B ; Baud Rate Control Register

BPROT EQU $35 ; Block Protect

CFORC EQU $0B ; Timer Compare Force

CONFIG EQU $3F ; Security disable, COP, ROM Mapping, EEPROM Enables

COPRST EQU $3A ; Arm/Reset COP Timer Circuitry

DDRC EQU $07 ; Data Direction Control for Port C

DDRD EQU $09 ; Data Direction Control for Port C

EPROG EQU $36 ; EPROM Programming Control

HPRIO EQU $3C ; Highest Priority I-Bit Interrupt amd Misc

INIT EQU $3D ; RAM and Register Mapping

OC1D EQU $0D ; Output Compare 1 Data

OC1M EQU $0C ; Output Compare 1 Mask

OPTION EQU $39 ; System Configuration Options

PACNT EQU $27 ; Pulse Accumulator Control

PACTL EQU $26 ; Pulse Accumulator Control

PIOC EQU $02 ; Parallel I/O Control

PORTA EQU $00 ; Port A Data

PORTB EQU $04 ; Port B Data

PORTC EQU $03 ; Port C Data

PORTCL EQU $05 ; Port C Latched Data

PORTD EQU $08 ; Port D Data

PORTE EQU $0A ; Port E Data

PPROG EQU $3B ; EEPROM Programming Control

SCCR1 EQU $2C ; SCI Control 1

SCCR2 EQU $2D ; SCI Control 2

SCDR EQU $2F ; SCI Data Register

SCSR EQU $2E ; SCI Status Register

SPCR EQU $28 ; Serial Peripheral Control

SPDR EQU $2A ; SPI Data

SPSR EQU $29 ; SPI Status Register

TCNT EQU $0E ; Timer Count

TCTL1 EQU $20 ; Timer Control 1

TCTL2 EQU $21 ; Timer Control 2

TEST1 EQU $3E ; Factory Test

TFLG1 EQU $23 ; Timer Interrupt Flag 1

TFLG2 EQU $25 ; Timer Interrupt Flag 2

TIC1 EQU $10 ; Timer Input Capture 1

TIC2 EQU $12 ; Timer Input Capture 2

TIC3 EQU $14 ; Timer Input Capture 3

TIC4 EQU $1E ; Timer Input Capture 4

TMSK1 EQU $22 ; Timer Interrupt Mask 1

TMSK2 EQU $24 ; Timer Interrupt Mask 2

TOC1 EQU $16 ; Timer Output Compare 1

TOC2 EQU $18 ; Timer Output Compare 2

TOC3 EQU $1A ; Timer Output Compare 3

TOC4 EQU $1C ; Timer Output Compare 4

TOC5 EQU $1E ; Timer Output Compare 5

Sensor Acquisition

*< Title : Robot sensor data ack prog

* Filename : sensor.asm

* Programmer : Andor Almasi

* Date : Mar 18, 1997

* Version : 1.0

* Description : Read in foot, feelers, ir

*>

*<

**

* Data Section

**

*>

STACK EQU $41

ORG CRAM

*< The following are the treshold values for the IR sensors

* 0000 < BAD < 0001 < LOW <0010 < HI < 0100 <SAT < 1000

*>

BIT76
EQU

%11000000

BIT65
EQU

%01100000

BIT75
EQU

%10100000

BIT765
EQU

%11100000

BIT32
EQU

%00001100

BIT21
EQU

%00000110

BIT31
EQU

%00001010

BIT321
EQU

%00001110

LIR_BAD
EQU

$59

; left reading too low

LIR_LOW EQU

$65

; left reading far

LIR_HI
EQU

$74

; left reading close

LIR_SAT
EQU

$7E

; left reading saturated

RIR_BAD
EQU

$5C

; right reading too low

RIR_LOW EQU

$68

; right reading far

RIR_HI
EQU

$74

; right reading close

RIR_SAT
EQU

$7E

; right reading saturated

IRSENS
RMB

1

; IR sensor data

*< Whisker sensor data structure

*>

L_C_R
EQU
$90

; L_C_R > 90

1110xxxx

L_X_R
EQU
$85

; L_X_R > 85

1010xxxx

X_C_R
EQU
$79

; X_C_R > 79

1100xxxx

X_X_R
EQU
$65

; X_X_R > 65

1000xxxx

L_C_X
EQU
$55

; L_C_X > 55

0110xxxx

L_X_X
EQU
$35

; L_X_X > 35

0010xxxx

X_C_X
EQU
$20

; X_C_X > 20

0100xxxx

WHISKER
RMB

1

; whisker sensor data

*< Foot sensor data structure, same for left & right

*>

R_M_F
EQU
$9C

; R_M_F > 9C

1110

R_M_X
EQU
$95

; R_M_X > 95

1100

R_X_F
EQU
$85

; R_X_F > 85

1010

R_X_X
EQU
$75

; R_X_X > 75

1000

X_M_F
EQU
$5A

; X_M_F > 5A

0110

X_M_X
EQU
$40

; X_M_X > 40

0010

X_X_F
EQU
$20

; X_X_F > 20

0100

FOOT
RMB

1

; FOOT sensor data

AD
RMB 8 ; A/D register readings (for debugging)

*<

**

* Define Strings for displaying messages

**

*>

Mess1 FCB LF, CR

FCC ' AD: '

FCB EOS

Mess0 FCC ' Here we go '

FCB EOS

*<

**

* MAIN PROGRAM

* Calls : InitSCI, OutStr, InChar, OutChar

**

*>

ORG SRAM

Main SEI ; turn off interrupt system

LDS #STACK ; Define a stack

LDX #BASE

BSET OPTION,X BIT7 ; turn on A/D system

LDAA #40 ; wait 100 us (200 E)

LGF4 DECA ; for A/D to charge

BNE LGF4 ;

*< printout code

*>

JSR InitSCI ; init serial Communication

LDX #Mess0

JSR OutStr

LDX #CLS ;

JSR OutStr ; clear the screen

LDX #Mess0

JSR OutStr

Again JSR ReadSens

LDX #Mess1

JSR OutStr

LDX #FOOT

JSR OutByt

LDX

#WHISKER

JSR OutByt

LDX

#IRSENS

JSR

OutByt

LDY #0

Loop DEY

LDAB #1

Loop2 DECB

BNE Loop2

CPY
#0

BNE Loop

BRA Again

SWI ; return to buffalo

*<

** Subroutine to read sensors

** Raw A/D data is stored in AD

*>

ReadSens PSHA

PSHX

PSHY

LDX #BASE

LDY

#AD

; debug

*< These are pins 44-46, IR inputs *

* Here sensor readings are converted into two 4bit

* values stored in IRSENS

*>

LDAA #%00010100

STAA ADCTL,X

*< Total delay is 2+((2+2+3)*9) = 65 E's *>

LDAA #9
; 2 E cycles

LOOP1a NOP ; 2 E cycles

DECA ; 2 E cycles

BNE LOOP1a ; 3 E cycles

CLR

IRSENS

; void old sensor reading

LDAA ADR1,X

; the left sensor

CMPA
#LIR_SAT

; convert sensor read

BLO
NEXT1a

BSET
IRSENS BIT7

BRA

ENDLa

NEXT1a
CMPA
#LIR_HI

BLO
NEXT2a

BSET
IRSENS BIT6

BRA

ENDLa

NEXT2a
CMPA
#LIR_LOW

BLO
NEXT3a

BSET
IRSENS BIT5

BRA

ENDLa

NEXT3a
CMPA
#LIR_BAD

BLO
ENDLa

BSET
IRSENS BIT4

ENDLa
STAA
4,Y

; debug

LDAA ADR2,X

; the right sensor

CMPA
#RIR_SAT

; convert sensor read

BLO
NEXT4a

BSET
IRSENS BIT3

BRA

ENDRa

NEXT4a
CMPA
#RIR_HI

BLO
NEXT5a

BSET
IRSENS BIT2

BRA

ENDRa

NEXT5a
CMPA
#RIR_LOW

BLO
NEXT6a

BSET
IRSENS BIT1

BRA

ENDRa

NEXT6a
CMPA
#RIR_BAD

BLO
ENDRa

BSET
IRSENS BIT0

ENDRa
STAA
5,Y

; debug

*< These are pins 45-47-49

*>

LDAA #%00010000

STAA ADCTL,X

*< Total delay is 2+((2+2+3)*18) = 128 E's *>

LDAA #18
; 2 E cycles

LOOP1a NOP ; 2 E cycles

DECA ; 2 E cycles

BNE LOOP1a ; 3 E cycles

CLR

FOOT

; void old sensor reading

LDAA
ADR2,X

; pin 45, right feet

CMPA
#R_M_F

; convert sensor read

BLO
NEXT1c

BSET
FOOT BIT321

BRA

ENDRc

NEXT1c
CMPA
#R_M_X

BLO
NEXT2c

BSET
FOOT BIT32

BRA

ENDRc

NEXT2c
CMPA
#R_X_F

BLO
NEXT3c

BSET
FOOT BIT31

BRA

ENDRc

NEXT3c
CMPA
#R_X_X

BLO
NEXT4c

BSET
FOOT BIT3

BRA

ENDRc

NEXT4c
CMPA
#X_M_F

BLO
NEXT5c

BSET
FOOT BIT21

BRA

ENDRc

NEXT5c
CMPA
#X_M_X

BLO
NEXT6c

BSET
FOOT BIT2

BRA

ENDRc

NEXT6c
CMPA
#X_X_F

BLO
ENDRc

BSET
FOOT BIT1

ENDRc
STAA
1,Y

; debug

LDAA
ADR3,X

CMPA
#R_M_F

; convert sensor read

BLO
NEXT1d

BSET
FOOT BIT765

BRA

ENDRd

NEXT1d
CMPA
#R_M_X

BLO
NEXT2d

BSET
FOOT BIT76

BRA

ENDRd

NEXT2d
CMPA
#R_X_F

BLO
NEXT3d

BSET
FOOT BIT75

BRA

ENDRd

NEXT3d
CMPA
#R_X_X

BLO
NEXT4d

BSET
FOOT BIT7

BRA

ENDRd

NEXT4d
CMPA
#X_M_F

BLO
NEXT5d

BSET
FOOT BIT65

BRA

ENDRd

NEXT5d
CMPA
#X_M_X

BLO
NEXT6d

BSET
FOOT BIT6

BRA

ENDRd

NEXT6d
CMPA
#X_X_F

BLO
ENDRd

BSET
FOOT BIT5

ENDRd
STAA
2,Y

; debug

LDAA
ADR4,X

; pin 43, whiskers

CLR

WHISKER

; void old sensor reading

CMPA
#L_C_R

; convert sensor read

BLO
NEXT1b

BSET
WHISKER BIT765

BRA

ENDWb

NEXT1b
CMPA
#L_X_R

BLO
NEXT2b

BSET
WHISKER BIT75

BRA

ENDWb

NEXT2b
CMPA
#X_C_R

BLO
NEXT3b

BSET
WHISKER BIT76

BRA

ENDWb

NEXT3b
CMPA
#X_X_R

BLO
NEXT4b

BSET
WHISKER BIT7

BRA

ENDWb

NEXT4b
CMPA
#L_C_X

BLO
NEXT5b

BSET
WHISKER BIT65

BRA

ENDWb

NEXT5b
CMPA
#L_X_X

BLO
NEXT6b

BSET
WHISKER BIT5

BRA

ENDWb

NEXT6b
CMPA
#X_C_X

BLO
ENDWb

BSET
WHISKER BIT6

ENDWb
STAA
3,Y

; debug

PULY

PULX

PULA

RTS

Controller

*< Title : Robot controller prog

* Filename : control.asm

* Programmer : Andor Almasi

* Date : Mar 18, 1997

* Version : 1.0

* Description : guide robot based on sensor data

*>

*<

**

* Data Section

**

*>

STACK EQU $1ff

ORG SRAM

JMP

Main

*< The following are the treshold values for the IR sensors

* 0000 < BAD < 0001 < LOW <0010 < HI < 0100 <SAT < 1000

*>

BIT76
EQU

%11000000

BIT65
EQU

%01100000

BIT75
EQU

%10100000

BIT765
EQU

%11100000

BIT32
EQU

%00001100

BIT21
EQU

%00000110

BIT31
EQU

%00001010

BIT321
EQU

%00001110

LIR_BAD
EQU

$59

; left reading too low

LIR_LOW EQU

$65

; left reading far

LIR_HI
EQU

$74

; left reading close

LIR_SAT
EQU

$7E

; left reading saturated

RIR_BAD
EQU

$5C

; right reading too low

RIR_LOW EQU

$68

; right reading far

RIR_HI
EQU

$77

; right reading close

RIR_SAT
EQU

$81

; right reading saturated

IRSENS
RMB

1

; IR sensor data

*< Whisker sensor data structure

*>

L_C_R
EQU
$90

; L_C_R > 90

1110xxxx

L_X_R
EQU
$85

; L_X_R > 85

1010xxxx

X_C_R
EQU
$79

; X_C_R > 79

1100xxxx

X_X_R
EQU
$65

; X_X_R > 65

1000xxxx

L_C_X
EQU
$55

; L_C_X > 55

0110xxxx

L_X_X
EQU
$35

; L_X_X > 35

0010xxxx

X_C_X
EQU
$20

; X_C_X > 20

0100xxxx

WHISKER
RMB

1

; whisker sensor data

*< Foot sensor data structure, same for left & right

*>

R_M_F
EQU
$9C

; R_M_F > 9C

1110

R_M_X
EQU
$95

; R_M_X > 95

1100

R_X_F
EQU
$85

; R_X_F > 85

1010

R_X_X
EQU
$75

; R_X_X > 75

1000

X_M_F
EQU
$5A

; X_M_F > 5A

0110

X_M_X
EQU
$40

; X_M_X > 40

0010

X_X_F
EQU
$20

; X_X_F > 20

0100

FOOT
RMB

1

; FOOT sensor data

AD
RMB 1 ; A/D register readings (for debugging)

AD1

RMB

1

AD2

RMB

1

AD3

RMB

1

AD4

RMB

1

AD5

RMB

1

AD6

RMB

1

AD7

RMB

1

ACTION
RMB

2

; address of action stored here

SPEED
RMB

2

; address of speed of action

FAST
EQU

$8000

SLOW
EQU

$0000

Hello
FCC

'hello.... '

FCB

EOS

STAND
FCC

'< STAND IN PLACE >'

FCB

EOS

FWD

FCC

'< WALK FORWARD >'

FCB

EOS

BWD

FCC

'< WALK BACKWARD >'

FCB

EOS

TURNL
FCC

'< TURNING LEFT >'

FCB

EOS

TURNR
FCC

'< TURNING RIGHT >'

FCB

EOS

SHARPL
FCC

'< SHARP LEFT >'

FCB

EOS

SHARPR
FCC

'< SHARP RIGHT >'

FCB

EOS

CLIMB
FCC

'< CLIMB >'

FCB

EOS

*<

**

* MAIN PROGRAM

**

*>

Main SEI ; turn off interrupt system

LDS #STACK ; Define a stack

LDX #BASE

BSET OPTION,X BIT7 ; turn on A/D system

LDAA #40 ; wait 100 us (200 E)

LGF4 DECA ; for A/D to charge

BNE LGF4 ;

*< printout code

*>

JSR InitSCI ; init serial Communication

LDX #CLS ;

JSR OutStr ; clear the screen

LDX #Hello

JSR OutStr

Again JSR ReadSens

JSR

WhatToDo

BRA Again

*<

** Subroutine to decide action based upon sensor

** readings

*>

WhatToDo PSHA

PSHB

PSHX

PSHY

LDX

SLOW

STX

SPEED

; default speed is slow

BRCLR
0,X %00001111 STAND_R
; bad reading, stop

BRCLR
0,X %11110000 STAND_R
; bad reading, stop

BRSET
0,X %10001000 BACK_R
; back up

BRSET
0,X %10000000 SHR_R

; sharp right

BRSET
0,X %00001000 SHL_R

; sharp left

BRSET
0,X %01000000 TR_R

; turn right

BRSET
0,X %00000100 TL_R

; turn left

BRSET
0,X %00100000 SFWD_R
; forward slow

BRSET
0,X %00000100 SFWD_R
; forward slow

BRSET
0,X %00010000 FFWD_R
; forward fast

BRSET
0,X %00000001 FFWD_R
; forward fast

STAND_R
LDX

#STAND

; store recommendation

STX

ACTION

BRA

CHK_WH

BACK_R
LDX

#BWD

; store recommendation

STX

ACTION

BRA

CHK_WH

SHR_R
LDX

#SHARPR

; store recommendation

STX

ACTION

BRA

CHK_WH

SHL_R
LDX

#SHARPL

; store recommendation

STX

ACTION

BRA

CHK_WH

TR_R
LDX

#TURNR

; store recommendation

STX

ACTION

BRA

CHK_WH

TL_R
LDX

#TURNL

; store recommendation

STX

ACTION

BRA

CHK_WH

FFWD_R
LDX

#FWD

; store recommendation

STX

ACTION

LDX

FAST

; store speed

STX

SPEED

BRA

CHK_WH

SFWD_R
LDX

#FWD

; store recommendation

STX

ACTION

CHK_WH
LDX

#WHISKER

*< these are the final word in the action that will be taken *>

BRCLR
0,X %11100000 EXEC
; execute IR recommendation

BRSET
0,X %10100000 BACK
; go back

BRSET
0,X
%10000000 SHR
; sharp right

BRSET
0,X %00100000 SHL
; sharp left

BRSET
0,X
%01000000 CLMB
; climb

BACK
LDX

BWD

; store action

STX

ACTION

BRA

EXEC

SHL

LDX

SHARPL

; store action

STX

ACTION

BRA

EXEC

SHR

LDX

SHARPR

; store action

STX

ACTION

BRA

EXEC

CLMB
LDX

CLIMB

; store action

STX

ACTION

EXEC
JSR

Move

PULY

PULX

PULB

PULA

RTS

*<

**

*

leg control subroutine (temporary one)

* input:
ACTION - start of sequence to execute

*

SPEED - delay between sequence steps

**

*>

Move
PSHA

PSHB

PSHX

PSHY

LDX

ACTION

JSR

OutStr

LDY

SPEED
; delay before going to next seq

Loop DEY

;

LDAB #$15
;

Loop2
DECB

;

BNE Loop2
;

CPY
#0

;

BNE Loop
;

PULY

; outta here

PULX

PULB

PULA

RTS

*<

** Subroutine to read sensors

** Raw A/D data is stored in AD

*>

ReadSens PSHA

PSHX

PSHY

LDX #BASE

LDY

#AD

; debug

*< These are pins 44-46, IR inputs *

* Here sensor readings are converted into two 4bit

* values stored in IRSENS

*>

LDAA #%00010100

STAA ADCTL,X

*< Total delay is 2+((2+2+3)*9) = 65 E's *>

LDAA #9
; 2 E cycles

LOOP1a NOP ; 2 E cycles

DECA ; 2 E cycles

BNE LOOP1a ; 3 E cycles

CLR

IRSENS

; void old sensor reading

LDAA ADR1,X

; the left sensor

CMPA
#LIR_SAT

; convert sensor read

BLO
NEXT1a

BSET
IRSENS BIT7

BRA

ENDLa

NEXT1a
CMPA
#LIR_HI

BLO
NEXT2a

BSET
IRSENS BIT6

BRA

ENDLa

NEXT2a
CMPA
#LIR_LOW

BLO
NEXT3a

BSET
IRSENS BIT5

BRA

ENDLa

NEXT3a
CMPA
#LIR_BAD

BLO
ENDLa

BSET
IRSENS BIT4

ENDLa
STAA
4,Y

; debug

LDAA ADR2,X

; the right sensor

CMPA
#RIR_SAT

; convert sensor read

BLO
NEXT4a

BSET
IRSENS BIT3

BRA

ENDRa

NEXT4a
CMPA
#RIR_HI

BLO
NEXT5a

BSET
IRSENS BIT2

BRA

ENDRa

NEXT5a
CMPA
#RIR_LOW

BLO
NEXT6a

BSET
IRSENS BIT1

BRA

ENDRa

NEXT6a
CMPA
#RIR_BAD

BLO
ENDRa

BSET
IRSENS BIT0

ENDRa
STAA
5,Y

; debug

*< These are pins 45-47-49

*>

LDAA #%00010000

STAA ADCTL,X

*< Total delay is 2+((2+2+3)*18) = 128 E's *>

LDAA #18
; 2 E cycles

LOOP1a NOP ; 2 E cycles

DECA ; 2 E cycles

BNE LOOP1a ; 3 E cycles

CLR

FOOT

; void old sensor reading

LDAA
ADR2,X

; pin 45, right feet

CMPA
#R_M_F

; convert sensor read

BLO
NEXT1c

BSET
FOOT BIT321

BRA

ENDRc

NEXT1c
CMPA
#R_M_X

BLO
NEXT2c

BSET
FOOT BIT32

BRA

ENDRc

NEXT2c
CMPA
#R_X_F

BLO
NEXT3c

BSET
FOOT BIT31

BRA

ENDRc

NEXT3c
CMPA
#R_X_X

BLO
NEXT4c

BSET
FOOT BIT3

BRA

ENDRc

NEXT4c
CMPA
#X_M_F

BLO
NEXT5c

BSET
FOOT BIT21

BRA

ENDRc

NEXT5c
CMPA
#X_M_X

BLO
NEXT6c

BSET
FOOT BIT2

BRA

ENDRc

NEXT6c
CMPA
#X_X_F

BLO
ENDRc

BSET
FOOT BIT1

ENDRc
STAA
1,Y

; debug

LDAA
ADR3,X

CMPA
#R_M_F

; convert sensor read

BLO
NEXT1d

BSET
FOOT BIT765

BRA

ENDRd

NEXT1d
CMPA
#R_M_X

BLO
NEXT2d

BSET
FOOT BIT76

BRA

ENDRd

NEXT2d
CMPA
#R_X_F

BLO
NEXT3d

BSET
FOOT BIT75

BRA

ENDRd

NEXT3d
CMPA
#R_X_X

BLO
NEXT4d

BSET
FOOT BIT7

BRA

ENDRd

NEXT4d
CMPA
#X_M_F

BLO
NEXT5d

BSET
FOOT BIT65

BRA

ENDRd

NEXT5d
CMPA
#X_M_X

BLO
NEXT6d

BSET
FOOT BIT6

BRA

ENDRd

NEXT6d
CMPA
#X_X_F

BLO
ENDRd

BSET
FOOT BIT5

ENDRd
STAA
2,Y

; debug

LDAA
ADR4,X

; pin 43, whiskers

CLR

WHISKER

; void old sensor reading

CMPA
#L_C_R

; convert sensor read

BLO
NEXT1b

BSET
WHISKER BIT765

BRA

ENDWb

NEXT1b
CMPA
#L_X_R

BLO
NEXT2b

BSET
WHISKER BIT75

BRA

ENDWb

NEXT2b
CMPA
#X_C_R

BLO
NEXT3b

BSET
WHISKER BIT76

BRA

ENDWb

NEXT3b
CMPA
#X_X_R

BLO
NEXT4b

BSET
WHISKER BIT7

BRA

ENDWb

NEXT4b
CMPA
#L_C_X

BLO
NEXT5b

BSET
WHISKER BIT65

BRA

ENDWb

NEXT5b
CMPA
#L_X_X

BLO
NEXT6b

BSET
WHISKER BIT5

BRA

ENDWb

NEXT6b
CMPA
#X_C_X

BLO
ENDWb

BSET
WHISKER BIT6

ENDWb
STAA
3,Y

; debug

PULY

PULX

PULA

RTS

Movement generator

*< Title : Robot movement coordination

* Filename : move.asm

* Programmer : Andor Almasi

* Date : Apr 22, 1997

* Version : 1.0

* Description :

*>

*<

**

* Data Section

**

*>

STACK EQU $1ff

ORG SRAM

JMP
Main

*<

**

* Define Strings for displaying messages

**

*>

TEMP1
RMB

2

Spd

FCC

' Enter servo speed: '

FCB

EOS

SERVO
RMB

1

; current servo count

SPEED
RMB

2

; time between movements

ACTION
RMB

2

; which action to perform

ENDACT
EQU

$FF

; end action delimiter

ROT_ADJ
EQU

$5A

; servo rotation adjustment factor

*< posi+tion tables, hold sequences of positions for 16 servos

* a set of sequences form an action

* body part notation [LEFT/RIGHT][FRONT/CENTER/BACK][UPPER/LOWER]

*

* servo number c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf

*<inverse:

NO NO NO NO NO NO YES YES YES YES YES YES *>

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

STAND
FCB

$30,$35,$40,$30,$30,$35,$00,$00,$00,$00,$30,$35,$40,$30,$30,$35

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

FWD

FCB

$40,$50,$50,$20,$30,$35,$00,$00,$00,$00,$30,$35,$40,$30,$50,$20

FCB

$40,$50,$50,$20,$20,$25,$00,$00,$00,$00,$40,$20,$30,$30,$50,$20

FCB

$50,$40,$40,$40,$20,$25,$00,$00,$00,$00,$40,$20,$30,$30,$20,$40

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

BWD

FCC

'< WALK BACKWARD >'

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

TURNL
FCC

'< TURNING LEFT >'

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

TURNR
FCC

'< TURNING RIGHT >'

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

SHARPL
FCC

'< SHARP LEFT >'

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

SHARPR
FCC

'< SHARP RIGHT >'

FCB

ENDACT

*<body part:
LFL LFU RCL RCU RRL RRU N/C N/C N/C N/C RFL RFU LCL LCU LRL LRU *>

CLIMB
FCC

'< CLIMB >'

FCB

ENDACT

*<

**

* MAIN PROGRAM

**

*>

Main SEI ; turn off interrupt system

LDS #STACK ; Define a stack

LDX #BASE

LDAA
#$2000

STAA
$b900
; notify user to switch

*< printout code

*>

JSR InitSCI ; init serial Communication

*

LDX

#Spd

*

JSR

OutStr

*

JSR

InByt

*

JSR

InByt

*

LDD

TEMP1

*

STD

SPEED

*

LDX

#TEMP1

*

JSR

OutByt

*

JSR

OutByt

LDAA
#0

STAA
$b900
; notify user to switch

LDY

#0

; delay gives time to switch

Loope DEY

;

LDAB #$15
;

Loop2e
DECB

;

BNE Loop2e
;

CPY
#0

;

BNE Loope
;

LDX

#$3000

STX

SPEED

LDAA
#5

Again
LDX

#STAND

STX

ACTION

JSR Move

DECA

BNE

Again

KeepOn
LDX

#FWD

STX

ACTION

JSR Move

BRA KeepOn

*<

**

*

leg control subroutine

* input:
ACTION - start of sequence to execute

*

SPEED - delay between sequence steps

**

*>

Move
PSHA

PSHB

PSHX

PSHY

LDX

ACTION

NEXT_SQ
LDAA
#$c0

STAA
SERVO
; current servo

NEXT_SV
LDAA
SERVO
;

CMPA
#$d0
; is it beyond last servo

BEQ

END_S
;

LDAB
#5

; send same thing five times

SendOvr
LDAA
#$BB
; header

JSR

OutChar ; header sent

LDAA
SERVO
; servo number

JSR

OutChar ; servo num sent

LDAA
0,X

; servo position

CMPA
#ENDACT
; is it end of sequence?

BEQ

END_A
; outta here

LDY

#SERVO

BRSET
0,Y BIT3 NoAdj
; rotation adjustment check

LDAA
#ROT_ADJ

; load adjustment factor

SUBA
0,X

; adjusted position

NoAdj
JSR

OutChar
; position sent

DECB

;

BNE

SendOvr
;

INC

SERVO
; next servo

INX

; next position

BRA

NEXT_SV
; do same for next servo

END_S
LDY

SPEED
; delay before going to next seq

Loop DEY

;

LDAB #$15
;

Loop2
DECB

;

BNE Loop2
;

CPY
#0

;

BNE Loop
;

BRA

NEXT_SQ
; do next sequence

END_A
PULY

; outta here

PULX

PULB

PULA

RTS

SCI system

*< Title : SCI system functions

* Filename : sci.asm

* Programmer : Andor Almasi

* Date : Feb 15, 1997

* Version : 1.0

* Description : InitSCI, OutChar, OutStr, InChar, OutXY, MakeBCD

*>

*<***

* Common definitions, assumes that header.asm is already included

**>

<OutChar, OutStr, OutXY>

CLS FCB ESC,$5B,$32,$4A ; ANSI sequence to clear screen

FCB ESC,$5B,$3B,$48 ; and move cursor to home

FCB EOS ; EOS character

<OutChar, OutStr, OutXY, InChar>

EOS EQU $04 ; User-defined End Of String (EOS) character

CR EQU $0D ; Carriage Return Character

LF EQU $0A ; Line Feed Character

ESC EQU $1B ; Escape Character

SP EQU $20 ; Space Character

*<***

* SUBROUTINE - InitSCI

* Description: This subroutine initializes the BAUD rate to 9600 and

* sets up the SCI port for 1 start bit, 8 data bits and

* 1 stop bit. It also enables the transmitter and receiver.

* Effected registers are BAUD, SCCR1, and SCCR2.

* Input : None.

* Output : Initializes SCI.

* Destroys : None.

* Calls : None.

**

*<Baud rate defs: $30 9600

* $31 4800

* $32 2400

* $33 1200

* $34 0600

* $35 0300

* $36 0150

* $37 0075 *>

RATE EQU $30

InitSCI PSHA ; Save contents of A register

LDY #BASE

LDAA #RATE ; Set BAUD rate

STAA BAUD,Y

CLR SCCR1,Y ; Set SCI Mode to 1/8/1

LDAA #$0C ; Enable SCI Transmitter

STAA SCCR2,Y ; and Receiver

PULA ;Restore A register

RTS ; Return from subtoutine

*<

**

* SUBROUTINE - OutChar

* Description: Outputs the character in register A to the screen after

* checking if the Transmitter Data Register is Empty.

* Input : Data to be transmitted in register A.

* Output : Transmit the data.

* Destroys : None.

* Calls : None.

**

*>

OutChar PSHB ; Save contents of B register

LDY #BASE

Loop1 LDAB SCSR,Y ; Check status reg (load it into B reg)

ANDB #$80 ; Check if transmit buffer is empty

BEQ Loop1 ; Wait until empty

STAA SCDR,Y ; Register A ==> SCI data

PULB ; Restore B register

RTS ; Return from subtoutine

*<

**

* SUBROUTINE - OutStr

* Description: Outputs the string terminated by EOS. The starting

* location of the string is pointed by X register. Calls

* the OutChar subroutine to display a character on the screen

* and exit once EOS has been reached. In order to print the

* string properly with RTI, it automatically disables and

* enables interrupts.

* Input : Starting location of the string to be transmitted

* : (passed in X register)

* Output : Prints the string.

* Destroys : Contents of X register.

* Calls : OutChar.

**

*>

OutStr PSHA ; Save contents of A register

LDY #BASE

SEI ; Disable interrupts

Loop2 LDAA 0,X ; Get a character (put in A register)

CMPA #EOS ; Check if it's EOS

BEQ Done ; Branch to Done if it's EOS

JSR OutChar ; Print the character by calling OutChar

INX ; Increment index

BRA Loop2 ; Branch to Loop2 for the next char.

Done CLI ; Enable interrupts

PULA ; Restore A register

RTS ; Return from subtoutine

*<

**

* SUBROUTINE - InChar

* Description: Receives the typed character into register A.

* Input : None

* Output : Register A = input from SCI

* Destroys : Contents of Register A

* Calls : None.

**

*>

InChar LDX #BASE

LDAA SCSR,X ; Check status reg.

ANDA #$20 ; Check if receive buffer full

BEQ InChar ; Wait until data present

LDAA SCDR,X ; SCI data ==> A register

RTS ; Return from subroutine

*<***

* OutByt - convert the byte at X to two

* ASCII characters and output. Return X pointing

* to next byte.

* This is from the buffalo source code

*>

OutByt PSHA

LDAA 0,X ;get data in a

PSHA ;save copy

BSR OUTLHLF ;output left half

PULA ;retrieve copy

BSR OUTRHLF ;output right half

PULA

INX

RTS

OUTLHLF LSRA ;shift data to right

LSRA

LSRA

LSRA

OUTRHLF ANDA #$0F ;mask top half

ADDA #$30 ;convert to ascii

CMPA #$39

BLE OUTA ;jump if 0-9

ADDA #$07 ;convert to hex A-F

OUTA JSR OutChar ;output character

RTS

*<

**

* InByt - reads two ascii numbers and converts them to hex,

* returns them in TEMP + 1, shifting TEMP+1 to TEMP

* Uses buffalo function HEXBIN (modified)

*

**

*>

InByt
JSR

InChar

JSR

HEXBIN

JSR

InChar

JSR
HEXBIN

RTS

*<

* HEXBIN(a) - Convert the ASCII character in a

* to binary and shift into TEMP1. Assumes correct hex input

*>

HEXBIN
PSHA

PSHB

PSHX

JSR
UPCASE

; convert to upper case

CMPA
#'0'

BLT
HEXRTS

; jump if a < $30

CMPA
#'9'

BLE
HEXNMB

; jump if 0-9

CMPA
#'A'

BLT
HEXRTS

; jump if $39> a <$41

CMPA
#'F'

BGT
HEXRTS

; jump if a > $46

ADDA
#$9

; convert $A-$F

HEXNMB
ANDA
#$0F

; convert to binary

LDX
#TEMP1

LDAB
#4

HEXSHFT ASL
1,X

; 2 byte shift through

ROL
0,X

; carry bit

DECB

BGT
HEXSHFT

; shift 4 times

ORAA
1,X

STAA
1,X

HEXRTS
PULX

PULB

PULA

RTS

*<

* UPCASE(a) - If the contents of A is alpha,

* returns a converted to uppercase.

*>

UPCASE
 CMPA #'a'

 BLT UPCASE1
 jump if < a

 CMPA #'z'

 BGT UPCASE1
 jump if > z

 SUBA #$20
 convert

UPCASE1 RTS

Figure 5 IR readings on different surfaces

� EMBED Excel.Sheet.8 ���

Table 2 IR levels and their meanings

0000�
�
�
�
Bad reading�
�
0001�
�
�
�
Low reading, nothing ahead�
�
0010�
�
�
�
High reading, possible obstruction�
�
0100�
�
�
�
Saturated�
�
1000�
�
�

Table 1 Servo specifications

Torque�
49 oz/in @ 6V� HYPERLINK mailto:oz/in@6V ����
�
Speed�
60deg in .17 sec @ 6V�
�
Weight�
1.6 oz�
�
Size�
1.6 x 0.8 x 1.4”�
�

Figure 4 Software Structure

Control2

Walk

Generator

PWM

Generator

Control1

Foot sensors

Whiskers

IR sensor

Figure 3 Foot design

� EMBED AutoCAD.Drawing.14 ���

Figure 1 2DOF of the legs

Figure 2 Leg design

Not So Evil Bug

Six Legged Walker

Intelligent Machines Design Lab

Final Report

Spring 1998

- 5 -

_955445783.xls
Chart1

		1		1		1		1

		2		2		2		2

		4		4		4		4

		6		6		6		6

		8		8		8		8

		10		10		10		10

		12		12		12		12

		16		16		16		16

		20		20		20		20

		24		24		24		24

		28		28		28		28

		32		32		32		32

		36		36		36		36

ldark

llight

rdark

rlight

distance (in)

analog reading

IR sensor test

129

128

131

130

128

128

130

130

122

128

124

130

115

128

119

130

110

128

114

130

106

128

111

130

100

127

104

128

98

121

100

122

96

113

98

113

96

107

97

108

96

103

97

104

96

101

97

102

96

99

97

100

Sheet1

		Distance		ldark		llight		rdark		rlight

		1		129		128		131		130

		2		128		128		130		130

		4		122		128		124		130

		6		115		128		119		130

		8		110		128		114		130

		10		106		128		111		130

		12		100		127		104		128

		16		98		121		100		122

		20		96		113		98		113

		24		96		107		97		108

		28		96		103		97		104

		32		96		101		97		102

		36		96		99		97		100

Sheet2

		

Sheet3

		

_955427520.dwg

