University of Florida

Department of Electrical Engineering

EEL 5934

Intelligent Machine Design Laboratory

Little Ranger

Land Mine Detection Robot

Daniel Kucik

Design Proposal

With all of the media coverage on the land mine problem that many parts of the world are experiencing today, as well as the fact that over 800 lives are taken every month from mines, I have decided to design an autonomous land mine sweeper named “Safety Sweep”. It will do a controlled search pattern while using an onboard land mine detection device to search for the buried mines. Once a mine has been detected, it will mark it for later removal, or at the very least, civilians will see the markers and know that the area is not safe.

For this project Motorola’s 68HC11 will be used in conjunction with their 68HC12. The 68HC11 will be used to control basic robot functions (motor control, sensor interpretation, etc.). The 68HC12 will be used to control the land mine detector and to control the device used to mark mines as they are found.

The platform for the robot will have to be larger than normal to support the detector. Additionally, it will have to have the capability to move through rough terrain and must be able to withstand harsh weather conditions.

The sensor suite will include standard bump and collision sensors, such as proximity and contact sensors. Some additional sensors that will be used include position and velocity sensors, which are needed to help maintain the controlled search pattern.

I am currently searching for an accurate, reliable land mine detector that is compact enough to be used on the robot. Currently though, my research has only turned up detectors that are mounted to full-size vehicles. I will continue the search until an appropriate detector can be found. Once a detector has been found I will be able to design the platform and determine what motors/actuation devices are required.

Current Status

Part: Platform

Status:

Complete

Description:
The platform is made of 12"x1" planks. Its overall dimensions are

26"x12" which does not include the arms. The electronics

compartment is 19"x11", and it houses all of the electronics and

batteries.

The servos and the six inch lawn mower wheels that provide

motion are hacked and attached to the body.

The points of attachment for the arms are in place.

Part: Primary Sensor

Status:

Obtained March 25, 1998

Description:
The mine detector was received and its signals have been analyzed.

The circuitry to interface the mine detector's electronics to the

EVBU has been built. Currently the detector is not attached to the

platform.

Part: Obstacle Avoidance Sensors

Status:

Approximately 95% complete

Description:
There are currently eleven infrared detectors/LED's wired-up and

attached to the platform. Five bump sensors are also in wired and

attached.

Need to attach I/R and bump sensors to the search head

Part: Arms

Status:

Complete

Description:
The arm that supports the search head is complete. It was built

using 1" PVC piping.

The arm and assembly for the spray paint was built out of PVC, and the actuator is a hacked standard Ford solenoid.

Part: Code

Status:

1% Complete

Description:
The code for controlling 3 servos and accessing the expanded ports

is done. But, besides that no other coding is complete.

Part: Electronics

Status:

99% Complete

Description:
The ME11 is complete and it works. Port E has been expanded

and a digital output has been added. The interface between the

EVBU and the detector has been designed and built. The control

circuitry for the spray paint actuator has been completed. All components have been tested, and they work. But they just need to be wired-up.

Encountered Delays

1) Researched companies that produced land mine detectors and sent proposals in an attempt to have a unit donated.

2) On February 10th it looked like I was not going to have a detector donated, so I switched over to "Guard Dog" idea.

Built platform

Had actuation working

3) On February 20th I received an e-mail stating that Schiebel Instruments was going to donated their AN-19/2 Detector. I spoke with Dr. Arroyo, and he encouraged me to return to the land mine detection robot They were going to ship it from Austria at the end of the month. So, I was now 1.5 months behind.

4) The shipment was held by customs for several weeks. I finally received the unit on March 25th.

5) Attempting to obtain information on the dimensions/requirements of the electrons for the electronics of the detector so that the platform could be built before receiving the detector.

6) The arm for the detection head had to be redesigned/rebuilt once the detector was received because it was too sensitive, so it was detecting the metal on/inside of the platform.

7) The arm had to be redesigned and built again because it was too heavy for the servo to support.

Code

3servo.c

/**/

/* */

/* "twoservo.c" for the 6.270 'bot */

/* servo support code for two servos */

/* second servo hooked up in place of the beeper */

/* must be used with "NOBEEP" pcode */

/* by Anne Wright */

/* Sat Jan 11, 1993 */

/* */

/* Dan Kucik */

/* Added 3rd Servo */

/**/

/* these were chosen experimentally...*/

int MIN_SERVO_WAVETIME = 1400; /* was 1400 */

int MAX_SERVO_WAVETIME = 4680; /* was 4680 */

int SERVO_RANGE = (MAX_SERVO_WAVETIME-MIN_SERVO_WAVETIME);

float rexcursion = 3.14159;

float dexcursion = 180.0;

void servo_on()

{

 asm_servo_on(0);

}

void servo_off()

{

 asm_servo_off(0);

}

/**/

/* Servo movement commands */

int servo1(int period) /* argument in clock cycles of pulse, moves servo */

{

 if(period>MAX_SERVO_WAVETIME)

 return (servo_pulse_wavetime1=MAX_SERVO_WAVETIME);

 else if(period<MIN_SERVO_WAVETIME)

 return (servo_pulse_wavetime1=MIN_SERVO_WAVETIME);

 else

 return(servo_pulse_wavetime1=period);

}

int servo_rad1(float angle) /* argument in radians, moves servo */

{

 return servo1(radian_to_pulse(angle));

}

int servo_deg1(float angle) /* argument in degrees, moves servo */

{

 return servo1(degree_to_pulse(angle));

}

int servo2(int period) /* argument in clock cycles of pulse, moves servo */

{

 if(period>MAX_SERVO_WAVETIME)

 return (servo_pulse_wavetime2=MAX_SERVO_WAVETIME);

 else if(period<MIN_SERVO_WAVETIME)

 return (servo_pulse_wavetime2=MIN_SERVO_WAVETIME);

 else

 return(servo_pulse_wavetime2=period);

}

int servo_rad2(float angle) /* argument in radians, moves servo */

{

 return servo2(radian_to_pulse(angle));

}

int servo_deg2(float angle) /* argument in degrees, moves servo */

{

 return servo2(degree_to_pulse(angle));

}

int servo3(int period) /* argument in clock cycles of pulse, moves servo */

{

 if(period>MAX_SERVO_WAVETIME)

 return (servo_pulse_wavetime3=MAX_SERVO_WAVETIME);

 else if(period<MIN_SERVO_WAVETIME)

 return (servo_pulse_wavetime3=MIN_SERVO_WAVETIME);

 else

 return(servo_pulse_wavetime3=period);

}

int servo_rad3(float angle) /* argument in radians, moves servo */

{

 return servo3(radian_to_pulse(angle));

}

int servo_deg3(float angle) /* argument in degrees, moves servo */

{

 return servo3(degree_to_pulse(angle));

}

/**/

/* Pulse width calculations */

int radian_to_pulse(float angle) /* argument in radians, returns pulse width */

{

 return ((int)(angle*((float)SERVO_RANGE)/rexcursion)+MIN_SERVO_WAVETIME);

}

int degree_to_pulse(float angle) /* argument in degrees, returns pulse width */

{

 return ((int)((angle*((float)SERVO_RANGE))/dexcursion)+MIN_SERVO_WAVETIME);

}

3servo.asm

* icb file: "twoservo.asm"

*

* Anne Wright and PK Oberoi

* Sat Jan 12 05:12:13 1992

* Sun Jan 13 03:31:55 1992 added sweeping capabilities -- anarch

* Mon May 31 1993 added second servo channel -- anarch

BASE EQU $1000

PORTA EQU $00 ; Port A data register

CFORC EQU $0B ; Timer Compare Force Register

OC1M EQU $0C ; Output Compare 1 Mask register

OC1D EQU $0D ; Output Compare 1 Data register

* Two-Byte Registers (High,Low -- Use Load & Store Double to access)

TCNT EQU $0E ; Timer Count Register

TOC1 EQU $16 ; Timer Output Compare register 1

TOC2 EQU $18 ; Timer Output Compare register 2

TOC3 EQU $1A ; Timer Output Compare register 3

TOC4 EQU $1C ; Timer Output Compare register 4

TI4O5 EQU $1E ; Timer Input compare 4 or Output compare 5 register

TCTL1 EQU $20 ; Timer Control register 1

TCTL2 EQU $21 ; Timer Control register 2

TMSK1 EQU $22 ; main Timer interrupt Mask register 1

TFLG1 EQU $23 ; main Timer interrupt Flag register 1

TMSK2 EQU $24 ; misc Timer interrupt Mask register 2

TFLG2 EQU $25 ; misc Timer interrupt Flag register 2

PACTL EQU $26 ; Pulse Accumulator Control register

PACNT EQU $27 ; Pulse Accumulator Count register

OPTION EQU $39 ; system configuration Options

HPRIO EQU $3C ; Highest Priority Interrupt and misc.

INIT EQU $3D ; RAM and I/O Mapping Register

* Interrupt Vector locations

TOINT EQU $DE ; Timer Overflow

TOC5INT EQU $E0 ; Timer Output Compare 5

TOC4INT EQU $E2 ; Timer Output Compare 4

TOC3INT EQU $E4 ; Timer Output Compare 3

TOC2INT EQU $E6 ; Timer Output Compare 2

TOC1INT EQU $E8 ; Timer Output Compare 1

RTIINT EQU $F0 ; Real Time Interrupt

* End of register equ's *

* program equates

REPEAT_PERIOD EQU 20 /* number of interrupts between pulses */

ORG MAIN_START

* variables

/* C variables */

variable_servo_pulse_wavetime1 FDB 3000

variable_servo_pulse_wavetime2 FDB 3000

variable_servo_pulse_wavetime3 FDB 3000

variable_servo_enable FDB 0

/* internal variable */

servo_count FCB 0

subroutine_initialize_module:

* Start of LDXIBASE.asm *

* Included in this file to resolve an assembler linking problem *

* File "ldxibase.asm"

*

* Fred Martin Thu Oct 10 19:49:38 1991

*

*

* The following code loads the X register with a base pointer to

* the 6811 interrupt vectors: $FF00 if the 6811 is in normal mode,

* and $BF00 if the 6811 is in special mode.

*

* The file "6811regs.asm" must be loaded first for this to work.

*

*

LDAA HPRIO

ANDA #$40 ; test SMOD bit

BNE *+7

LDX #$FF00 ; normal mode interrupts

BRA *+5

LDX #$BF00 ; special mode interrupts

* End of ldxibase.asm *

* X now has base pointer to interrupt vectors ($FF00 or $BF00)

* get current vector; poke such that when we finish, we go there

LDD TOC4INT,X ; SystemInt on TOC4

STD interrupt_code_exit+1

* setup interrupt service routine as interrupt_code_start for OC4

LDD #interrupt_code_start

STD TOC4INT,X

LDX #BASE

* set up A7 for output

BSET PACTL,X $80 *Set A7 as output

BSET OC1M,X $80 *set OC1 to control A7

* set up A3 for output

BSET TCTL1,X $2 * \

BCLR TCTL1,X $1 * --clear OC5 output line to zero

* setup A5 for output

BSET TCTL1,X %00100000 * \

BCLR TCTL1,X %00010000 * --clear OC3 output line to zero

*initialize Servo Parameters

LDD #3000

STD variable_servo_pulse_wavetime1 /* Initialize servo 1

LDD #3000

STD variable_servo_pulse_wavetime2 /* Initialize servo 2

period to 2000 */

LDD #3000

STD variable_servo_pulse_wavetime3 /* Initialize servo 1

* fall through to servo_off subroutine

/**/

subroutine_asm_servo_off:

LDX #BASE

LDD #0

STD variable_servo_enable /* disable servo */

BCLR OC1D,X $80 /* set OC1 to clear on match */

BSET TCTL1,X $02 /* set OC5 to clear on match */

BSET TCTL1,X %00100000 /* set OC3 to clear on match */

BCLR TCTL1,X %00010000 /* set OC3 to clear on match */

RTS

/**/

/**/

subroutine_asm_servo_on:

LDX #BASE

LDD #1 /* load 1 into D */

STD variable_servo_enable /* enable servo */

LDAA #REPEAT_PERIOD /* Reset Cycle Counter */

STAA servo_count

RTS

interrupt_code_start:

LDD variable_servo_enable /* check if servo is on */

BEQ interrupt_code_exit

LDAA servo_count /* check if at beginning of cycle */

BEQ SetPulse

ADDA #-1 /* No: decrement cycle counter */

STAA servo_count

BRA interrupt_code_exit

SetPulse:

LDX #BASE

* set up for servo 1

LDD TCNT,X /* Get current timer counts */

ADDD variable_servo_pulse_wavetime1 /* Add the servo period and */

STD TOC1,X /* Place in TOC1 */

LDD TCNT,X /* Get current timer counts */

ADDD variable_servo_pulse_wavetime3 /* Add the servo period and */

STD TOC3,X /* Place in TOC3 */

 BSET TCTL1,X $30 *--setup so that sets on next match

BSET OC1D,X $80 /* set OC1 to set on match */

 BSET CFORC,X $A0 /* force a match now */

BCLR OC1D,X $80 /* set OC1 to clear on match */

BCLR TCTL1,X $10 * clear on next match

BCLR TFLG1,X $20 * clear oc3 flag

* set up for servo 2

BCLR TCTL1,X $02 /* disconnect interrupt from pin */

BSET PORTA,X $08 /* set the pin */

BSET TCTL1,X $02 /* set interrupt to reset pin */

LDD TCNT,X /* Get current timer counts */

ADDD variable_servo_pulse_wavetime2 /* Add the servo period and */

STD TI4O5,X /* Place in TOC1 */

BCLR TFLG1,X $08

LDAA #REPEAT_PERIOD /* Reset Cycle Counter */

STAA servo_count

interrupt_code_exit:

JMP $0000 ; this value poked in by init routine

analog.c

/* ++ */

/* Analog Access Routines */

/* */

/* Written by: Daniel Kucik */

/* Original Creation: 3/22/98 */

/* Version: 1.0 Tested 3/22/98 */

/* Modifications: */

/* */

/* The following routines are used to access the multiplexed analog */

/* inputs and the remaining on-board (EVBU) analog ports. */

/* */

/* For use on the Motorola 68HC11 EVBU board with the analog expansion */

/* described on page 17 of the Talrik Assembly Manual (using $4000 (pin */

/* 53 on header P4 of EVBU -- brought back to header by ME11 board) as */

/* the clock for the 74HC574 (latch)). */

/* */

/* Use: analog?(); -- accesses MUX? described in the Talrik MRSX01 */

/* circuit diagram. */

/* analog24() through analog29() access the remaining analog ports */

/* that are available on the EVBU after the expansion. */

/* ++ */

/* Start of routines for MUX 1 (chip U1 in diagram) (Analogs 0-7) */

int analog0()

{

poke(0x4000,0b00010000);

return analog(1);

}

int analog1()

{

poke(0x4000,0b00010001);

return analog(1);

}

int analog2()

{

poke(0x4000,0b00010010);

return analog(1);

}

int analog3()

{

poke(0x4000,0b00010011);

return analog(1);

}

int analog4()

{

poke(0x4000,0b00010100);

return analog(1);

}

int analog5()

{

poke(0x4000,0b00010101);

return analog(1);

}

int analog6()

{

poke(0x4000,0b00010110);

return analog(1);

}

int analog7()

{

poke(0x4000,0b00010111);

return analog(1);

}

/* Start of routines for MUX 2 (chip U3 in diagram) (Analogs 8-15) */

int analog8()

{

poke(0x4000,0b00001000);

return analog(2);

}

int analog9()

{

poke(0x4000,0b00001001);

return analog(2);

}

int analog10()

{

poke(0x4000,0b00001010);

return analog(2);

}

int analog11()

{

poke(0x4000,0b00001011);

return analog(2);

}

int analog12()

{

poke(0x4000,0b00001100);

return analog(2);

}

int analog13()

{

poke(0x4000,0b00001101);

return analog(2);

}

int analog14()

{

poke(0x4000,0b00001110);

return analog(2);

}

int analog15()

{

poke(0x4000,0b00001111);

return analog(2);

}

/* Start of routines for MUX 3 (chip U4 in diagram) (Analogs 16-23) */

int analog16()

{

poke(0x4000,0b00010000);

return analog(3);

}

int analog17()

{

poke(0x4000,0b00010001);

return analog(3);

}

int analog18()

{

poke(0x4000,0b00010010);

return analog(3);

}

int analog19()

{

poke(0x4000,0b00010011);

return analog(3);

}

int analog20()

{

poke(0x4000,0b00010100);

return analog(3);

}

int analog21()

{

poke(0x4000,0b00010101);

return analog(3);

}

int analog22()

{

poke(0x4000,0b00010110);

return analog(3);

}

int analog23()

{

poke(0x4000,0b00010111);

return analog(3);

}

/* ++ */

/* End of Analog Access Routines */

/* ++ */

