PROJECT: ODIN AND WOBBLEHEAD

Origin Detect and Intelligent Navigation Robot and the
Intelligent and Dynamic Charging Station

Michael Apodaca
University of Florida
Department of Electrical and Computer Engineering
EEL 5666
Intelligent Machine Design Laboratory
Dr. Antonio Arroyo

ABSTRACT

EXECUTIVE SUMMARY

INTRODUCTION

INTEGRATED SYSTEM

MOBILE PLATFORM

ACTUATION

SENSORS

BEHAVIORS

CONCLUSION

APPENDICES

TABLE OF CONTENTS

11

12

13

ABSTRACT

Odin is a six-wheeled robot that is designed to handle climbing of small obstacles and
avoidance of large obstacles. WobbleHead is the charging station that allows Odin to charge
his batteries when they become low. WobbleHead is a cylindrical shaped and axial actuated
charging station. Both WobbleHead and Odin actuate themselves to line up their charge jacks
for docking.

EXECUTIVE SUMMARY

The purpose of this project is to design and build a dynamic solution to a charging station. The
godl is an actuated charging station that rotates itself to orient its charge jack to point towards a
docking robot which also orients itself to line up with the docking station.

Odin is a six-wheeled robot designed around the Mekatronix MRC11 and MRSXO01 boards.
The robot is designed to handle climbing of small obstacles and avoidance of large obstacles.
Infrared Red (IR) sensors will be used to detect which obstacles are passable. Odin’'s behaviors
are to avoid obstacles it finds too large to climb, react to bumping into objects, find the
charging station, and dock with the charging station.

WobbleHead is the charging station that allows Odin to charge his batteries when they become
low. WobbleHead is a cylindrical shaped and axial actuated charging station designed around
the Mekatronix MSCC11 board. WobbleHead detects and tracks Odin using sonar and IR
sensors. The behavior of WobbleHead is to orient his charge jack to point towards Odin as
Odin navigates around the room and as Odin docks.

Odin was successful in avoiding obstacles while in all states of the motors. Odin was
successful in finding the IR emitters of WobbleHead and driving toward them. WobbleHead
was successful in finding the location of Odin with sonar. Odin and WobbleHead did not
successfully dock. WobbleHead was unable to actuate the motors accurately or use the IR
receivers to align with the charge jack of Odin. Odin was not able to make the small
adjustments necessary for a successful dock. Ideally, Odin should have the ability to determine
the distance to the docking station. This would enable Odin to know to make smal
adjustments when near WobbleHead. WobbleHead should have more IR receivers to
accurately determine actuation at close range. However, the project successfully demonstrated
the potential of using a charging station that could dynamically change its orientation to the
charging robot.

INTRODUCTION

The purpose of this project is to design and build a dynamic solution to a charging station. The
godl is an actuated charging station that rotates itself to orient its charge jack to point towards a
docking robot which also orients itself to line up with the docking station.

Odin is a six-wheeled robot designed around the Mekatronix MRC11 and MRSXO01 boards.
The robot is designed to handle climbing of small obstacles and avoidance of large obstacles.
Infrared Red (IR) sensors will be used to detect which obstacles are passable. Odin’'s behaviors
are to avoid obstacles it finds too large to climb, react to bumping into objects, find the
charging station, and dock with the charging station.

WobbleHead is the charging station that allows Odin to charge his batteries when they become
low. WobbleHead is a cylindrical shaped and axial actuated charging station designed around
the Mekatronix MSCC11 board. WobbleHead detects and tracks Odin using sonar and IR
sensors. The behavior of WobbleHead is to orient his charge jack to point towards Odin as
Odin navigates around the room and as Odin docks.

INTEGRATED SYSTEM

Odin uses the Mekatronix MRC11 and MRSXOL1 circuit boards. The MRC11 has a Motorola
68HC11 microcontroller with 64 KB of external SRAM. The MRSXO0L1 is a sensor expansion
circuit board for the MRC11. The MRSXO01 has all the circuitry used to control the 12 IR
emitters, and read the 10 IR detectors, 12 bump sensors, battery voltage detector, and charge
detector. | had to expand the motor controller circuitry since the MRSXO0L1 only controls two
motors. All three motors on each side are controlled by the same signal and therefore turn at
the same speed and direction. Odin also includes a sonar transmitter circuit board that is
currently not controlled by the microcontroller. However, there is a control pin on the board
that can be used to enable or disable the transmitter.

Odin reads al his analog sensors and then converts them to digital values. Odin then
determines if he has either bumped into a wall or detected an obstacle with his IR. Odin then
arbitrates the motor controls from these algorithms and the state of the battery’s charge. If the
battery is low then he begins the docking procedure. First, he finds the WobbleHead and points
his charge in the direction he found WobbleHead. Second, he begins to follow the IR from
WobbleHead until he docks. Otherwise, if the battery is not low, Odin will continue avoid
obstacles. Figure 1 shows a block diagram of this system.

_—

Read Sensors

v

{}

Object_Detect

N

Avoid_
Obstacle

Arbitrate

Follow_Dock

<}

Motor O
Motor 1

WobbleHead uses the Mekatronix MSCC11 circuit board. The MSCC11 has a MotorolaHC11
microcontroller with on-board 2KB of EEPROM and 256 bytes of RAM. This board has
connectors that allow direct connections to the digital 1/0O ports, analog ports, and control pins
of the processor. WobbleHead has three IR emitters and two IR detectors connected to the

-
-

Object_Detect

Motor O
Motor 1

Arbitrator

—
—
-

Read Sensors

Figure 1: Block Diagram of Odin Software System

MSCC11. He dso hasthree sonar detectors and one motor controller board.

WobbleHead polls the sonar boards until he reads a detection from one of the sonar boards.
This determines which board detected the sonar first. WobbleHead then turns its motor if the
detection did not originate from the front. Otherwise, he uses his IR detectors to line up with

Odin.

MOBILE PLATFORM

Odin is a six-wheeled, double-platform chassis. The platforms are approximately 2 inches
apart, while the wheels will be 4 inches high. The large wheels will allow Odin to climb small

obstacles and the six-wheel design should help climbing non-inclined objects. Figure 2 below
shows the basic orientation of the chassis.

CIRCUIT
BOARDS

MOTORS

MOTORS

BATTERIES

Figure 2: Odin Mobile Platform

The chassis will be rectangular in shape, with the long sides in the front and rear. This will
help Odin make sharper turns then square designs. The wheels will also be overlapped to both
shorten the overall length of the chassis and support the middle of the chassis from protruding
obstacles while climbing. The outer wheels will not be enclosed by the both so they can better
climb objects.

Both the front and rear of the body will be the same. Thiswill allow Odin to drive forward and
reverse exactly the same. The front panel of the chassis will have the Download/Run, Power
On/Power Save, and Reset switches. The rear panel will have the charge jack. This will allow
Odin to charge itself in its docking station.

| originally intended the robot to run while upside down. However, the first platform | built
was too small for all my circuit boards and batteries to fit inside, so | increased the height of the
platform. This made the chassis too tall to run while upside down due solely to the IR emitter
mounts. A third design of the upper platform can easily alleviate this problem.

WobbleHead is a cylindrical platform that turns about its vertical axis. The charge jack
protrudes from the cylinder horizontally. Figure 3 shows a basic representation of the charging
station. WobbleHead can face any direction, thus changing the orientation of its charge jack to
the docking robot. The only difficulty with the platform is the size and weight. The small, 3-
inch radius | used made it difficult to separate the IR detectors enough to detect from which
direction the IR signal of Odin was originating. Also, | needed more weight and surface area
on the floor platform to deter WobbleHead from diding when Odin begins to dock. | have used
a rubber mat on the bottom surface to prevent diding, but there is not enough weight on the
lower plate to take advantage of the rubber surface.

Figure 3: WobbleHead Platform

ACTUATION

Gearhead DC motors will control the six wheels of Odin. The DC motors are actually hacked
servomotors used for the gears included in the servo package. There was no need to use high
torque motors or high speed motors for this application. The motors used were MS455 dudl
ball bearing standard servomotors with 42 oz.-in. torque. | aso used 4-inch Du-Bro 400RV
inflatable wheels. These give Odin shock absorption and greater contact surface with the floor.

The MRSXO01 expansion circuit board has only circuitry to control two DC motors. Therefore,
| had to expand the circuitry to control al six motors. | removed the L293 Quad Half-H Motor
Driver from the MRSXO01 and built a circuit board with three L293's in parallel. | then used
the control signals from the MRSXO01to control the motor drivers. Appendix A1l shows this
circuitry.

All six motors are not independent. Bit 6 of Port C (Motor0) from the HC11 controls the
direction of the three left motors and bit 7 of Port C (Motorl) controls the right motors. Bit 5
of Port A outputs a pulse-width-modulated signal that controls the speed of the left motors and
bit 6 of Port A controls the speed of the right motors. Appendix B3 shows the motor software
drivers used for controlling the motors.

A gearhead DC motor will control the spinning of WobbleHead. This motor is also a hacked
MSA55. A better motor would be a stepping motor since it is much more accurate to control.
However, stepper motors do not have enough torque to drive the amount of weight of
WobbleHead.

| used the same circuitry for this motor that | used for Odin. The circuit diagram is shown
below in Figure 4. The direction control bit is connected to Bit O of Port B. The enable control
bit is connected to Bit 1 of Port B. The motor driver software is included in * WobbleHead.C”
shown in Appendix B2. The motor drivers control the control bits directly. The enable is
toggled with 50% pulse-width-modulation at al times, so no speed control isimplemented.

+12V +E5% o d
. roun

BATT VCC —II
MC74HCO4
Direction EEiti[>1:\E , L2934 @

[

1 la 17 c |
s o Enahle Blt? 1,ZEN 27

Vot yppy G [gGround
BATT 2| yppp OUD [poround
GND —Ground
1 GND L3 round

5| 14 11

icl 1,ZEN 17 12

— 24 2Y —

Figure 4. WobbleHead Motor Circuitry

SENSORS

Odin uses 10 Sharp GP1US8Y 40KHz IR Receivers in conjunction with 14 IR emitters
modulated at 40KHz to detect objects in front, rear, and on the side of the chassis. The Sharp
IR detectors are hacked to output an analog signal using a technique supplied by IMDL. The
technique is shown below in Figure 5, copied from the Mekatronix®O Talrik" Assemble
Manual.

Sharp GPIUISE_

| Cuf thic trace.
SoMer wire from Soler 0L
here to oupnpin to fhe gromd
pad pit and to the
cide of the case.

Fignre 11 Cormeerting o digital TR sencor to an atalog IE cencor mequires Omting the trace to fhe Ohapat pin,
solderizthe Grdpin tothe side of the cace ahd conpecting the owpatt of the 0.1 |f capacitor tothe Chatput pin.

Figure 5: Analog Hack of Sharp GP1U58Y 40KHz IR Receivers

Odin uses 12 SWPBMT100 Momentary Tactile Switches as bump sensors on both the top and
bottom plates to detect objects that are too high for the chassis to clear, objects the wheels did
not climb over, and objects not detected by the IR sensors.

Odin aso uses a 40KHz Sonar Transmitter for transmitting sonar to WobbleHead. The circuit
for the sonar transmitter is shown below in Figure 6. This circuit was able to send a signal
approximately 25 feet through air. This was ideal for long range detection of Odin by the
sonar receivers on WobbleHead. A circuit diagram in Appendix A2 shows a circuit for
generating the 40KHz signal from a4 MHz crystal oscillator.

+12V Audin Transformr

T " c—ﬂj
'f: 40FH=z Transducer

2s
ol]
1 KOhu & Obhm

10K
40 FHz 3ignal —AN—— ZN=222 NP

1

Figure 6: Sonar Transmitter Circuit

WobbleHead also uses three sonar receivers to detect the location of Odin at long range. The
circuit for the sonar receiver is shown below in Figure 7. The output of this circuit is an active
low pulse-width-modulated signal, where the length of the low pulse corresponds to the length
between the receiver and transmitter.

+5%

+5V

T.

WCC

+5V
Digital Output

15 K Putj

GR.OTHD

1

+
1 MAXZEEE - T—
15K NC—ZLpa Im’z? dA0FHz Transducer
—FFa LEb AT 15K .
NC—4 0UTa EFb——
[I/HF/AFa N/HE/APb =S
1.5E NC—pA INa Flz—:‘ﬂ:l: 1.5K
—[Ha F3-_GROUND +j§i’
ZFla 51h
VCC—Zfa/b 0sc DUTZ—éGanm
VI,\;IEl_U‘Cp]:K ot G,\NE 13 4, 7uf| Tantalum
GRDUNDi—éFS FD%GRDUI\]D 4. 7K %;
GROUNDT 4 F2ZvCe =
14CLKa 04 EIUThﬁWNC + 0.1uF|Ceramic 0.luF|Ceramic
E-Clock (ZMHz] LLED 04 INb—HC 4.7K
4.?u/'E'—J:'I'\antalum/—J:\

Figure 7: Sonar Receiver Circuit

WobbleHead uses two hacked Sharp IR receivers and three IR emitters to align with Odin at
closerange. The IR receivers detect the IR emitters of Odin and the IR emitters are used so the
IR receivers of Odin can detect WobbleHead.

| was supplied the circuits for the sonar from a design used by IMDL. However, the circuit |

received had several errors, which | corrected. First, the circuit | used included the circuitry for

generating the 40KHz signal into the sonar transmitter, shown in Appendix A2. The 74HC74

D flip-flop was wired incorrectly. The D input, pin 2, was wired to the Q output, pin 5, and

VCC. Instead, the D input needed to be connected only to the /Q output, pin 6, so the flip-flop
10

would act as a toggle flip-flop. Second, the 74HC390 counter was missing a signal to the
second stage clear bit, pin 14. This pin was left floating and | determined it was originally
connected to the microcontroller for an enable/disable control of the sonar transmitter. |
instead tied the signal to ground, thus always enabling the transmitter. Third, the 2N222
transistor was wired backwards. | simply rewired the transistor as seen in the Appendix A2.

The receiver circuitry also had two errors. First, V™ of the MAX266 programmable active filter
was left floating and GND was wired to both the system ground and biased at V™. Instead, |
connected V™ to system ground and | biased GND at V" only. Second, the ground input to
the 15K potentiometer was left floating. | wired it to ground.

BEHAVIORS

11

Odin has four behaviors. Avoid Obstacle, Object Detect, Find Dock, and Follow Dock. The
code for these behaviors is shown in Appendix B1. Since Odin is a rectangular platform, it is
necessary to reverse the motors to escape obstacles. Therefore, it is important Odin reacts to
obstacles it finds while in reverse. | therefore implemented three motor states, “DRIVE’,
“PARK”, and “REVERSE”, which the behaviors must use to send the correct reaction to the
motors.

Avoid Obstacle uses the IR receivers to determine where obstacles are around Odin. It also
uses the current state of the motors to determine the next state of the motors. When an obstacle
is detected it enables the “ir_detect” bit that the arbitrator uses to enable the motor controls set
by the process. Those motor controls are “ir_gear”, the next state of the motors, and
“new_left_motor” and “new_right_motor”, the turning control of the motors.

Object Detect uses the bump sensors to determine if Odin has run into an object. If so, the
process sets the next state of the motors with “new_gear” based on the current state of the
motors. Then the process sets the “bump” bit, which tells the arbitrator that a bump was
detected.

Find Dock is a simple behavior that puts Odin in a spin with the IR emitters turned off, looking
for the IR emitters on WobbleHead. It continues the spin until the IR detection is directly
behind Odin, where the charge jack is located. This behavior needs to be revised so it first
moves Odin away from any obstacles it may currently be near.

Follow Dock uses the IR detection found by Find Dock to drive towards WobbleHead in
reverse and keeps the IR detection of WobbleHead in the center of its rear receivers. It set the
“ir_detect” bit and uses “new_left_motor” and “new_right_motor” to control the motors via the
arbitrator. This behavior only works if there are no obstacles between Odin and WobbleHead.

WobbleHead has two behaviors: Follow Sonar and Follow IR. The code for these behaviors is
shown in Appendix B2. WobbleHead sole task is to find Odin and point his IR emitters toward
Odin, so when Odin’s charge gets low and Odin looks for WobbleHead, Odin will be able to
detect WobbleHead' s IR emitters. Follow Sonar and Follow IR are not explicitly defined in the
WobbleHead code.

Follow Sonar polls the sonar detectors for a detection. When a detection is found, the process
turns the motors such that the front of WobbleHead faces the origin of the detection, unless the

sonar originated from the front of WobbleHead aready. Then, Follow Sonar allows Follow IR
to control the motors.

Follow IR uses the IR receivers to aign the charge jack on WobbleHead with the charge jack
on Odin. This behavior does not work correctly because the IR receivers are too close together
to detect a difference in intensity of the IR signal. Ideally, two more IR receivers should be
added to WobbleHead, one on each side of the present two, with a greater length between them.
This behavior would then function properly.

CONCLUSION

12

Odin was successful in avoiding obstacles while in all states of the motors. Odin was
successful in finding the IR emitters of WobbleHead and driving toward them. WobbleHead
was successful in finding the location of Odin with sonar. Odin and WobbleHead did not
successfully dock. WobbleHead was unable to actuate the motors accurately or use the IR
receivers to align with the charge jack of Odin. Odin was not able to make the small
adjustments necessary for a successful dock. Ideally, Odin should have the ability to determine
the distance to the docking station. This would enable Odin to know to make smal
adjustments when near WobbleHead. WobbleHead should have more IR receivers to
accurately determine actuation at close range. However, the project successfully demonstrated
the potential of using a charging station that could dynamically change its orientation to the
charging robot.

APPENDIX A: CIRCUITRY

Al: Motor Driver Circuitry

+1i% +5% rroand
E&TT s)
MC 7 4O 0 4
MOTORD 3] LEFT_HOTOE &

X
T

FI."

-

[r=

L

g
[
=i
1

1 B
PP-ET 1.iEM ¥

5

i P fromd
1}“]% VL1 " —E-E i-:rl:n'ud
FATT -2 KD
o 12
MOTORL 11 10 txn Piroamad
— . P F T BIGHT MOTOE &

g 11
PAE —
{5]1-EEH 1Y

v
Bk
8

LEFT MOTOE B
- L& 17 |
P-‘-ET 1.,£EH ¥
12 4
16 —Irronmd
L T el il
BaTT-H yrezy 20 o0
MO (—lrroumd
1o cxn 36 round RIGHT MOTOE E
1a
g 11
P-‘-El? 1.4ER 1% 73

®.| _®._| _®J _®._| _®J _®J

Lidza LEFT MOTOE T
] 3
EV T L
T L& 17 |2
PP-ET 1,iEM ¥
iR 4
1g —{rronanid
Ve gppy ER—
EATT -2 ey O [o0
MO [—rroand
10 cxn P3rround RIGHT MOTOR T
1z
] 11
Pf'aﬂl? 14BN 1%

13

14

A2: E-Clock and 40K Hz signal Generation Circuitry

+57
N
Vo
» VCC
‘,& MC74HC 744
— 4MHz Oscillat
0. luF T~ z Oscillator zl, 8 DE—I-IC
1 4
He—) = 3 &
— - Cpo E-Clock (2MHz)
GROUHD _.T'
= VCC
2HE?4H|:39E| i . MCT4HC390 B
GROUND — LR o GROTHD - IR QA 40KHz Signal
1 QEFC 11
VCCLoLLEA e i 1% LKA o I
S L
E-Clock = 7 12 ER
ac CLEE D L LEE EES

APPENDIX B: SOFTWARE

B1: Odin Software

[* Title: dobal.c
Progranmer: M chael Apodaca
Date: April 23, 1998
Version: 1.5
Descri ption:
This file defines all global contants, gl obal
vari abl es, and function prototypes for the program

adin. c
*/
/* CONSTANTS */
#def i ne SENSORS *(unsi gned char *) OxFFB8 /* address of latch whi ch control s
anal og MJX */
#define IR *(unsi gned char *) OxFFB9 /* address of IR emtters */

#defi ne ON OxFF

#defi ne OFF 0x00

#define TRUE 1

#define FALSE O

#define | R THRESHOLD 106
#def i ne BUMP_THRESHOLD 10
#defi ne PARK 0O

#def i ne REVERSE - 70
#define DRI VE 70

#defi ne FAST 20

#define SLOW 30

#defi ne LOWNBATT 95
#def i ne CHARA NG 100

/* GLOBAL VARI ABLES */
char start[]={0x1b,'[',"'3",";',"'1,'H};

/* Read_Sensor */
int front |eft wheel;

int front_|eft_body;

int front_right_body;

int front_right_wheel;

int rear | eft wheel;

int rear_|left_body;

int rear_right_body;

int rear_right_wheel;

int side_right;

int side left;

int battery = 0;

int rear_bunp = 0;

int front_bump = O;

int charge = 0;

int sensor_mrror; /* mrrors SENSORS ($ffb8) since it's a read only
register */

/* Analog to Digital */

int detect front |eft wheel = FALSE;
int detect_front | eft_body = FALSE;
int detect_front_right_body = FALSE;
int detect_front_right_wheel = FALSE
int detect rear |eft wheel = FALSE;
int detect_rear_left_body = FALSE;
int detect_rear_right_body = FALSE;

15

int detect_rear_right_wheel = FALSE;
int detect_side_right = FALSE;

int detect _side |eft = FALSE;

int battery_| ow = FALSE;

i nt charging_batt = FASLE;

/* Cbject Detect */
i nt bunp = FALSE;
i nt new _gear = PARK;

/* Avoid _Cbstacle */

int ir_detect = FALSE;

int ir_gear = PARK

int new |eft nmotor = PARK;
int new right_notor = PARK;

/* Arbitrator */
i nt gear = PARK
int left nmotor = PARK;
int right_notor = PARK;

/* PROTOTYPES */

void Initialize();

voi d Read_Sensors(char);
voi d Di splay_Sensors();
void Analog_to Digital ();
voi d Avoi d_CObstacl e();
void Object_Detect();
void Arbitrator();

voi d Return_Hone();

voi d Fi nd_Dock();

voi d Fol | ow_Dock();

void Arbitrate();

[* Title: Ain.c
Progranmer: M chael Apodaca
Date: April 23, 1998
Version: 2.1
Descri ption:
Thi s program i npl ements (bstacl e Avoi dance and
Find Charging Station algorithns for CDIN. It
al so outputs all sensor values to Kermit/Term nal
*/
#i ncl ude <notor2l.h>
#i ncl ude <serial.c>
#i ncl ude <anal og. h>
#i ncl ude <vectors. h>
#i ncl ude "4 obal . c"

void main(){
Initialize();

whi I e(1){
Read_Sensors(QON);
Anal og_to_Digital ();
nj ect _Detect ();
Avoi d_Qost acl e();
Di spl ay_Sensors();

Arbitrator();
}

16

void Initialize(){

/*

voi d Read_Sensor s(char

/*

init_notors();
i nit_anal og();
init_serial();

Read Sensors reads all the sensor val ues used throughout the program*/

Set IRemtters on or off*/
IR = ir_val ue;

i r_val ue)({

/* read Battery and Bunpers while IR charges */

/*

17

CLEAR BI T(sensor_mrror, O0x1f);
SET_BI T(sensor_m rror, 0x10);
SENSORS = sensor_nirror

charge = anal og(0);
rear _bunmp = anal og(1);

CLEAR BI T(sensor_mrror, Ox1f);
SET_BI T(sensor_m rror, 0x11);
SENSORS = sensor_nirror

battery = anal og(0);
front _bunp = anal og(1);

read IR values */
CLEAR BI T(sensor_mrror, O0x1f);
SET_BI T(sensor_m rror, 0xO0f);
SENSORS = sensor_nirror

rear_right_wheel = anal og(2);
front _right_wheel = anal og(3);
rear _right_body = anal og(4);
front _| eft_wheel = anal og(5);
rear | eft _wheel = anal og(6);
rear | eft_body = anal og(7);

CLEAR BI T(sensor_mrror, Ox1f);

SET_BI T(sensor_m rror, 0x13);
SENSORS = sensor_nirror

side_right = anal og(0);

CLEAR BI T(sensor_mrror, Ox1f);
SET_BI T(sensor_m rror, 0x14);
SENSORS = sensor_nirror

front _right_body = anal og(0);
CLEAR BI T(sensor_mrror, O0x1f);
SET_BI T(sensor_m rror, 0x15);
SENSORS = sensor_nirror

front _| eft_body = anal og(0);

/*
/*

/*

/*
| RDT2
| RDT3

/*

/*
| RDT6

/*

/*

/*

| RDT1 */
*/
*/
| RDOT4 */
| RDOTS */
*/

| RDT8 */

| RDT9 */

| RDT10 */

CLEAR BI T(sensor_mrror, Ox1f);
SET_BI T(sensor_m rror, 0x16);
SENSORS = sensor_nirror

side_left = anal og(0); /* I RDT11 */

/* Display Sensors outputs the value of the sensors to a standard VT100
Term nal program */
voi d Display_Sensors(){
wite(start); /* Start at top of screen */

wite("Battery =");

put _int(battery);

put _char(11);

put _char (13);

wite("Charge = ");

put i nt(charge);

put _char(11);

put _char (13);

wite("Front Bunper = ");

put _int(front_bunp);

put _char(11);

put _char (13);

wite("Rear Bunper =");

put _int (rear_bunp);

put _char(11);

put _char (13);

wite("Front Left Weel =");
put _int(detect_front_|eft_wheel);
put _char(11);

put _char (13);

wite("Front Left Body = ");

put _int(detect_front_|eft_body);
put _char(11);

put _char (13);

wite("Front R ght Body = ");
put _int(detect_front_right_body);
put _char(11);

put _char (13);

wite("Front R ght Weel =");
put int(detect_front_right_wheel);
put _char(11);

put _char (13);

wite("Rear Left Wieel = ");

put _int(detect_rear_|eft_wheel);
put _char(11);

put _char (13);

wite("Rear Left Body = ");

put _int(detect_rear_|eft_body);
put _char(11);

put _char (13);

wite("Rear Right Body = ");

put _int(detect_rear_right_body);
put _char(11);

put _char (13);

wite("Rear R ght \Weel =");
put _int(detect_rear_right_wheel);
put _char(11);

18

/*

*/

put _char (13);

wite("Side Left =");

put _int(detect_side_left);
put _char(11);

put _char (13);

wite("Side Right =");

put _int(detect_side_right);
put _char(11);

put _char (13);

wite("Bunp Detect = ");
put _i nt (bunp);

put _char(11);

put _char (13);

wite("Bunp Gear = ");
put _i nt (new_gear);

put _char(11);

put _char (13);

wite("IR Detect = ");
put _int(ir_detect);

put _char(11);

put _char (13);

wite("IR Gear =");

put _int(ir_gear);

put _char(11);

put _char (13);

wite("IR Left Gear = ");
put _int(left_notor);

put _char(11);

put _char (13);

wite("IR Right Gear = ");
put _int(right_notor);

put _char(11);

put _char (13);
wite("Current Gear = ");
put _int(gear);

put _char(11);

put _char (13);

Analog to Digital converts all analog input values (0 to 255) to a
Digital value (True or False). This is used so future nodifications
of sensor logic can be easily inplenented. For exanple, this function
only uses the current sensor reading, however, in the future current
val ues may be conbi ned with previous val ues.

void Analog to Digital (){

19

if (rear_right_wheel > | R THRESHOLD)
detect _rear _right_wheel = TRUE
el se
detect _rear _right_wheel = FALSE

if (front_right_wheel > IR THRESHOLD)
detect _front_right_wheel = TRUE
el se
detect _front_right_wheel = FALSE

if (rear_right_body > | R_ THRESHOLD)
detect _rear _right_body = TRUE

el se
detect _rear _right_body = FALSE;

if (front_left_wheel > | R THRESHOLD)
detect front |eft wheel = TRUE;
el se
detect front |eft wheel = FALSE;

if (rear_left_wheel > IR THRESHOLD)
detect _rear | eft wheel = TRUE
el se
detect _rear_|eft _wheel = FALSE;

if (rear_left_body > I R THRESHOLD)
detect _rear_left_body = TRUE;
el se
detect _rear_left_body = FALSE;

if (side_right > | R THRESHOLD)
detect _side_right = TRUE
el se
detect _side_right = FALSE;

if (front_right_body > | R THRESHOLD)
detect _front_right_body = TRUE
el se
detect _front_right_body = FALSE;

if (front_left_body > | R THRESHOLD)
detect _front_| eft_body = TRUE
el se
detect _front_| eft_body = FALSE;

if (side_left > | R THRESHOLD)
detect _side |left = TRUE
el se
detect _side | eft = FALSE;

if (battery < LOWBATT)
battery_ | ow = TRUE;
el se
battery_| ow = FALSE;

if (charge > CHARG NG
char gi ng_batt = TRUE
el se
chargi ng_batt = FLASE

/* Cbject Detect determines if a bunmper was activated and then
sends the appropriate notor command to the arbitrator based
on the nmotors' current state.

*/
void Object_Detect(){
bunp = FALSE;
if ((gear == DRIVE) && (front_bunp > BUWP_THRESHOLD)) {
bunp = TRUE;

[* Shift Cears */
new _gear = REVERSE;

20

else if ((gear == REVERSE) && (rear_bunp > BUMP_THRESHCLD)) {
bunp = TRUE;
[* Shift Cears */
new _gear = DRI VE;

}

else if ((gear == PARK) && (rear_bunp > BUWP_THRESHOLD)) {
bunp = TRUE;
new _gear = DRI VE;

/* Avoid Cbstacle determ nes the appropriate notor reaction to the conbination
of the current state of the notors and the IR detector val ues
*/
voi d Avoi d_QObstacl e(){
i r_detect= FALSE;
if (gear == DRI VE){
if (detect _front_left_body || detect_front_right_body){
if (detect_front_|eft_wheel && detect_front_right_wheel){
ir_detect= TRUE;
/* Reverse direction and turn right */
i r_gear = REVERSE;
new | eft _nmotor = DRIVE - SLOW
new_ri ght _notor = REVERSE;

else if (detect_front_Ileft_wheel){
ir_detect= TRUE
/* Slow left and reverse right notors */
ir_gear = DRI VE;
new | eft _nmotor = DRIVE - SLOW
new_ri ght _notor = REVERSE;

else if (detect_front_right_wheel){
ir_detect= TRUE
/* Slow right and reverse left notors */
ir_gear = DRI VE
new | eft _notor = REVERSE;
new right_nmotor = DRIVE - SLOW

else if (detect_front_|left_body &% detect_front_right_body){
if (detect_side_right){
ir_detect= TRUE
/* Reverse direction and turn left */
i r_gear = REVERSE;
new | eft _notor = REVERSE;
new right_nmotor = DRIVE - SLOW

else if (detect_side_ left){
ir_detect= TRUE
/* Reverse direction and turn right */
i r_gear = REVERSE;
new | eft notor = DRIVE - SLOW
new_ri ght _notor = REVERSE;

el se {
ir_detect= TRUE
/* Spin around */
ir_gear = DRI VE;
new | eft _notor = REVERSE;
new ri ght _notor = DRI VE;

21

22

}

else if (detect_front_I|eft_wheel){
ir_detect= TRUE;
/* Slow left and reverse right notors */
ir_gear = DRI VE;
new | eft nmotor = DRIVE - SLOW
new_ri ght _notor = REVERSE;

}
else if (detect_front_right_wheel){
ir_detect= TRUE;
/* Slow right and reverse left notors */
ir_gear = DRI VE;
new | eft _notor = REVERSE;
new right_nmotor = DRIVE - SLOW
}
else if (detect_side_right){
ir_detect = TRUE;
/* Increase right wheel to avoid wall */
ir_gear = DRI VE;
new | eft _notor = DRI VE;
new_ri ght _notor = DRI VE + FAST,;
}
else if (detect_side_ left){
ir_detect = TRUE;
/* Increase |l eft wheel to avoid wall */
ir_gear = DRI VE;
new | eft _notor = DRI VE + FAST;
new ri ght _notor = DRI VE;
}
else if (detect_rear_left_body & detect _rear_right_body){
ir_detect= TRUE
/* Increase speed */
ir_gear = DRI VE;
new | eft _notor = DRI VE + FAST;
new_ri ght _notor = DRI VE + FAST,;
}
else if (detect_rear_|eft_wheel){
ir_detect= TRUE
/* Increse |left wheels */
ir_gear = DRI VE ;
new | eft _notor = DRI VE + FAST;
new ri ght _notor = DRI VE;
}
else if (detect_rear_right_wheel){
ir_detect= TRUE
/* Increse right wheels */
ir_gear = DRI VE;
new | eft _notor = DRI VE;
new ri ght _notor = DRI VE + FAST,;
}

}

el se if (gear == REVERSE){
if (detect_rear_left_body || detect_rear_right_body){
if (detect_rear |l eft_wheel &R detect_rear_right_wheel){
ir_detect= TRUE
/* Reverse direction and turn left */
ir_gear = DRI VE;
new | eft _notor = REVERSE + SLOW

23

new ri ght _notor = DRI VE;
}
else if (detect_rear_|eft_wheel){
ir_detect= TRUE
/* Slow left and reverse right notors */
i r_gear = REVERSE;
new | eft notor = REVERSE + SLOW
new ri ght _notor = DRI VE;
}
else if (detect_rear_right_wheel){
ir_detect= TRUE;
/* Slow right and reverse left notors */
i r_gear = REVERSE;
new | eft _notor = DRI VE;
new ri ght _notor = REVERSE + SLOW
}
else if (detect_rear_|left_body & detect_rear_right_body){
if (detect_side_right){
ir_detect= TRUE
/* Reverse direction and turn right */
ir_gear = DRI VE
new | eft _notor = DRI VE;
new ri ght _notor = REVERSE + SLOW
}
else if (detect_side_ left){
ir_detect= TRUE
/* Reverse direction and turn left */
ir_gear = DRI VE;
new | eft notor = REVERSE + SLOW
new ri ght _notor = DRI VE;

}
el se {
ir_detect= TRUE
/* Spin around */
i r_gear = REVERSE;
new | eft notor = REVERSE;
new ri ght _notor = DRI VE;
}

}

else if (detect_rear_|eft_wheel){
ir_detect= TRUE
/* Slow left and reverse right notors */
i r_gear = REVERSE;
new | eft _nmotor = REVERSE + SLOW
new ri ght _notor = DRI VE;
}
else if (detect_rear_right_wheel){
ir_detect= TRUE
/* Slow right and reverse left notors */
i r_gear = REVERSE;
new | eft _notor = DRI VE;
new ri ght _notor = REVERSE + SLOW
}
else if (detect_side_right){
ir_detect = TRUE;
/* Increase right wheel to avoid wall */
i r_gear = REVERSE;
new | eft _notor = REVERSE;
new ri ght _nmotor = REVERSE - FAST;

else if (detect_side_ left){
ir_detect = TRUE
/* Increase | eft wheel to avoid wall */
i r_gear = REVERSE;
new | eft notor = REVERSE - FAST,;
new_ri ght _notor = REVERSE;

}

else if (detect_front_|left_body & detect_front_right_body){
ir_detect= TRUE;
/* Increase speed */
i r_gear = REVERSE;
new | eft notor = REVERSE - FAST,;
new ri ght _nmotor = REVERSE - FAST;

}

else if (detect_front_Ileft_wheel){
ir_detect= TRUE
/* Increase | eft wheels */
i r_gear = REVERSE;
new | eft notor = REVERSE - FAST,;
new_ri ght _notor = REVERSE;

}

else if (detect_front_right_wheel){
ir_detect= TRUE
/* Increse right wheels */
i r_gear = REVERSE;
new | eft notor = REVERSE;
new ri ght _nmotor = REVERSE - FAST;

}

}
}
| ® e o o o o e -

/* Arbitatrator arbitrates the notor commands fromthe
hi ghest priority task
*/
void Arbitrator(){
int i, count;
/* H ghest priority is Cbject_Detect */
for (i = 0; 1 <= 10; i++){
for (count = 10; count >= 0; count--){
gear = (new_gear + (count*gear))/(count+1);
not or (0, gear) ;
nmot or (1, gear) ;
}
}
gear = new_gear;

/[* if battery is |low then dock */
if (battery_low){

Ret urn_Hore() ;
}

/* el se Avoid (bstacles */
else if (ir_detect && !bump){
for (i = 0; 1 <= 10; i++){
for (count = 10; count >= 0; count--){
left_notor = (new |left_notor +
(count*left_motor))/ (count+1);
right _motor = (new_right_notor +
(count*right_notor))/(count+1);
motor (0, left_notor);

24

motor (1, right_notor);

}
} _
gear = ir_gear;
new _gear = ir_gear;
}
}
| ® e o o o e mmee e

voi d Return_Hone(){
/* Face Rear Towards IR */
Fi nd_Dock();
/* Follow IR until reach Charger */
while (! charging_batt){
/* Read Sensors */
Read_Sensors(QN);
/* Digital Conversion */
Anal og_to_Digital ();
/* Follow IR */
Fol I ow_Dock() ;
/* Bunp Detect */
nj ect _Detect ();
/* Qutput Sensors to SCI */
Di spl ay_Sensors();
/[* Arbitrate */
Arbitrate();

/* Wait for Batteries to Charge */
Charge_Batteries();

/* Find Dock reads the IR sensors and spins Qdin until
jack in the rear faces toward the docking station */

voi d Fi nd_Dock(){

/* Turn off IR emmters and Read Sensors */
Read_Sensor s(OFF) ;
Anal og_to_Digital ();

/* Spin around until charge jack in rear faces charging station */
while (! (detect _rear_l|left_body &% detect_rear_right_body))({

not or (0, REVERSE);
nmotor (1, DRI VE);
Read_Sensor s(OFF) ;
Anal og_to_Digital ();

voi d Fol | ow_Dock() {
ir_detect = FALSE;

if (detect_rear_left_body || detect_rear_right_body){
if (detect_rear |l eft_wheel &R detect_rear_right_wheel){

ir_detect= TRUE;

/* Back straight towards */
i r_gear = REVERSE;

new | eft notor = REVERSE;
new_ri ght _notor = REVERSE;

else if (detect_rear_|eft_wheel){
25

t he charge

/* Foll ow Dock uses the IR values to steer towards the charging station.

*/

ir_detect= TRUE
/* Increase left wheels */
i r_gear = REVERSE;
new | eft notor = REVERSE + FAST,;
new_ri ght _notor = REVERSE;
}
else if (detect_rear_right_wheel){
ir_detect= TRUE
/* Increase right wheels */
i r_gear = REVERSE;
new | eft notor = REVERSE;
new ri ght _nmotor = REVERSE + FAST,;
}
else if (detect_rear_|left_body & detect_rear_right_body){
ir_detect= TRUE
/* Back straight towards */
i r_gear = REVERSE;
new | eft _notor = REVERSE;
new_ri ght _notor = REVERSE;
}
}
else if (detect_rear_|eft_wheel){
i r_detect= TRUE
/* Turn towards right */
i r_gear = REVERSE;
new | eft notor = REVERSE - FAST,;
new ri ght _notor = REVERSE + SLOW
}
else if (detect_rear_right_wheel){
ir_detect= TRUE;
/* Turn towards left */
i r_gear = REVERSE;
new | eft _notor = REVERSE + SLOW
new ri ght _nmotor = REVERSE - FAST;

}
el se {
/* Charging station not found */
| ost _station = TRUE;
}
}
| ® e o o o o e -

/* Arbitrate arbitrates the notor controls fromthe highest
priority task.
*/
void Arbitrate(){
int i, count;
/* H ghest priority is Cbject_Detect */
for (i = 0; 1 <= 10; i++){
for (count = 10; count >= 0; count--){
gear = (new_gear + (count*gear))/(count+1);
not or (0, gear) ;
not or (1, gear) ;
}
}
gear = new_gear;

/* Avoid Cbstacles */
if (ir_detect && !bunp){
for (i = 0; 1 <= 10; i++){
for (count = 10; count >= 0; count--){
26

left_notor = (new |left_notor +
(count*left_motor))/ (count +1);

right _motor = (new_right_notor +
(count*right_notor))/(count+1);

nmotor (0, left_notor);

motor (1, right_notor);

}
} _
gear = ir_gear;
new _gear = ir_gear

}

/* Find lost charging station */
else if (lost_station){
Fi nd_Dock();

/* Charge Batteries turns off the notors and waits in a | oop.
There is no sensor for determ ning when the battereis are
charged, so this procedure is inefficient.

*/
void Charge Batteries(){
not or (0, PARK);
notor (1, PARK);
int i,j;
for (i = 0; i < 1000; i++)
for (j=0; j < 1000; j++);
}
| F o o o o e e o o o e e e e e o eeee o * [

27

B2: WobbleHead Software

[* Title: Wbbl eHead. c
Progranmer: M chael Apodaca
Date: April 23, 1998
Version: 1.1
Descri ption:
This programinpl enments the alignnment algorithns for the
char gi ng stati on Whbbl eHead usi ng sonar and IR sensors
*/
#i ncl ude <hcll. h>
#include <m . h>
#i ncl ude <vectors. h>
#i ncl ude <anal og. h>
#i ncl ude <serial.c>

/* IR Controls */

#define LEFT_IRDT 6 /* PortE Bit6 */
#define RIGHT | RDT 7 /* PortE Bit7 */
#define | R THRESHOLD 100

#defi ne VARl ANCE 5

/* IR Emtter Control */
#defi ne | R PORTB /* Bits 3,4,5 */

/* Sonar Sensors */

#def i ne SONAR PORTA

#def i ne SONAR FRONT 1 /* PortA Bitl */
#def i ne SONAR BACK 2 /* PortA Bit2 */
#defi ne SONAR LEFT 3 /* PortA Bit3 */
#def i ne Bl TF 0x02

#def i ne Bl TB 0x04

#defi ne Bl TL 0x08

/* Motor Controls */
#def i ne MOTOR PORTB
#define DORECTION BIT O /* PortB Bit0 */
#define CONTROL BIT 1 /* PortB Bitl */

/* d obal Val ues */

int left_ir, right_ir;

char front_sonar, back sonar, |eft_sonar
char port_a;

void Init_Mtor(){
CLEAR BI T(MOTOR, CONTROL_BI T);
CLEAR BI T(MOTOR, DI RECTION BIT);

/* Run nmotor toggles the control bit at 50% PWV
*/
void Run_Motor(){

int i, j;

28

for (i = 0; i < 5000; i++){
for (j =0] < 10; j++)
SET_BI T(MOTOR, CONTROL_BI T);

for (j = 0; j < 10; j++)
CLEAR BI T(MOTOR, CONTROL_BI T);

| o e e e e L L eeeaeaas * [

void Stop_Mtor(){
CLEAR_BI T(MOTOR, CONTROL_BI T) ;
}

| o o e e L emeeaeaas * [

void Mitor_Left(){

CLEAR BI T(MOTOR, DI RECTI ON_BI T) ; [* LEFT */
SET_BI T(MOTOR, CONTRCL_BI T) ; /[* ON */
Run_Mbt or () ;
}
| * o o o e e e o o e e e e e e o e o - * [
void Mtor_Right(){
SET_BI T(MOTOR, DI RECTI ON_BI T) ; [* RIGHT */
SET_BI T(MOTOR, CONTRCL_BI T) ; /[* ON */
Run_Mbt or () ;
}
| * o o o e e o o o e oo - * [
void Read_I R(){
/* nodul ates PORTB, bit 3,4,5 at 40kHz */
asn("| daa 4100\ n"
"1 dy #255\ n" [* 2*(# of IR pulses) */
"eora #56\n"
"staa 4100\ n"); /* 4099 = Port C */
asn("loopl : |daa 4100\ n" /* 4 cycles - necessary */
"eora #56\n" /* 2 cycles - necessary */
"staa 4100\ n" /* 4 cycles - necessary */
"nop\ n"
"nop\ n"
"nop\ n" /* 8 cycles */
"nextl : nop");
asn("dey\n" /* 4 cycles - necessary */
"bne | oopl"); /* 3 cycles - necessary */

/* total = 25 cycles = 40 kHz*/
left _ir = anal og(LEFT_I RDT);
/* nodul ates PORTB, bit 3,4,5 at 40kHz */
asn("| daa 4100\ n"
"1 dy #255\ n" [* 2*(# of IR pulses) */
"eora #56\n"
"staa 4100\ n"); /* 4099 = Port C */
asn("loop2 : |daa 4100\ n" /* 4 cycles - necessary */
"eora #56\n" /* 2 cycles - necessary */
"staa 4100\ n" /* 4 cycles - necessary */
"nop\ n"
"nop\ n"
"nop\ n" /* 8 cycles */

29

"next2 : nop");
asn("dey\n" /* 4 cycles - necessary */
"bne | oop2"); /* 3 cycles - necessary */
/* total = 25 cycles = 40 kHz*/
right _ir = anal og(Rl GHT_I RDT) ;

void Init_Sonar(){
front _sonar = BITF;
back sonar
| eft _sonar

I
o @

/* Read Sonar polls the sonar bits until a detection is found */
voi d Read_Sonar (){

int i;
while ((front_sonar == BITF) || (back_sonar == BITB) || (left_sonar ==
Bl TL)) {
front _sonar &= SONAR & BI TF;
back _sonar &= SONAR & BI TB;
| eft _sonar &= SONAR & BI TL;
}
}
| F o o o e e e o e e e e e e e o e e e e e e e e e e e e e e e e e e o * [

/* Arbitrator controls the notor with sonar unless the sonar reading
originates fromthe front where it uses IRto control the notor
*/
void Arbitrator(){
if (front_sonar != BITF){
if ((left_ir > 1R THRESHOLD) &&(right _ir > I R_ THRESHOLD)) {
if (left_ir > (right_ir + VAR ANCE)){
Motor _Left();
}

else if (right_ir > (left_ir + VARI ANCE)) {
Mot or _Ri ght () ;
}

el se{

}

}

else if (left_ir > | R THRESHOLD) {
Motor _Left();

}

else if (right_ir > | R THRESHOLD) {
Mot or _Ri ght () ;
}

el se{

}

}
el se if (back_sonar != BITB){
Motor _Left();

Stop_Motor();

Motor _Left();

else if (left_sonar !'= BITL){
Motor _Left();

el se{
30

Mot or _Ri ght () ;

voi d Show Val ues(){

char start[] = {Ox1b,'["',"

wite(start);

wite("Left IR=");
put _int(left_ir);

put _char(11);

put _char (13);
wite("Right IR=");
put _int(right_ir);

put _char(11);

put _char (13);
wite("Front Sonar = ");

put _int((i nt)front_sona’r);

put _char(11);

put _char (13);

wite("Rear Sonar = ");
put _int((int)back _sonar);
put _char(11);

put _char (13);

wite("Left Sonar = ");
put _int((int)left_sonar);
put _char(11);

put _char (13);
wite("PORTA = ");

put _int((int)port_a);

put _char(11);

put _char (13);

void main(){

31

Init_Mtor();
Init_Sonar();
i nit_anal og();
init_serial();

whi l e(1){
Read_Sonar () ;
Read_I R();

Arbitrator();
Show_Val ues();

B3: Odin Motor SoftwareDrivers

[* Title notor.c
Pr ogr anmer Keith L. Doty. nodified by Lee Rossey
Dat e Cct 19, 1996
Version 1.1
Description

This nmodul e includes nmotor initialization, notor speed control
and two PWMinterrupt drivers motorO and notor1.

notor0 uses OC2 and notorl uses OC3.

Thi s nodul e can be used with the TALRI K robot

EE R T R T T T S N B

~

/**************** Cbnst ants *************************************/

#i ncl ude <notor2l.h>

#def i ne PERI CDM 65, 500

#def i ne PERI OD_1PC 655

#def i ne SENSORS *(unsi gned char *) OxFFB38

/* #define SENSCRS *(unsigned char*) Oxffb8 */
#pragma interrupt_handl er notorO notorl

void nmotor0();

void notor1();

voi d sensor_bit_clear();
void sensor_bit_set();

/********************* mta *************************************/

int duty cycle[2]; [/* Specifies the PWMduty cycle for two notors */
extern int sensor_mrror; [/* mrrors SENSORS ($ffb8) */

/************** FunCtIOI"IS ***************************************/
void init_notors(void)
/* Function: This routine initializes the notors

* | nputs: None
* Qutputs: None
* Not es: This routine MIST be called to enabl e notor operation!
*/
{
I NTR_OFF();

/* Set OC2 and OC3 to output |ow */
SET_BI T(TCTL1, 0xAQ) ;
CLEAR _BI T(TCTL1, 0x50) ;

/* Set PWMduty cycle to O first */
duty_cycle[0] = duty_cycle[1l] =0;

/* Associate interrupt vectors with notor routines */
*(voi d(**) ()) OxFFE6 not or O;
*(voi d(**)()) OxFFE4 not or 1;

/* Enable motor interrupts on OC2 and OC3 */
SET_BI T(TMBK1, 0x60) ;

/* Specify PD4 and PD5 as out put pins.
32

* PD4 controls direction of Mdtor 1 and PD5 the direction of Mdtor O
*/

/* SET_BI T(DDRD, 0x30); */
INTR_ ON() ;
}

void nmotor(int index, int per_cent_duty_cycle)
/* Function: Sets duty cycle and direction of notor specified by index
* | nputs: index in [0, 1]

* -100% <= per_cent_duty_cycle <= 100%
* A negative %reverses the notor direction
* Qutputs: duty_cycl e[index]
* 0 <= duty_cycl e[index] <= PERICD (Typically, PER OD = 65, 500)
* Not es: Checks for proper input bounds
*/
{

if (per_cent_duty cycle < 0)

{
per _cent_duty cycle = - per_cent_duty_cycle; /* Mke positive */
/* Set negative direction of notors */
if (index == 1) sensor_bit_cl ear(0x40);
if (index == 0) sensor_bit_cl ear(0x80);
}
el se
{
/* Set positive direction of notors */
if (index == 1) sensor_bit_set (0x40);
if (index == 0) sensor_bit_set(0x80);

}

/* At this point per_cent_duty_cycle nust be a positive nunber |ess
* than 100. If not nake it so.
*/
if (per_cent_duty cycle > 100) per_cent_duty_cycle = 100;
duty_cycl e[i ndex] = per_cent_duty_cycl e*PERI OD_1PC,

}

void nmotorO ()
/* Function: This interrupt routine controls the PAMto nmotor0O using OC2
* | nputs: duty_cycl e[0] (gl obal)

* Qutputs: Side effects on TCTL1, TOC2, TFLGL.

* Not es: init_notors() assumed to have executed

*/

{
/* Keep the notor off if no duty cycle specified.*/
i f(duty_cycle[0] == 0)
{

CLEAR _BI T(TCTL1, 0x40);
}

el se
i f(TCTL1 & 0x40)

TOC2 += duty_cycl e[0]; /* Keep up for width */
CLEAR_BI T(TCTL1, 0x40); /* Set to turn off */
}
el se
{

33

TOC2 += (PERIODM - duty_cycle[0]);
SET_BI T(TCTL1, 0x40); /* Set to raise signal */

}
CLEAR_FLAQE TFLGL, 0x40); [* Cear OC2F interrupt Flag */
}

voi d notor 1()

/* Function: This interrupt routine controls the PAMto notorl usi ng OC3
* | nputs: duty_cycle[1] (gl obal)

* Qutputs: Side effects on TCTL1, TOC2, TFLGL.

* Not es: init_notors() assunmed to have executed

*/

{

/* Keep the notor off if no duty cycle specified.*/
i f(duty_cycle[1l] == 0)
{

CLEAR BI T(TCTL1, 0x10);
}
el se
i f(TCTL1 & 0x10)

TOC3 += duty_cycl e[1]; /* Keep up for width */
CLEAR_BI T(TCTL1, 0x10); /* Set to turn off */
}
el se
{
TOC3 += (PERIODM - duty_cycle[1]);
SET_BI T(TCTL1, 0x10); /* Set to raise signal */

}
CLEAR_FLAQE TFLGL, 0x20); /[* Cdear OC3F interrupt Flag */

void sensor_bit_clear(int bit_clear)
{
| NTR_OFF();
CLEAR BI T(sensor_mrror, bit_clear);
SENSORS = sensor_nmnirror;
I NTR_ON();

void sensor_bit_set(int bit_set)

| NTR_OFF();
SET_BI T(sensor_mirror, bit_set);
SENSORS = sensor_nirror;
I NTR_ON() ;
}

