
University of Florida

Department of Electrical Engineering

EEL 5666

Intelligent Machines Design Laboratory

KOCATKA: A Flying Robot

Paul J Taylor

Instructor: Dr. Antonio A. Arroyo

April 24, 1998

2

TABLE OF CONTENTS

Abstract 3

Executive Summary 4

Introduction 5

Integrated System 6

Platform 7

Actuation 9

Sensors 10

Behaviors 13

Cost Analysis 14

Conclusion 15

Documentation 16

Vendors 17

Appendix A: Program Code 18

Appendix B: Sensor Test Code 25

3

ABSTRACT

Following is a discussion of the development of an obstacle avoidance and wall following
system for an autonomous helium blimp using infrared emitters and sensors. The blimp
reacts when the sensor determines there is an obstacle in the blimp’s path. The program in
ICC11 initiates changes in the propulsion system based on sensor readings. Directional
control problems unique to blimps are presented. A possible sonar system is presented. A
cost analysis is shown with a comparison to the average cost of terra-based robots. The
closing discussion addresses future endeavors which appear likely as a result of the present
experimentation.

4

EXECUTIVE SUMMARY

Kocatka (pronounced ka SOT ka), which is Russian for killer whale, is an autonomous

blimp which is designed to navigate large areas at a human walking pace. The blimp is

neutrally bouyant, so no lift is necessary from the motors. Two propulsion fans supply

speed and directional control of the blimp. The component parts are minimal so as to

make the blimp neutrally bouyant.

Kacotka’s main navigation system is IR. A sonar system was studied, but because of

weight restrictions and problems making the sensor stable, sonar was not used. The IR

provides 2 feet of sensing information, which is sufficient for the blimp avoiding obstacles.

A bump sensor indicates when the robot strikes an object head on.

A microprocessor provides a means of control for the system including the motors, IR

emission and sensing, and bump sensor. ICC11 programmed functions for Kocatka to

turn right, turn left, move forward, and move in a fast forward mode. The main program

provides guidelines which determine’s Kocatka’s reactions to external stimuli. The

program also implements a simple wall following behavior.

5

INTRODUCTION

My main purpose for taking Intelligent Machines Design Laboratory (IMDL) was the

realization of an autonomous helium-filled blimp, name Kocatka. The physical design was

of utmost importance because of the small amount of lift provided by the helium. The

design also has to be flexible to permit for variations of air temperature and consistency.

Kocatka’s main behavior is obstacle avoidance. The original design was to use a sonar

sensor. Since the sonar sensor was component rich and unstable, the basis was changed to

infrared. The autonomous blimp also has the behavior of wall-following.

Following is a description of Kocatka separated into 9 sections. Integrated System

discusses the overall relationships between individual components of the entire system.

Platform discusses the physical construction of the gondola and blimp. Actuation reviews

the power supply as well as the basic propulsion system. The section, Sensors, covers all

the systems that were considered for use on Kocatka. Behaviors reviews each behavior.

Cost Analysis covers the total cost of Kocatka and the comparison to average robots.

Conclusion summarizes the successes and restrictions of this project along with possible

future work. Documentation provides a list of references. Vendors details the vendors

that supplied the various parts for Kocatka. Appendix A contains program code for

Kocatka’s behaviors, while Appendix B contains program code for testing the sensors and

motors.

6

INTEGRATED SYSTEM

Any robot is a sum of its parts. The largest part of Kocatka is the blimp bag, shown in

FIGURE 1. The helium filled bag provides the lift to offset the weight of the electronics

and body weight. Several propulsion techniques exist. I implemented two motors placed

45o from the center plane.

I used the MTJPRO11 board, produced by Novasoft, which contains a Motorola 68HC11

microprocessor, an extra 32K of ram, IR emitter modulation circuitry, bump circuitry, and

voltage regulation. Some added circuitry was needed to run the motors. The devices

controlled by the microprocessor were an IR emitter, IR detector, bumps sensor, and two

motors with 3” propellers. The blimp, once power is applied, senses the environment and

responds to stimuli through the programming.

7

MOBILE PLATFORM

Kocatka consists of two major parts, the blimp bag and the gondola. The blimps bag is 7’

long and 2’ round. The total amount of helium is approximately 28 cubic feet. This

amount of helium allows for an additional 12 ounces of lift beyond the blimp bag weight.

A picture of the blimp bag is shown in following photo.

Fig 1: Blimp Bag

I made several versions of the gondola. The first one was too heavy. The final version of

was made of balsa wood and styrofoam. A picture is shown below.

Fig 2: Gondola Construction

8

The motors were placed at a 45 degree angle from the center line of the gondola. One

motor is on the left and one on the right. Originally a third motor was placed in the back

and run in reverse. I removed this motor because of weight restrictions.

Components such as the microprocessor, batteries, and components are placed on top of

the styrofoam. These components were held in place by velcro.

I attached the gondola to the blimp with string rope. The gondola had eyelet loops to hold

the string. On the blimp, I placed cut stripes of a drinking straw attached to the blimp

with standard masking tape. The string rope went through the drinking straws and

connected to the other side of the gondola.

9

ACTUATION

Battery Power

Kocatka originally had an 8-cell, 9.6 V NiCd battery pack for power. This was changed

because of weight restrictions to a 6-cell, 7.2 V NiCd battery pack. Voltage was

regulated on the MTJPRO11 board for 5V for the microprocessor. The run time is

estimated at over twenty minutes.

Motors

Kocatka used two ¼ Oz. motors with 3” propeller. Both motors operated in the forward

position. Typical current draw for these motors is 1 amp at 4.8 volts.

Motor Drivers

To interface between the motors and the microprocesser, some circuitry was necessary. A

TIP 120 was used. The schematic is shown below.

Fig 3: Motor Driver

10

SENSORS

Sonar

Originally Kocatka was to have a sonar system for sensing. Sonar has good distance

capabilities, up to 25 feet. The schematic is shown below.

Fig 4. Sonar Schematic

This schematic was taken from Kelly Thomas robot Thomas. I could not achieve the same

results as Mr. Thomas nor could I make the system stable. Finally, because of weight

restrictions, I chose to change to infrared.

Infrared

I used the standard IR configuration used in the MIL lab. I could only implement one IR

because of weight restrictions. The leads to the IR emitter and detector were both 3’ feet

long so they could be attached to the front of the blimp bag with velcro. Below is some

data taken to characterized the IR sensor.

11

Distance Analog
Reading

0.2 129
0.28 122
0.36 111
0.44 105
0.52 103
0.6 101

0.68 100
0.76 99
0.84 98
0.92 98

1 97
>1 97

Sensor Characterization

90

95

100

105

110

115

120

125

130

0.
2

0.
28

0.
36

0.
44

0.
52 0.
6

0.
68

0.
76

0.
84

0.
92 1 >1

Distance in Meters

A
na

lo
g

R
ea

di
ng

Fig 5. IR Data

Bump Sensor

I implemented a bump sensor on Kocatka. The bump sensor consisted of a microphone

and some circuitry to make an output reasonable for analog port of the microprocessor.

The circuit was normally high (5V). When a strong breadth or hard bump hit the

microphone, the output level went to 0V. The circuit is as below.

12

Fig 6. Bump Sensor Schematic

13

BEHAVIORS

Collision Avoidance

Kocatka’s main behavior is collision avoidance with monitors the infrared sensor and uses

basic manuevering to avoid collisions with objects. The microprocessor can call functions

to turn left, right, go forward, and go fast forward.

Wall Following

I tried to implement a simple wall following routine in Kocatka’s program. This was done

be modifying some of the collision avoidance code. Also, the air currents in the New

Engineering Buidling helped with this problem also.

14

COST ANALYSIS

I wanted to prepare a cost analysis as cost is probably the most important factor in any

real project in the real world. All the receipts for anything purchased for the robot were

kept and cataloged in an Excel spreadsheet. Below are the total cost for Kocatka.

Electronics

Helium

Construction

Misc.

$0 $50 $100 $150 $200 $250

Dollar Value

Electronics

Helium

Construction

Misc.

C
at

eg
or

y

Cost Analysis

Series1

Fig7. Cost Analysis

The miscellaneous category includes tools. Some of the cost was due to parts not use, but

this of course is part of any endeavor.

The total cost of Kocatka was approximately $575.00. This is nearly $300 more than the

cost of a normal robot in IMDL. Part of the extra cost can be attributed to the blimp bag

and helium. The other portion of the cost comes from the need for specialized parts (that

is very low weight) for the blimp.

15

CONCLUSION

Kocatka is a fully autonomous blimp robot which successful avoids objects and follows

walls. Propellers enable the robot to move left, right, and forward. The infrared sensor

allows Kocatka to sense the environment and act according. The MTJPRO11

microprocessor allows for control of the robot and future expansion. The wall follow

behavior gives Kocatka a peaceful and serene behavior.

A major consideration of an helium-filled vehicle is weight. Even with a fairly large bag,

the largest the vendor could supply, the weight restriction was 12 ounces. This severely

limited the amount of sensors that could be placed on Kocatka.

For future work, I would like to make a sensor better than IR yet light enough to place on

the system. Next time, I would not make a gondola. It added extra weight. The gondola

was helpful this time for testing. A good next step would be to implement an up and

down function for Kocatka.

16

DOCUMENTATION

Doty, Keith L. TJ-PRO Assembly Manual, MIL webpage, January 29, 1998.

Doty, Keith L. TJ-PRO Users Manual, MIL webpage, January 29, 1998.

Jones, Joeseph & Flynn, Anita, Mobile Robots: Inspiration to Implementation, A.K.
 Peters Publishers, Wellesley, MA, 1993.

Miller, Bruce and Qaiyumi, Aamir, Holly: An Autonoumous Air Cushion Vehicle, MIL
 webpage, December 9, 1996.

Piri, John. Gondola Blimp Construction Plans, http://www.ridgecrest.ca.us/~jpiri, May
 12, 1996.

Thomas, Kelly, Thomas, MIL webpage, 1995.

17

VENDORS

Radio Shack
3315 SW Archer Road
Gainesville, FL 32608
352-375-2426

West Coast Blimp & Electronics
713 Cottonwood Drive
Ridgecrest, CA 93555
http://www.ridgecrest.ca.us/~jpiri

Electronics Plus
2026 SW 34th Street
Gainesville, FL
352-371-3223

Wal-Mart
3570 SW Archer Road
Gainesville, FL
352-378-0619

Lowes
3500 SW Archer Rd
Gainesville, FL
352-376-9900

The Party Place (Helium)
3712 W. University Ave.
Gainesville, FL. 32601
352-371-4646

18

APPENDIX A

// This program will run the blimp robot

// KOCATKA

//

// VERSION 1.0

//

// Paul J Taylor

//

// April 24, 1998

//

//

#include <mil.h>

#include <hc11.h>

#include <servotjp.h>

#include <serial.h>

#include <analog.h>

#include <vectors.h>

#include <timux03.h>

#include <stdio.h>

19

//

//Important defines

///

#define IR *(unsigned char *) 0x7000 /* address of IR emitters */

#define WAIT for(inner_wait_loop =0 ; inner_wait_loop < 12000 ; inner_wait_loop++)

; //do nothing

#define DELTATIME 2 //wait one ~5th second between actions

#define BREAK for(inner_wait_loop = 0; inner_wait_loop< 150; inner_wait_loop++) ;

#define GO_FORWARD SET_BIT(PORTA,136);

#define GO_FFORWARD SET_BIT(PORTA, 168);

#define TURN_RIGHT SET_BIT(PORTA,40);

#define TURN_HRIGHT SET_BIT(PORTA,8);

#define TURN_LEFT SET_BIT(PORTA,160);

#define TURN_HLEFT SET_BIT(PORTA,128);

#define STOP CLEAR_BIT(PORTA,65535);

#define EYE center = analog(1);

//

// Global Variables

//

//variables associated with timux

unsigned mseconds, dseconds, seconds, minutes;

20

int center;

int counter;

int random;

int min;

//

//Prototypes

//

//

void events(void);

void dseconds_events(void);

void seconds_events(void);

void minutes_events(void);

void forward(void);

void left(void);

void right(void);

int

main(void)

{

 unsigned inner_wait_loop;

21

 init_servos();

init_analog();

setbaud(BAUD9600);

init_timemux();

srand(TCNT);

 IR=0x89;

 STOP;

 min = 95;

 WAIT;

 center = 0;

while(1)

{

 EYE;

 if (center < 108){

 forward();

 }

 else if (center < 120) {

 //do some random stuff here.

22

 random = rand();

 random = (random/327);

 if (random > 15)

 {while (center > 108)

right();

 {right();

 EYE;

 }

 }

 else

 { while (center > 108)

 {left();

 EYE;

 }

 }

 }

 else

 {

 while (center > 120)

 {STOP;

 EYE;

 }

 }

23

 }

}

void forward(void)

{

 int inner_wait_loop;

 int i;

 for (i =0; i < 10 ; i++)

 { GO_FORWARD;

 BREAK;

 STOP;

 BREAK;

 }

}

void left (void)

{

 int inner_wait_loop;

 int j;

24

 for (j = 0; j < 10; j++)

 { TURN_HLEFT;

 BREAK;

 STOP;

 BREAK;

 }

}

void right (void)

{

 int inner_wait_loop;

 int k;

 for (k = 0; k <10; k++)

 { TURN_HRIGHT;

 BREAK;

 STOP;

 BREAK;

 }

}

25

APPENDIX B

TESTING CODE

//

// This program will run the blimp robot

// KOCATKA

// DIREC.C

// VERSION 1.0

//

// Paul J Taylor

//

// April 24, 1998

//

//

#include <mil.h>

#include <hc11.h>

#include <servotjp.h>

#include <serial.h>

#include <analog.h>

#include <vectors.h>

#include <timux03.h>

26

#include <stdio.h>

//

//Important defines

///

#define IR *(unsigned char *) 0x7000 /* address of IR emitters */

#define WAIT for(inner_wait_loop =0 ; inner_wait_loop < 12000 ; inner_wait_loop++)

; //do nothing

#define DELTATIME 2 //wait one ~5th second between actions

#define BREAK for(inner_wait_loop = 0; inner_wait_loop< 200; inner_wait_loop++) ;

#define GO_FORWARD SET_BIT(PORTA,136);

#define GO_FFORWARD SET_BIT(PORTA, 168);

#define TURN_RIGHT SET_BIT(PORTA,40);

#define TURN_HRIGHT SET_BIT(PORTA,8);

#define TURN_LEFT SET_BIT(PORTA,160);

#define TURN_HLEFT SET_BIT(PORTA,128);

#define STOP CLEAR_BIT(PORTA,65535);

#define EYE center = analog(1);

//

// Global Variables

//

//variables associated with timux

27

unsigned mseconds, dseconds, seconds, minutes;

int center;

int counter;

int random;

int min;

//

//Prototypes

//

//

void events(void);

void dseconds_events(void);

void seconds_events(void);

void minutes_events(void);

void forward(void);

void left(void);

void right(void);

int

main(void)

{

 unsigned inner_wait_loop;

28

 init_servos();

init_analog();

setbaud(BAUD9600);

init_timemux();

srand(TCNT);

 IR=0x89;

 STOP;

 min = 95;

 WAIT;

 center = 0;

Int

main(void)

{

 unsigned inner_wait_loop;

 init_servos();

 init_analog();

 setbaud(BAUD9600);

 init_timemux();

 srand(TCNT);

29

 IR=0x89;

 STOP;

 WAIT;

 center = 0;

 while(1)

 {

 forward();

 right();

 left();

 }

}

void forward(void)

{

 int inner_wait_loop;

 int i;

 for (i =0; i < 10; i++);

 { GO_FORWARD;

 BREAK;

30

 STOP;

 BREAK;

 }

}

void left (void)

{

 int inner_wait_loop;

 int j;

 for (j = 0; j < 10; j++)

 { TURN_HLEFT;

 BREAK;

 STOP;

 BREAK;

 }

}

void right (void)

{

 int inner_wait_loop;

 int k;

 for (k = 0; k <10; k++)

 { TURN_HRIGHT;

31

 BREAK;

 STOP;

 BREAK;

 }

}

//ANALOG definitions

// Left IR is 2

// Right IR is 3

// Bumper is 0

//State is a function of IR

//--

//Routines for ti-mux

//

// variations on routines by E. Yim

// use for timing routines....

//

//---

//Main event handler

32

void events(void)

{

/* Put all the msecond-level events here */

if (++(mseconds) == 100)

{

mseconds = 0;

dseconds_events();

}

}

void dseconds_events(void)

{

if (++(dseconds) == 10)

{

dseconds = 0;

seconds_events();

}

33

/* Put all the dsecond-level events here */

}

void seconds_events(void)

{

int i;

if (++(seconds) == 60)

{

seconds = 0;

minutes_events();

}

/* Put all the second-level events here */

//blink_LED();

}

void minutes_events(void)

{

if (++(minutes) == 60)

34

{

minutes = 0;

}

//change index in saving H-table delta

}

