
Bob,
An Autonomous Quadrupedal Robot

Final Report

“...like a dog’s walking on his hind legs. It is not done well, but
you are surprised to find it done at all.” - Samuel Johnson

Steve Stancliff
University of Florida

Intelligent Machines Design Laboratory
Submitted: April 23, 1998

Edited: March 25, 2000

ii

Acknowledgments

This project would not have been completed without the assistance of all of the IMDL
TAs, and especially Jenny Laine, who wrote the code that resides on the single-chip board
and directly controls the servos.

Bob owes a great deal to the robot “Thing” by Willard S. MacDonald. It was not my
intention to end up with a robot so close to Thing in design, but as I experimented and
encountered various problems, I found that the solutions implemented in Thing were
usually the best solutions I could find.

Thanks to Rohm Electronics for donating a LCD panel for this project, which,
unfortunately, is not yet implemented.

iii

Abstract

The objective of this project was to design, construct, and test hardware and software to
create a small autonomous quadrupedal robot. Four legs were chosen for this project as a
reasonable compromise between the hardware complexity when many legs are used and
the software complexity required for stability when fewer legs are used. A design giving
three degrees of freedom (DOF) per leg was chosen because fewer DOFs restricts the
robot’s mobility, and more DOFs are redundant. At the time of the writing of this paper,
the robot is capable of walking forward and backward over level surfaces, turning to the
left, and raising and lowering it’s body. It implements minimal obstacle detection using a
single forward looking infrared emitter/detector pair. It also uses a photocell for detection
of ambient light level.

iv

Contents

Acknowledgments ... ii

Abstract ... iii

List of Tables ..v

List of Figures..vi

1. Executive Summary ...1

2. Introduction ..3

3. Integrated System...6

4. Mobile Platform ...8

5. Actuation ...11

6. Sensors...13

7. Behaviors...15

8. Experimental Results ...16

9. Conclusions ...20

References ...21

Appendix A - Parts List ...23

Appendix B - Weights ..24

Appendix C - Mechanical Drawings...25

Appendix D - Servo Code ..27

Appendix E - High-Level Code ...34

v

List of Tables

Table 8.1 - Microphone Frequency Response..17
Table 8.2 - Frequency Response of First Amplifier...18
Table 8.3 - Frequency Response of Second Amplifier ..19
Table A.1 - Component Listing with Costs..23
Table B.1 - Component Weights..24

vi

List of Figures

Figure 1.1 - MRC11 ...7
Figure 8.1 - Sound Sensor Schematic ..16
Figure 8.2 - Microphone Frequency Response ..17
Figure 8.3 - Frequency Response of First Amplifier ...18
Figure 8.4 - Frequency Response of Second Amplifier ...19
Figure C.1 - Leg And Shoulder Box ..25
Figure C.2 - Upper and Lower Platforms...26

1

1. Executive Summary

Most of the effort to date on Bob has been spent on mechanical and electrical

hardware. Once the basic configuration was chosen, a bottom-up design methodology

was followed.

The first stage in the design was to establish a leg design. Several balsa prototypes

were constructed and tested for range of motion and sturdiness. In the end, the leg design

of “Thing” was adopted.

The next design issue was how to mount the lift and extension servos to the base

and to the swing servo. A “shoulder box” was quickly settled on to contain these servos

in a rigid arrangement. The problem of how to mount the shoulder box to the base while

allowing free rotation was one of the more difficult ones. Eventually, a ball-bearing

wheel was located which could be used between the base and the shoulder box.

In an attempt to differentiate Bob from Thing, the base of the prototype was made

square. Once the prototype was assembled, it was obvious that this shape severely

limited the range of motion of the swing servo. A design similar to Thing, with the swing

servos extending diagonally out from a square center, was adopted for the final robot.

At the time of the prototype’s construction, the primary processor board was to be a

Motorola EVBU in combination with a Mekatronix ME11. When the prototype was

assembled, it was obvious that this combination was a limiting factor in the size and

2

weight of the robot. The pair of boards was replaced by the Mekatronix MRC11, which

not only weighs half as much, but also allows the platform to be 30% smaller, resulting in

additional weight savings.

In parallel with the hardware development, three sensor systems were developed. A

sound sensor was designed around the LM741 op-amp, to amplify and rectify microphone

signals. A photocell sensor was developed to detect ambient light-level, and a MIL-

standard infrared emitter/detector pair was used for obstacle detection.

Software development to this point has been trivial, since pre-existing servo-

controller code was used. The higher level code is less than a hundred lines in length at

this point. Future developments will concentrate in this area.

3

2. Introduction

2.1 Legged Robots

Most existing mobile robots rely on wheels for locomotion. This is the best

solution for traversing relatively even surfaces, but wheeled platforms have difficulties

dealing with obstacles which legged platforms can simply step over. On the other hand,

wheeled platforms are inherently stable, since the wheels are intended to remain on the

ground. A legged robot must shift its center of gravity as it walks in order to maintain

stability. In addition, the driving mechanism for a wheeled vehicle can be relatively

simple and inexpensive to construct, while a leg mechanism requires complicated

linkages and multiple motors, as well as sensors to determine the location of the leg

relative to the ground.

2.2 Number of Legs

Choosing the number of legs for the robot amounts to a tradeoff between

mechanical complexity (which implies cost and weight) and software complexity.

Existing robots, as well as most walking creatures, are mostly of three varieties: two-,

four-, or six-legged. Successful implementation of a two-legged robot is an extremely

complicated task, and beyond the scope of a one-semester, one-student project. A six-

legged robot, on the other hand, requires greater mechanical complexity, and offers more

4

opportunity for unit failure. In addition, the problem of a six-legged robot seems to have

been reasonably accomplished, as there are several examples available. For these

reasons, a four-legged design was chosen.

2.3 Objectives

The primary design criteria for this robot were as follows:

- minimal cost
- incorporate already-owned components
- use cheap and easily-worked materials for platform
- minimize weight to make use of cheaper servos

- robustness
- solid design and construction

- able to be implemented in stages
- modular design
- room for expansion

The objectives for this semester were:

- design and construct the platform

- implement a simple, hard-coded walking routine

- implement minimal sensors for obstacle avoidance

- if time allows, implement a more intelligent walking algorithm

2.4 Organization of Paper

Section 3 describes the robot system as a whole, and how it meets the design criteria.

Section 4 describes the platform structure.

Section 5 describes the servos and servo-control system.

5

Section 6 describes the sensors.

Section 7 describes the sensor-based behaviors.

Section 8 describes the experimental testing of the design.

Section 9 gives a summary of the project and plans for future work.

6

3. Integrated System

Bob is an autonomous mobile robot which uses four legs for locomotion. Each of

these legs has three servos controlling it’s rotation, lift, and extension, giving each leg

three degrees of freedom (DOF). With three DOF, the legs have a wide range of motion,

and can move directly between any two points in that range.

The platform and legs are constructed from plywood which is designed for use in

model airplanes, and thus has a high strength-to-weight ratio. The leg actuators are

“standard” model aircraft servos. The legs and platform were designed to give

overlapping workspaces for the legs, which increases the maneuverability of the robot,

but requires the software to keep the legs from getting tangled.

The servos are controlled by a Motorola 68HC711E9 microprocessor running in

single-chip mode on a Mekatronix MSCC11 board. This board generates the PWM

signals required for the servos. The code on this board resides in the EEPROM and is

listed in Appendix D.

The “intelligence” of the robot comes from a second 68HC711E9 running in

expanded mode on a Mekatronix MRC11 board with 32k of SRAM (Figure 1.1). This

board sends servo positions to the single-chip board through the serial interface. The

sensors are attached to this board. The code for this board is listed in Appendix E.

7

The robot currently walks in a statically-stable mode, which is the definition of

walking, as opposed to running. To be statically stable at all times, the center of gravity

must be constantly shifted to keep it within the base of support provided by the three legs

which are on the ground. It should be possible to implement a “running” behavior where

two legs are off the ground at once, but this will require some type of tilt-sensors and

more complex software.

A list of the parts used in this project is given in Appendix A.

Figure 1.1 - MRC11

8

4. Mobile Platform

4.1 Requirements

The platform design was driven primarily by three things:

- the need to minimize weight,
- the need to maximize leg workspace
- the size of affordable and obtainable components

For the type of robot envisioned, minimizing weight was very important because

when the robot is standing, the lift servos have to support the weight of the robot. Greater

weight would require more powerful servos, at much greater cost. Weight reduction

techniques included choosing a thin (3/32”) plywood and cutting holes in the parts. A

significant amount of additional material could be removed from the upper and lower

bases without harming the structural integrity, but this was not done in order to leave

space for mounting future additions. A list of component weights is given in Appendix

B.

The need to provide maximum maneuverability and symmetry of motion for the

legs dictated the shape of the platform. The “shoulder boxes” are extended diagonally

away from the body at the corners. This design mimics that of “Thing”, and was chosen

after more simple designs proved to limit the workspace severely.

9

The size of the platform was limited by the size of the processor boards and the

servos. The resulting design has a large amount of unused surface area and internal

volume.

4.2 Construction

The platform was constructed of 3/32” model-aircraft plywood. The components

were drawn in AutoCAD and then cut out by the T-Tech routing machine. This machine

made it possible to cut shapes which would have been difficult or impossible to cut by

hand, and cut so accurately that the finished product is very finished-looking.

The upper and lower bases are attached to one another by four bolts, which extend

below the lower base and provide a support for the robot when the servos are off. The

swing servos are mounted on the upper base, and the rotation and extension servos are

mounted in “shoulder boxes” which are attached at the top to the swing servos, and at the

bottom to a wheel with ball bearings. This wheel supports the weight of the shoulder,

reducing stress on the swing servos.

The mounting of these bearings was the most complicated part of the fabrication. In

order to provide free rotation of the shoulder, it was desired that the inner race of the

bearing touch only the shoulder box and not the bottom base, and that the outer race touch

only the base and not the box. This was accomplished by routing out one and two layers

of the five-ply plywood to provide recesses for the bearing. The bearing is attached to the

shoulder by a bolt, and is held in place on the base by pressure. Again, this fabrication

would have been difficult or impossible without the T-Tech router.

10

The shoulder boxes were designed with interlocking joints. This proved to be

difficult, since in the act of offsetting the AutoCAD drawing to allow for the width of the

router bit, the tabs become wider and the slots narrower. The prototype shoulder boxes,

after significant filing, held together well with no glue. The boxes on the final robot are

held together more by glue than by the joints themselves.

The leg design follows that of “Thing”. A good discussion of leg designs is found

in (MacDonald 94).

AutoCAD drawings of the wooden parts are located in Appendix C.

11

5. Actuation

5.1 Servos

Bob is motivated by twelve model-airplane servos. Four standard Futaba servos are

used as the swing servos, and eight standard Hitec servos for the extension and lift servos.

The Hitec servos are rated at 42 oz-in of torque at 4.8 V, and all of the servos weigh

approximately 1.7 oz. The Futaba servos were removed from a model airplane, and the

Hitec servos were chosen entirely for low cost. It will probably be prudent to upgrade to

ball-bearing servos, at least for the lift servos, which have the greatest load under normal

circumstances.

5.2 Controllers

All twelve servos are controlled by the MSCC11 board, which receives commands

via its serial port, and outputs PWM signals to the servos. The code for this board was

provided by Jennifer Laine. The serial commands to this board consist of three characters

in succession. The first character indicates the start of a message, the second selects the

servo to be positioned, and the third selects the position for the servo. The possible range

of positions accommodated by the software is 0x00 to 0xA5, but in practice it was found

that the range of motion of the servos sometimes fell outside this range. For the

extension and lift servos, only a small portion of the servo’s range is needed, but for the

12

swing servos, it would be preferred to have the full range of motion. The servo control

code is located in Appendix D.

As currently implemented, the code on the MRC11 board contains servo-position

data for various motion regimes, such as walking forward or turning right. The amount of

data needed for complex behavior is very large. The amount of data could be reduced by

implementing the kinematic equations of motion for the legs in the MRC11, but this

would require significant work on the part of the programmer and the processor. The

current data uses only a small fraction of the 64k of memory available on the MRC11

board, so for now it seems better to leave the processor free to perform higher-level tasks.

13

6. Sensors

6.1 Photosensor

Bob is equipped with a CdS photocell, which is used to detect the ambient light

level. The photocell acts as a variable resistor, with resistance inversely proportional to

light level. The sensor circuit consists of the photocell in series with a resistor. The

resistor value was chosen to give a wide range of output voltages. The output is the

voltage across the resistor. Total darkness gives an analog port reading of about 50, while

bright light gives a reading of about 225.

6.2 Infrared Emitter/Detector

Bob also possesses an infrared emitter/detector pair of the standard MIL type. The

detector is a Sharp Digital IR detector which has been modified to provide an analog

output. The emitter is housed in a cylindrical container in order to control the spread of

the IR beam somewhat. The analog port reading idles at about 90, and rises to about 130

for an object which is very close to the sensor. A reading of about 120 indicates an object

within about a foot of the robot.

14

6.3 Tilt Sensor

A mercury switch is mounted on Bob as a poor-man’s level-sensor. The switch is

wired and provides valid input to the MRC11, but it has not been calibrated to a specific

angle, and no behaviors are currently implemented using this sensor. To receive useful

information about the position of the platform would require at least four of these sensors,

two on each axis.

6.4 Sound Sensor

In response to the requirement to develop a "new" sensor for the IMDL project, I

decided to build a sensor which would let me create an audiotropic behavior in my robot.

The initial design for the audio sensor used a LM386 audio amplifier IC to amplify the

signal from the microphone. The LM386 caused distortion in the microphone, so the

sensor was developed on the LM741 general-purpose op-amp instead. The sensor works

will in this configuration, however, the LM741 is a dual-power chip, and is therefore

unsuitable for a mobile platform. Attempts were made to port the circuit to the LM324,

and problems similar to the LM386 were encountered. Due to time constraints, further

development was not carried out, and the sensor is not currently implemented on Bob.

The development and testing of the sound sensor are described in more detail in Section

8.

15

7. Behaviors

Since Bob looks and moves like a small animal, it made sense to implement animal-

like behaviors. Two behaviors are currently implemented.

7.1 Hibernation

When the photocell detects a low light level, Bob crouches down and turns off his

servos. In nature, a small animal might react this way to the shadow of a passing bird.

Bob reactivates and resumes moving about when he detects a bright light source. For an

intermediate light level, Bob keeps doing what he was already doing - moving or

hibernating.

7.2 Obstacle Detection/Avoidance

When the forward IR detects an object nearby, Bob raises up to his full height, in

order to try and scare it away. If it doesn’t move away in a short time, he decides that it

must not be scared of him, so he retreats until he doesn’t see it anymore, and then turns

away and goes back to wandering. Similar behavior can be observed in many animals.

16

8. Experimental Results

The only formal experiments conducted were on the sound sensor. These are

summarized here.

The amplifier/rectifier circuit based on the LM741 is shown in Figure 8.1. The two

primary factors in choosing the components were the need for a large output voltage

change for a small input signal, and the need to maintain a large difference between the

idle output voltage and the saturation output voltage. Increasing the gain to accomplish

the first goal also increased the DC offset at the output, defeating the second goal, so a

compromise had to be made.

The frequency response of the microphone was measured by using a signal of 10V

amplitude output through a small speaker, at a constant position relative to the

Figure 8.1 - Sound Sensor Schematic

17

microphone. The results of this testing are shown in Table 8.1 and Figure 8.2. This test

actually measures the combined response of the speaker and the microphone, but a better

test could not be done without a sound pressure level meter.

Table 8.1 - Microphone Frequency Response

Figure 8.2 - Microphone Frequency Response

18

The frequency responses of the amplifiers were measured individually by inputting

a signal from a function generator. The results are shown in Table 8.2 and Figure 8.3 for

the first amplifier and Table 8.3 and Figure 8.4 for the second amplifier.

Table 8.2 - Frequency Response of First Amplifier

Figure 8.3 - Frequency Response of First Amplifier

19

Table 8.3 - Frequency Response of Second Amplifier

Figure 8.4 - Frequency Response of Second Amplifier

20

9. Conclusions

At this point, Bob has met the semester objectives of creating a walking platform

with obstacle avoidance and hard-coded flat-floor walking. So far, no new ground has

been covered by this project, but Bob is a good platform which can be used for more

advanced studies at a later time. In addition, Bob is an improvement in many ways over

his ancestor, Thing. Bob is cheaper, smaller, lighter, uses fewer processors and is of

simpler construction than Thing.

Some future extensions which I envision for Bob are:

- add more movement types: walking sideways, turning right, waving a paw, etc.
- add the ability to climb objects. this probably involves the development of

contact sensors for the feet.
- improve obstacle avoidance with more IR sensors and perhaps whisker-type

sensors.
- add a charging circuit
- improve and implement the sound sensor

21

References

Alexander, R. McN., “The Gaits of Bipedal and Quadrupedal Animals.”, International
Journal of Robotics Research, Summer, 1984.

Coggin, D., "Bot'arina", University of Florida Intelligent Machines Design Laboratory,
1995.

Fryman, J., "Antaean", University of Florida Intelligent Machines Design Laboratory,
1996.

Hirose, Shigeo, “A Study of Design and Control of a Quadrupedal Walking Vehicle.”
International Journal of Robotics Research, Summer, 1984.

Huber, M., MacDonald, W., Grupen, R., “A Control Basis For Multilegged Walking.”
IEEE Conference on Robotics and Automation, April 1996, Volume 4, pp. 2988-2993.

_____, “Building Walking Gaits for Irregular Terrain from Basis Controllers.” IEEE
Conference on Robotics and Automation, 1997.

Klein, Charles, et. al., “Use of Force and Attitude Sensors for Locomotion of a Legged
Vehicle over Irregular Terrain.”, International Journal of Robotics Research, Summer,
1983.

MacDonald, W.S., "Design and Implementation of a Multilegged Walking Robot",
University of Massachusetts - Amherst Laboratory for Perceptual Robotics, 1994.

Osorio, R.J., "Spot: An autonomous mobile platform", University of Florida Intelligent
Machines Design Laboratory, 1997.

Reddish, A., "Dogbot", University of Florida Intelligent Machines Design Laboratory,
1997.

Reibert, Marc, Legged Robots That Balance, MIT Press, 1986.

Van Anda, J., "Quadro", University of Florida Intelligent Machines Design Laboratory,
1997.

APPENDICES

23

Appendix A - Parts List

Part Quan Manufacturer Source Price
MRC11 Board for 68HC11 1 Mekatronix MIL $70 est
MSCC11 Board for 68HC11 1 Mekatronix MIL $30
MB2325 Serial Board 1 Mekatronix MIL $11
XC68HC711E9 MPU 2 Motorola N/A N/A
HS-300 Servo 8 Hitec Major Hobby $80
FP-S28 Servos 4 Futaba N/A $60 est
3/32”x12”x24” plywood 2 $6
Bearings 4 Home Depot $6
GP1U58X IR Sensor 1 Sharp MIL $3
IR LED 1 MIL $1
Misc Electronics Various Various $20 est
Misc Hardware Various Various $20 est

TOTAL ~$300

Table A.1 - Component Listing with Costs

24

Appendix B - Weights

Component Weight (oz)
MSCC11 Board
MRC11 Board
6V Battery for Servos 8.5
9.6V Battery for Electronics 7.1
Servo 1.7

Entire Assembly 56.7

Table B.1 - Component Weights

25

Appendix C - Mechanical Drawings1

1 Drawings are not at a constant scale.

Figure C.1 - Leg And Shoulder Box

26

Figure C.2 - Upper and Lower Platforms

27

Appendix D - Servo Code

**
* THIS IS THE PROGRAM WHICH ALLOWS A USER TO CONTROL UP TO 16 SERVOS *
* FROM A TERMINAL OR FROM A HIGHER LEVEL PROCESSOR. BASICALLY, IT *
* INCLUDES THE INITIALIZATION CODE AND THE OC2ISR INTERRUPT ROUTINE *
* WRITTEN BY JENNY AND PARTIALLY BY ERIK. *
**
**
* ZERO PAGE EQUATES *
**
* A 152 ENTRY TABLE OF 16-BIT VALUES IS RESERVED AT LOCATIONS *
* $0000 THROUGH $012F (INDEXED AS 0 THROUGH 151). ENTRY X IS *
* FOUND AT LOCATION 2*X IN THE MEMORY MAP. EACH ENTRY IS A *
* TURN-OFF BITMAP WITH EACH BIT (BIT 15 TO BIT 0) REPRESENTING *
* SERVO NUMBER 0 TO 15 RESPECTIVELY. AT A TIME GIVEN BY 164.5uS*
* PLUS THE QUANTITY [13.5uS * (150-X)], THE CONTROL PULSES TO *
* THE SERVOS SPECIFIED BY THE BITMAP AT ENTRY X ARE TURNED OFF.*
* TABLE_OFFSET IS A POINTER TO THE LAST TABLE VALUE. THE TABLE *
* IS PROCESSED FROM HIGHEST TO LOWEST INDEX FROM ENTRY $A7 TO *
* $00 WITH THE ENTRY A7 BEING A NULL ENTRY USED TO PROPERLY *
* ALIGN THE CONTROL PULSES. ATTEMPTS TO WRITE TO THE $97 INDEX *
* WILL BE REDIRECTED TO THE $96 INDEX. *
**
TRENA EQU $0C ; Transmit, Receive ENAble
RDRF EQU $20 ; Receive Data Register Full
TDRE EQU $80 ; Transmit Data Register Empty
TABLE_OFFSET EQU $14A ; Last record in turn-off table
CHAN1 EQU $10 ; CHANNELS 1-4
CHAN2 EQU $14 ; CHANNELS 5-8
ADON EQU $80 ; AD POWER UP
ADOFF EQU $7F ; AD POWER DOWN
SPION EQU $4C ; ENABLE SPI
SPIOFF EQU $0C ; DISABLE SPI
SPIDONE EQU $80 ; SPI TRANSFER COMPLETE
WAIT_SHORT EQU #9 ; 67 us on loop
WAIT_MID EQU #248 ; 1501 us in loop
TURN_DELAY EQU #1000 ; TURN DELAY
**
* STANDARD EQUATES *
**
PORTA EQU $1000 ; PORT A data register
PORTC EQU $1003 ; PORT C data register
PORTB EQU $1004 ; PORT B data register
PORTD EQU $1008 ; PORT D data register
DDRC EQU $1007 ; PORT C direction register
PORTE EQU $100A ; PORT E data register
CFORC EQU $100B ; Timer Compare Force
TOC2 EQU $1018 ; Timer Output Compare register 2
TOC1 EQU $1016 ; Timer Output Compare register 1
TOC5 EQU $101E ; Timer Output Compare register 5
TCTL1 EQU $1020 ; Timer ConTroL register 1
TCTL2 EQU $1021 ; Timer ConTroL register 2
TMSK1 EQU $1022 ; Timer interrupt MaSK register 1
TFLG1 EQU $1023 ; Timer interrupt FLaG register 1
RTFLG1 EQU $23 ; Relative to $1000 Timer interrupt FLaG register 1
TMSK2 EQU $1024 ; Timer interrupt MaSK register 2
TFLG2 EQU $1025 ; Timer interrupt FLaG register 2
PACTL EQU $1026 ; PULSE ACCUMULATOR CONTROL
OC1D EQU $100D ; OUTPUT COMPARE 1 DATA REGISTER
SPCR EQU $1028 ; SPI Control Register
SPSR EQU $1029 ; SPI Status Register
SPDR EQU $102A ; SPI Data Register
BAUD EQU $102B ; SCI Baud Rate Control Register

28

SCCR1 EQU $102C ; SCI Control Register 1
SCCR2 EQU $102D ; SCI Control Register 2
SCSR EQU $102E ; SCI Status Register
SCDR EQU $102F ; SCI Data Register
ADCTL EQU $1030 ; A/D CONTROL Register
ADR1 EQU $1031 ; RESULT 1
ADR2 EQU $1032 ; RESULT 2
ADR3 EQU $1033 ; RESULT 3
ADR4 EQU $1034 ; RESULT 4
OPTION EQU $1039 ; OPTION Register
TCNT EQU $100E ; TCNT Register
REVWALK1 EQU $E170 ; Reverse Walk number 1
REVWALK2 EQU $E2F0 ; Reverse Walk number 2
TURNLEFT EQU $E470 ; Turning left walk
STARTAD EQU $E000 ; Beginning address of walk tables
**
* REGISTER STRUCTURES *
**

ORG $014C
CURRENT_OFF RMB 16 ; The current turn-off values
ONMASK RMB 2 ; The mask of selected servos
STORAGE RMB 2 ; Temporary Storage
STORAGE2 RMB 2 ; Temporary Storage 2
ONWAIT RMB 2 ; Signal Alignment Variable
WAIT_COUNT RMB 2 ; Signal Alignment Variable
COUNTER RMB 2 ; A 16-bit Counter for WAIT function
FLAGS RMB 1 ; HEADER FLAG
COMPLETE RMB 1 ; TABLE COMPLETE FLAG
HOLD RMB 2 ; Temp register
**
* SETUP AND INITIALIZATION CODE *
**

ORG $D000 ; $D000 is the beginning of EPROM
START

LDS #$01FF ; Set stack at the top of ram
LDAA #$30 ; Set baud to 9600
STAA BAUD ; Set the port baud
CLR SCCR1 ; Set mode if indetermined to N81
LDAA #TRENA ; Load mask for Tx, Rx
STAA SCCR2 ; Enable the serial subsystem
LDAA #$FF ; Set for output
STAA DDRC ; All port C pins now output
CLRA ; Initialize outputs to
STAA PORTC ; zero to prevent jerking
STAA PORTB ; zero to prevent jerking
LDAA #ADON ; Power on
STAA OPTION ; A/D system
LDX #ONMASK+1 ; Start at end of timing tables

CLEARLOOP:
CLR 0,X ; Clear the location
DEX ; Move to previous cell
BNE CLEARLOOP ; Keep clearing
CLR 0,X ; Clear the $00 location too

**
* SET UP INTERRUPT FOR OC2 *
**

LDAA #$40 ; Set up OC2 bitmap
STAA TFLG1 ; Clear the interrupt flag register
STAA TMSK1 ; Request hardware interrupt sequence

**
LDX #$1000 ; Set X to beginning of control registers

INIT_PACTL
BSET $26,X $88 ; Set PA7 for output

PWM_INIT
BSET $0C,X $B0 ; Set OC1 to control OC1, OC3, OC4
CLR OC1D ; All OCx pins go low on a compare of OC1
LDAA #$AA ; Set OC3-4 to go low and OC5, OC2 go low.
STAA TCTL1 ; "

* VARIABLE ONWAIT HOLDS THE ITERATION OF THE SERVO TURN-ON CYCLE
* AT WHICH THE ONMASK IS FIRST ASSERTED ONTO THE SERVO PORTS

LDX #CURRENT_OFF+14 ; 15 loops desired before turn on
TIMEST

STX ONWAIT ; Store the wait value
CLR COUNTER ; Clear interrupt counter
CLR COUNTER+1 ; Counter is 16 bits

29

LDD #$0000 ; All servos are initially off
STD ONMASK ; This is crucial to make servos not go.
CLR FLAGS ;
CLI ; Turn on interrupts

WOW
 CLR FLAGS ;

LDX #$8000 ; onmask flag
 STX HOLD
GETB

JSR GETCHAR ; Get the character from serial port
CMPA #$BB ; Looking for header character (terminal header)
BNE GETB ; Terminal is communicating with processor

READY
LDX #CURRENT_OFF ; X contains the positions table pointer

LOOP
JSR GETCHAR ; Get servo number ($C0-$CF)
CMPA #$BF ;
BLS WOW ;
ANDA #$0F ;

 TAB ;
 FCB $3A ;

CLRA ;
XGDY ;
INY ;

 TST FLAGS ;
BNE WOW ;

STLOO
DEY ;
BEQ ENDLOO ;

 LDD HOLD ;
LSRD ;

 STD HOLD ;
BRA STLOO ;

ENDLOO
JSR GETTIME ;
CMPA #$AA ; Off directive?
BEQ OFF ; Yes
TST FLAGS ; Test flags
BNE WOW ; Flag was set
STAA 0,X ; Put servo position in table

 LDD HOLD ; Put onmask flag in D
ORAA ONMASK ; Turn respective servo on
ORAB ONMASK+1 ;
STD ONMASK ;
BRA WOW ;

OFF
 TST FLAGS ;

BNE WOW ;
 LDD HOLD ;

COMA ; Complement
COMB ; Complement
ANDA ONMASK ; Turn off respective servo
ANDB ONMASK+1 ;
STD ONMASK ;
BRA WOW ;

* THE FOLLOWING CODE ENABLES SERIAL TRANSMITION BY FORCING OC2
* LOW. IT IS ASSUMED THAT THE OC2 PIN IS WIRED TO AN ENABLE LINE
* ON THE TRANSMITING DEVICE OR THE CTS, DSR, AND DCD PINS OF THE
* CONSOLE RS-232 CABLE. (PINS 5,6 AND 8 RESPECTIVELY) THE ENABLE
* SIGNAL BLOCKS SERIAL COMMUNICATION DURING THE INTERRUPT ROUTINE
* AND IS ACTIVE LOW COMPLYING WITH RS-232 STANDARDS. NOTE THAT THE
* OC2 PIN DOES NOT PRODUCE RS-232 LEVEL OUTPUT AND THE SIGNAL SHOULD
* BE FED INTO A MAX232 OR MC145407P BEFORE BEING SENT OVER A SERIAL
* LINE.

LDAA #$80 ; prepare to force interrupt
STAA TCTL1 ; line back to low
LDAA #$40 ; load bitmap for OC2
STAA CFORC ; force line high
LDAA #$C0 ; restore the go-high
STAA TCTL1 ; request code
CLI ; Turn on interrupts

**
* I/O AND TRANSLATION FUNCTIONS *
**
**
* ROUTINE CLIP: TAKES A BYTE AND SETS AT $69 IF BETWEEN $69 AND $E0 *

30

* VALUES BETWEEN $E1 AND $FF ARE SET TO $00 *
**
CLIP
 CMPA #$AA ; This is the "off" command

BEQ GETDONE ; Done
CMPA #$A5 ; $A5 is the maximum position
BHI PROS_NEG ; This number is larger

GETDONE
RTS ; Return value in A

PROS_NEG:
CMPA #$E0 ; limit value
BHI PUTZERO ; Greater than $e0

 LDAA #$A5 ; Limit value to $69
BRA GETDONE ; Get out of routine

PUTZERO
LDAA #$00 ; Underflow from subtract
BRA GETDONE ; Done

**
* ROUTINE GETTIME: RETURNS A VALID TIMING VALUE FROM CONSOLE *
**
GETTIME

PSHB ; SAVE B REGISTER
JSR GETCHAR ; GET A CHARACTER
BSR CLIP ; ASSURE RANGE IS APPROPRIATE
PULB ; RESTORE B REGISTER
RTS

**
* ROUTINE GETBYTE: CONSTRUCTS A BYTE VALUE FROM TWO ASCII INPUTS *
**
GETBYTE

PSHB ; SAVE B REGISTER
BSR GETCHAR ; GET A CHARACTER
BSR XLATE ; TRANSLATE TO NIBBLE
LSLA ; TRANSFER TO HIGH NIBBLE
LSLA ; USING FOUR
LSLA ; SUCCESSIVE SHIFTS
LSLA ; TO THE LEFT
TAB ; STORE IN B REGISTER
BSR GETCHAR ; GET THE SECOND HALF
BSR XLATE ; TRANSLATE TO NIBBLE
FCB $1B ; CREATE FULL BYTE
PULB ; RESTORE B REGISTER
RTS ; RETURN BYTE IN A

**
* ROUTINE XLATE: TRANSLATES ASCII CHARACTER INTO NIBBLE *
**
XLATE CMPA #$39 ; IS IT A NUMBER?

BGT LETTER ; TREAT AS LETTER
ANDA #$0F ; GET ABSOLUTE VALUE
BRA XDONE ; FINISHED WITH NUMBER

LETTER ANDA #$5F ; MAKE UPPERCASE
SUBA #55 ; ADJUST TO HEX NUMBER

XDONE RTS ; FAIRLY EASY
**
* ROUTINE GETCHAR: GETS BYTE FROM SERIAL PORT AND ECHOS TO CONSOLE *
**
GETCHAR

LDAA SCSR ; CHECK RECEIVE REGISTER
ANDA #RDRF ; FOR INCOMING CHARACTER
BEQ GETCHAR ; NOT THERE, KEEP TRYING

GETC
LDAA SCDR ; GET THE CHARACTER IN A

RTS ; RETURN CHARACTER

* SUBROUTINE GETCHARNP: GETS BYTE FROM SERIAL PORT AND DOES NOT ECHO *
* IT TO CONSOLE. RESULT IS IN ACCUMULATOR A *

GETCHARNP

LDAA SCSR ; CHECK RECEIVE REGISTER
ANDA #RDRF ; FOR INCOMING CHARACTER
BEQ GETCHARNP ; NOT THERE, KEEP TRYING
LDAA SCDR ; GET THE CHARACTER IN A
RTS ; RETURN CHARACTER

* SUBROUTINE XDECI: TRANSFORMS 1 BYTE OF HEX IN ACCUMULATOR A *

31

* INTO DECIMAL NUMBER IN ACCUMULATOR A: *

XDECI

PSHB ; SAVE B ON STACK
PSHA ; SAVE A ON STACK
ANDA #$F0 ; ISOLATE HIGH NIBBLE ON A
LSRA ; MOVE HIGH NIBBLE TO LOW NIBBLE
LSRA ; IN ORDER TO MULTIPLY IT
LSRA ; "
LSRA ; "
LDAB #10 ; MULTIPLY CONTENTS OF A WITH 10 IN B
MUL ; "
PULA ; RESTORE A INTO ACCUMULATOR A
ANDA #$0F ; ISOLATE LOW NIBBLE
FCB $1B ; ADD THE TWO AND PUT RESULT IN A

PULB ; RESTORE B
RTS ; DONE

* THE INTERRUPT ROUTINE *

* First reset for the next interrupt
OC2ISR

LDD #40000 ; 40,000 E's is 20ms
ADDD TOC2 ; Add directly to
STD TOC2 ; preserve timing accuracy
LDAA #$40 ; prepare to clear the
STAA TFLG1 ; interrupt flag
LDD COUNTER ; get the current count
ADDD #1 ; increment 16-bit value
STD COUNTER ; store into the 20ms counter

* Look at complete table flag
* Take positions from secondary table and put them in primary table
* Clear FLAGS and COMPLETE flags
 LDAA #1

STAA FLAGS
 CLR COMPLETE
* Process the current servo list
* Now set the new turn-off values
**
* THE LOCATION STORAGE HOLDS A BITMAP WITH A 16-BIT VALUE CORRESPONDING *
* TO THE CURRENT SERVO BEING PROCESSED. FOR EXAMPLE, THE BITMAP $40000 *
* IS USED TO PROCESS SERVO 1. (0100... RECALL THAT INDEXING STARTS AT *
* ZERO) ONMASK HOLDS THE 16-BIT BITMAP OF THE SERVOS CURRENTLY DSIRED *
* TO BE ON. ALL SERVOS THAT ARE ON WILL HAVE THE BITMAP IN STORAGE *
* APPLIED TO THE ($97-X) ENTRY IN THE TIMING TABLE WHERE X IS THE TIMING *
* VALUE IN THE CORRESPONDING CURRENT_OFF REGISTER. SINCE MORE THAN ONE *
* SERVO MIGHT HAVE THE SAME TURN OFF TIMING VALUE, THE BITMAP IN STORAGE *
* IS "OR-ED" WITH THE PREVIOUS VALUE TO PREVENT OVERWRITING ANY OTHER *
* SERVO'S INFORMATION. *
**

LDD #$8000 ; Set active bitmap to servo one
STD STORAGE ; Save the bitmap
LDD ONMASK ; Find out what servos are on
STD STORAGE2 ; Working bitmap
LDY #CURRENT_OFF-1 ; Get the first servo address

SLOOP
LDD 0,Y ; Save the address
CLRA ; Zero for address usage
LSLD ; Offset for 16-bit value
XGDX ; Get address of the servo time register
LDD STORAGE2 ; Get active bitmap
LSLD ; Get status in carry flag
BCS SERVO_ACTIVE ; Servo active

* IN THE ONMASK INDICATES THAT THE SPECIFIED SERVO IS ON, IT IS
* PROCESSED AT SERVO_ACTIVE ROUTINE. OTHERWISE, THE SERVO_OFF ROUTINE
* WILL UPDATE THE SELECTION MASK IN STORAGE AND WASTE ENOUGH TIME SO
* AS TO BALANCE THE SERVO_ACTIVE ROUTINE
SERVO_OFF:

STD STORAGE2 ; Match delay of the other routine
LDD STORAGE ; Get the active bitmap
LSRD ; Shift for next channel
STD STORAGE ; Store the active bitmap
TST 0,X ; Burn 6 cycles
TST 0,X ; Burn 6 cycles
TST 0,X ; Burn 6 cycles

32

BRA T_ON_CHECK ; Now ready to resume routine
SERVO_ACTIVE:

STD STORAGE2 ; Store active bitmap
LDD STORAGE ; Restore the active bitmap
ORAA 0,X ; Inclusive Or to prevent
ORAB 1,X ; overwriting another servo's
STAA 0,X ; turn-off request.
STAB 1,X ;
LDD STORAGE ; Reload bitmap
LSRD ; Set bitmap for next servo channel
STD STORAGE ; Save bitmap

* AT THIS POINT, CHECK IF THE TURN-ON POINT OF THE CHANNELS HAS BEEN
* REACHED. THE CONTROL OF THE TURN-ON POINT IS ACHIEVED BY CHECKING
* FOR A CERTAIN NUMBER OF LOOPS THROUGH THE UPDATE ROUTINE. THE NUMBER
* OF LOOPS BEFORE TURN ON IS GIVEN IN ONWAIT. AS IT IS NOW, THE TIME
* DELAY BETWEEN TURN ON AND THE BEGINNING OF TURN OFF IS 0.484 MS
T_ON_CHECK:

INY ; Go to next table entry
CPY ONWAIT ; See if X loops done
BNE NEXT_SERVO ; Bypass servo turn on
LDD ONMASK ; Find which servos are active
STD PORTC ; and turn them on

NEXT_SERVO:
CPY #CURRENT_OFF+15 ; Done if at this address
BNE SLOOP ; Keep transfering table values

* NOW UPDATE THE LAST_OFF TABLE. SINCE THE TABLES ARE OFFSET BY
* EXACTLY 16 BYTES, THERE IS NO NEED FOR TWO INDEXES. TWO VALUES
* ARE UPDATED AT A TIME, SO ONLY 8 LOOPS ARE REQUIRED.
* THE TURN-OFF LOOP GIVING 13.5uS PER LOOP AT 8MHz
* THIS IS THE TIGHTEST POSSIBLE WAY TO EXECUTE THE TURN OFFS.
* THE TABLE MUST BE PROCESSED BACKWARDS BECAUSE COMPARING THE INDEX
* TO A FINAL VALUE AND BRANCHING CONDITIONALLY TAKES MORE TIME THAN
* DECREMENTING AND BRANCHING ON ZERO. THE ADDITIONAL TURNOFF CYCLE
* IS NECESSARY AFTER THE OFFLOOP BECAUSE THE BRANCH ON ZERO DOESN'T
* PROCESS THE ENTRY AT INDEX ZERO.
TURNOFF

LDX #TABLE_OFFSET ; GET TIMING TABLE ADDRESS
* TIMED LOOP STARTS HERE: 27E'S = 13.5 uS PER LOOP
OFFLOOP

LDD 0,X ; GET THE TIMING VALUE
EORA PORTC ; XOR TO TAKE HIGH LINE
EORB PORTB ; LOW AND THEN
STD PORTC ; UPDATE TO SERVO CHANNELS
DEX ; GO TO NEXT 16 BIT
DEX ; TABLE VALUE
BNE OFFLOOP ; IF NOT DONE CONTINUE TABLE

* TIMED LOOP ENDS HERE
LDD 0,X ; MUST TO FINAL TABLE VALUE
EORA PORTC ; SINCE A COMPARISON TO ZERO
EORB PORTB ; WAS THE TIGHTEST LOOP
STD PORTC ; POSSIBLE

* CLEAR TURN OFF TABLE
LDX #CURRENT_OFF-1 ; Prepare to get servo turn off times

CLEAR_LOOP
LDD 0,X ; Prepare to clear value
CLRA ; Zero high byte of address
LSLD ; Adjust for 16 bit value
XGDY ; Get timing address in Y
CLR 0,Y ; Now clear location
CLR 1,Y ; and the other half
INX ; Go to next location
CPX #CURRENT_OFF+15 ; Have all locations been initialized
BNE CLEAR_LOOP ; Keep clearing

* NOW FORCE THE OC2 PIN BACK LOW TO ALLOW SERIAL COMMUNCATION AND
* RESET THE TCTL1 CODE SO THAT THE NEXT INTERRUPT FORCES IT BACK
* HIGH.

LDAA #$80 ; prepare to force interrupt
STAA TCTL1 ; line back to low
LDAA #$40 ; load bitmap for OC2
STAA CFORC ; force line high
LDAA #$C0 ; restore the go-high
STAA TCTL1 ; request code
RTI ; INTERRUPT DONE

CLEAR FCB $1B, $5B, $32, $4A
FCB $00

CR FCB $0D, $0A, $00

33

ORG $FFBF
* ANY UNIMPLEMENTED INTERRUPTS ARE RETURNED IMMEDIATELY
BADINT RTI ; ALL UNUSED VECTORS HERE
**
* INTERRUPT TABLE *
**

ORG $FFC0 ; E9 VECTORS START AT $FFC0
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; RESERVED
FDB BADINT ; SCI Serial System
FDB BADINT ; SPI Serial Transfer Complete
FDB BADINT ; Pulse Accumulator Input Edge
FDB BADINT ; Pulse Accumulator Overflow
FDB BADINT ; Timer Overflow
FDB BADINT ; In Capture 4/Output Compare 5 (TI4O5)
FDB BADINT ; Timer Output Compare 4 (TOC4)
FDB BADINT ; Timer Output Compare 3 (TOC3)
FDB OC2ISR ; Timer Output Compare 2 (TOC2)
FDB BADINT ; Timer Output Compare 1 (TOC1)
FDB BADINT ; Timer Input Capture 3 (TIC3)
FDB BADINT ; Timer Input Capture 2 (TIC2)
FDB BADINT ; Timer Input Capture 1 (TIC1)
FDB BADINT ; Real Time Interrupt (RTI)
FDB BADINT ; External Pin or Parallel I/O (IRQ)
FDB BADINT ; Pseudo Non-Maskable Interrupt (XIRQ)
FDB BADINT ; Software Interrupt (SWI)
FDB BADINT ; Illegal Opcode Trap ()
FDB BADINT ; COP Failure (Reset) ()
FDB BADINT ; COP Clock Monitor Fail (Reset) ()
FDB START ; /RESET
END

34

Appendix E - High-Level Code

/* bobdefs.h */

#define NUM_SERVOS 12
#define REPEAT 4

#define RR_LIFT 0xC0
#define RR_EXT 0xC2
#define RR_SWING 0xC1
#define LR_LIFT 0xC6
#define LR_EXT 0xC5
#define LR_SWING 0xC7
#define RF_LIFT 0xC9
#define RF_EXT 0xCB
#define RF_SWING 0xCA
#define LF_LIFT 0xCE
#define LF_EXT 0xCF
#define LF_SWING 0xCD

35

/* bob.c - main program */

/*#define BORLAND*/

#include "icc2bc.h"
#include "bobdefs.h"
#include "posns.c"

void setservo(int servo, int posn)
{

int j;

for(j=0;j<REPEAT;j++){
putchr(0xBB);
putchr(code[servo]);
putchr(posn);

}
return;

}

void UnRise(void)
{

int i,k;
for(k=0;k<MAXRISEPOS;k++){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,risepos[k][i]);

}
}
return;

}

void Rise(void)
{

int i,k;
for(k=MAXRISEPOS-1;k>-1;k--){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,risepos[k][i]);

}
}
return;

}

void UnCrouch(void)
{

int i,k;
for(k=0;k<MAXCROUCHPOS;k++){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,crouchpos[k][i]);

}
}
return;

}

void Off(void)
{

int i,k;
for(k=MAXCROUCHPOS-1;k>-1;k--){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,crouchpos[k][i]);

}
}
for(i=0;i<NUM_SERVOS;i++){

setservo(i,0xAA);
}
return;

}

void Crouch(void)
{

int i,k;
for(k=MAXCROUCHPOS-1;k>-1;k--){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,crouchpos[k][i]);

}
}
return;

36

}

void Left(void)
{

int i,k;
for(k=MAXLEFTPOS-1;k>-1;k--){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,turnleftpos[k][i]);

}
}
return;

}

void Forward(void)
{

int i,k;
for(k=MAXFWDPOS-1;k>-1;k--){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,walkfwdpos[k][i]);

}
}
return;

}

void Back(void)
{

int i,k;
for(k=0;k<MAXBACKPOS;k++){

for(i=0;i<NUM_SERVOS;i++){
setservo(i,walkbackpos[k][i]);

}
}
return;

}

void main()
{

int light,IR_front;
int mode=0,counter=0;

UnCrouch();
while(1){

switch(mode){ /*movement*/
case 0:

Forward();
counter++;
if(counter==8){

mode=1;
counter=0;

}
break;

case 1:
Left();
counter++;
if(counter==10){

mode=0;
counter=0;

}
break;

case 4:
Back();
break;

default:
break;

}
light=analog(7);
IR_front=analog(5);
printf("\nlight=%d\tFLIR=%d\tmode=%d\n",light,IR_front,mode);
switch(mode){ /*sensors*/

case 0:
case 1:

if(light<90){
mode=3;
Off();

}else if(IR_front>120){
mode=4;

37

Rise();
msleep(3500);
UnRise();

}
break;

case 3:
if(light>165){

UnCrouch();
counter=0;
mode=0;

}
break;

case 4:
if(IR_front<110){

mode=1;
}
break;

default:
break;

}
}

}

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	1. Executive Summary
	2. Introduction
	2.1 Legged Robots
	2.2 Number of Legs
	2.3 Objectives
	2.4 Organization of Paper

	3. Integrated System
	4. Mobile Platform
	4.1 Requirements
	4.2 Construction

	5. Actuation
	5.1 Servos
	5.2 Controllers

	6. Sensors
	6.1 Photosensor
	6.2 Infrared Emitter/Detector
	6.3 Tilt Sensor
	6.4 Sound Sensor

	7. Behaviors
	7.1 Hibernation
	7.2 Obstacle Detection/Avoidance

	8. Experimental Results
	9. Conclusions
	References
	Appendix A - Parts List
	Appendix B - Weights
	Appendix C - Mechanical Drawings
	Appendix D - Servo Code
	Appendix E - High-Level Code

