Bob,
An Autonomous Quadrupedal Robot

Final Report

“...likeadog swalking on hishind legs. It isnot donewell, but
you are surprised to find it doneat all.” - Samuel Johnson

Steve Stancliff
University of Florida
Intelligent Machines Design Laboratory
Submitted: April 23, 1998
Edited: March 25, 2000

Acknowledgments

This project would not have been completed without the assistance of all of the IMDL
TAs, and especially Jenny Laine, who wrote the code that resides on the single-chip board
and directly controls the servos.

Bob owes a great deal to the robot “Thing” by Willard S. MacDonald. It was not my
intention to end up with a robot so close to Thing in design, but as | experimented and
encountered various problems, | found that the solutions implemented in Thing were
usually the best solutions | could find.

Thanks to Rohm Electronics for donating a LCD panel for this project, which,
unfortunately, is not yet implemented.

Abstract

The objective of this project was to design, construct, and test hardware and software to
create a small autonomous quadrupedal robot. Four legs were chosen for this project as a
reasonable compromise between the hardware complexity when many legs are used and
the software complexity required for stability when fewer legs are used. A design giving
three degrees of freedom (DOF) per leg was chosen because fewer DOFs restricts the
robot’s mobility, and more DOFs are redundant. At the time of the writing of this paper,
the robot is capable of walking forward and backward over level surfaces, turning to the
left, and raising and lowering it’s body. It implements minimal obstacle detection using a
single forward looking infrared emitter/detector pair. It also uses a photocell for detection
of ambient light level.

Contents

ACKNOWIEBAGMENTS ...ttt sttt e te e e e aeste e e e sreeneeneeeneeneeenes ii
Y 01 1 = T SO P SRS i
LISt Of T@DIES ...t r e nenre v
I o 0 =R Vi
1. EXECULIVE SUMMI@IY ..ottt b e n e nn e se e nenn s 1
P22 1 018 o e (3Tt o] o OSSP TPTUPP ST ROSORTRO 3
3 INTEGIrAEEA SYSEEM ...t r e e n e 6
4. MODIE PIEETOI M L. 8
I o (U = 1§ [0 o OSSP P USRS USSP 11
LS = 01 o T PP PR TP 13
T BENAVIOI S, ettt e e R R R e e e s 15
8. EXPErimMENtal RESUITS.......oiuiiiieiece e 16
9. CONCIUSIONS ...ttt b bbb e e s e e se e h e e Rt e Rt bt ne e b e e e e e e e e e s e e seenenneanas 20
REFEI BINCES ...t h et b e h e r e 21
APPENAIX A - PartS LISt ..o 23
APPENAIX B - WEBIGNTS ... 24
Appendix C - MeChaniCal DraWINGS.........cocoeieirieisesese e 25
APPENAIX D - SEIVO COUE ...ttt e e 27
ApPpPendix E - HIgh-LeVel COUE.........ooiiiieeee e 34

List of Tables

Table 8.1 - Microphone Frequency RESPONSE.........cccviieierieeere ettt eas 17
Table 8.2 - Frequency Response of First AMPlTIer. ..o 18
Table 8.3 - Frequency Response of Second AMPLITIercooeiiieie e 19
Table A.1 - Component Listing With COSES.......coveiiiieiieee e 23
Table B.1 - ComMPONENt WEIGNES.ccuiieeieiieie ettt enee e e e e saeeneeneas 24

List of Figures

FIQUPE 1.1 - IMRCLL ...ttt bbbt bt b et bt ne s 7
Figure 8.1 - Sound SenSOr SCHEMALICcveveeeererieeer et 16
Figure 8.2 - Microphone FrequenCy RESPONSEccoviiieieieeiene ettt 17
Figure 8.3 - Frequency Response of First AMPHTIeroooooeiiieii e 18
Figure 8.4 - Frequency Response of Second AMPlITier ..o 19
Figure C.1 - Leg ANd SNOUIAEr BOXcceeeeiiiiieiesieeie e ie et ste e see e enee e 25
Figure C.2 - Upper and Lower PlatfOrmMS........cc.oiioiieeree e 26

Vi

1. Executive Summary

Most of the effort to date on Bob has been spent on mechanical and electrical
hardware. Once the basic configuration was chosen, a bottom-up design methodol ogy
was followed.

The first stage in the design was to establish aleg design. Several balsa prototypes
were constructed and tested for range of motion and sturdiness. In the end, the leg design
of “Thing” was adopted.

The next design issue was how to mount the lift and extension servos to the base
and to the swing servo. A “shoulder box” was quickly settled on to contain these servos
in arigid arrangement. The problem of how to mount the shoulder box to the base while
allowing free rotation was one of the more difficult ones. Eventualy, a ball-bearing
wheel was located which could be used between the base and the shoulder box.

In an attempt to differentiate Bob from Thing, the base of the prototype was made
square. Once the prototype was assembled, it was obvious that this shape severely
limited the range of motion of the swing servo. A design similar to Thing, with the swing
servos extending diagonally out from a square center, was adopted for the final robot.

At the time of the prototype’ s construction, the primary processor board was to be a
Motorola EVBU in combination with a Mekatronix ME11. When the prototype was

assembled, it was obvious that this combination was a limiting factor in the size and

weight of the robot. The pair of boards was replaced by the Mekatronix MRC11, which
not only weighs half as much, but also alows the platform to be 30% smaller, resulting in
additional weight savings.

In paralel with the hardware development, three sensor systems were developed. A
sound sensor was designed around the LM 741 op-amp, to amplify and rectify microphone
signals. A photocell sensor was developed to detect ambient light-level, and a MIL-
standard infrared emitter/detector pair was used for obstacle detection.

Software development to this point has been trivial, since pre-existing servo-
controller code was used. The higher level code is less than a hundred lines in length at

this point. Future developments will concentrate in this area.

2. Introduction

2.1 Legged Robots

Most existing mobile robots rely on wheels for locomotion. This is the best
solution for traversing relatively even surfaces, but wheeled platforms have difficulties
dealing with obstacles which legged platforms can ssimply step over. On the other hand,
wheeled platforms are inherently stable, since the wheels are intended to remain on the
ground. A legged robot must shift its center of gravity as it walks in order to maintain
stability. In addition, the driving mechanism for a wheeled vehicle can be relatively
simple and inexpensive to construct, while a leg mechanism requires complicated
linkages and multiple motors, as well as sensors to determine the location of the leg

relative to the ground.

2.2 Number of Legs

Choosing the number of legs for the robot amounts to a tradeoff between
mechanical complexity (which implies cost and weight) and software complexity.
Existing robots, as well as most walking creatures, are mostly of three varieties. two-,
four-, or six-legged. Successful implementation of a two-legged robot is an extremely
complicated task, and beyond the scope of a one-semester, one-student project. A SiX-

legged robot, on the other hand, requires greater mechanical complexity, and offers more

opportunity for unit failure. In addition, the problem of a six-legged robot seems to have
been reasonably accomplished, as there are severa examples available. For these

reasons, afour-legged design was chosen.

2.3 Objectives

The primary design criteriafor this robot were as follows:
- minimal cost
- incorporate aready-owned components
- use cheap and easily-worked materials for platform
- minimize weight to make use of cheaper servos

- robustness
- solid design and construction

- able to be implemented in stages
- modular design
- room for expansion
The objectives for this semester were:
- design and construct the platform
- implement a simple, hard-coded walking routine

- implement minimal sensors for obstacle avoidance

- if time allows, implement a more intelligent walking agorithm

2.4 Organization of Paper

Section 3 describes the robot system as a whole, and how it meets the design criteria.
Section 4 describes the platform structure.

Section 5 describes the servos and servo-control system.

Section 6 describes the sensors.
Section 7 describes the sensor-based behaviors.
Section 8 describes the experimental testing of the design.

Section 9 gives a summary of the project and plans for future work.

3. Integrated System

Bob is an autonomous mobile robot which uses four legs for locomotion. Each of
these legs has three servos controlling it’s rotation, lift, and extension, giving each leg
three degrees of freedom (DOF). With three DOF, the legs have a wide range of motion,
and can move directly between any two pointsin that range.

The platform and legs are constructed from plywood which is designed for use in
model airplanes, and thus has a high strength-to-weight ratio. The leg actuators are
“standard” model aircraft servos. The legs and platform were designed to give
overlapping workspaces for the legs, which increases the maneuverability of the robot,
but requires the software to keep the legs from getting tangled.

The servos are controlled by a Motorola 68BHC711E9 microprocessor running in
single-chip mode on a Mekatronix MSCC11 board. This board generates the PWM
signals required for the servos. The code on this board resides in the EEPROM and is
listed in Appendix D.

The “intelligence” of the robot comes from a second 68HC711E9 running in
expanded mode on a Mekatronix MRC11 board with 32k of SRAM (Figure 1.1). This
board sends servo positions to the single-chip board through the serial interface. The

sensors are attached to this board. The code for this board islisted in Appendix E.

Figurel.l- MRC11

The robot currently walks in a statically-stable mode, which is the definition of
walking, as opposed to running. To be statically stable at all times, the center of gravity
must be constantly shifted to keep it within the base of support provided by the three legs
which are on the ground. It should be possible to implement a“running” behavior where

two legs are off the ground at once, but this will require some type of tilt-sensors and

more complex software.

A list of the parts used in this project is given in Appendix A.

4. Mobile Platform

4.1 Requirements

The platform design was driven primarily by three things:
- the need to minimize weight,
- the need to maximize leg workspace
- the size of affordable and obtainable components
For the type of robot envisioned, minimizing weight was very important because
when the robot is standing, the lift servos have to support the weight of the robot. Greater
weight would require more powerful servos, at much greater cost. Weight reduction
techniques included choosing a thin (3/32”) plywood and cutting holes in the parts. A
significant amount of additional material could be removed from the upper and lower
bases without harming the structural integrity, but this was not done in order to leave
space for mounting future additions. A list of component weights is given in Appendix
B.
The need to provide maximum maneuverability and symmetry of motion for the
legs dictated the shape of the platform. The “shoulder boxes’ are extended diagonally

away from the body at the corners. This design mimics that of “Thing”, and was chosen

after more simple designs proved to limit the workspace severely.

The size of the platform was limited by the size of the processor boards and the
servos. The resulting design has a large amount of unused surface area and internal

volume.

4.2 Construction

The platform was constructed of 3/32” model-aircraft plywood. The components
were drawn in AutoCAD and then cut out by the T-Tech routing machine. This machine
made it possible to cut shapes which would have been difficult or impossible to cut by
hand, and cut so accurately that the finished product is very finished-looking.

The upper and lower bases are attached to one another by four bolts, which extend
below the lower base and provide a support for the robot when the servos are off. The
swing servos are mounted on the upper base, and the rotation and extension servos are
mounted in “shoulder boxes’ which are attached at the top to the swing servos, and at the
bottom to a wheel with ball bearings. This wheel supports the weight of the shoulder,
reducing stress on the swing servos.

The mounting of these bearings was the most complicated part of the fabrication. In
order to provide free rotation of the shoulder, it was desired that the inner race of the
bearing touch only the shoulder box and not the bottom base, and that the outer race touch
only the base and not the box. This was accomplished by routing out one and two layers
of the five-ply plywood to provide recesses for the bearing. The bearing is attached to the
shoulder by a bolt, and is held in place on the base by pressure. Again, this fabrication

would have been difficult or impossible without the T-Tech router.

The shoulder boxes were designed with interlocking joints. This proved to be
difficult, since in the act of offsetting the AutoCAD drawing to allow for the width of the
router bit, the tabs become wider and the slots narrower. The prototype shoulder boxes,
after significant filing, held together well with no glue. The boxes on the final robot are
held together more by glue than by the joints themsel ves.

The leg design follows that of “Thing”. A good discussion of leg designs is found
in (MacDonald 94).

AutoCAD drawings of the wooden parts are located in Appendix C.

10

5. Actuation

5.1 Servos

Bob is motivated by twelve model-airplane servos. Four standard Futaba servos are
used as the swing servos, and eight standard Hitec servos for the extension and lift servos.
The Hitec servos are rated at 42 oz-in of torque a 4.8 V, and al of the servos weigh
approximately 1.7 oz. The Futaba servos were removed from a model airplane, and the
Hitec servos were chosen entirely for low cost. It will probably be prudent to upgrade to
ball-bearing servos, at least for the lift servos, which have the greatest load under normal

circumstances.

5.2 Controllers

All twelve servos are controlled by the MSCC11 board, which receives commands
via its seria port, and outputs PWM signals to the servos. The code for this board was
provided by Jennifer Laine. The serial commands to this board consist of three characters
in succession. The first character indicates the start of a message, the second selects the
servo to be positioned, and the third selects the position for the servo. The possible range
of positions accommodated by the software is 0x00 to OxA5, but in practice it was found
that the range of motion of the servos sometimes fell outside this range. For the

extension and lift servos, only a small portion of the servo’s range is needed, but for the

11

swing servos, it would be preferred to have the full range of motion. The servo control
code islocated in Appendix D.

As currently implemented, the code on the MRC11 board contains servo-position
data for various motion regimes, such as walking forward or turning right. The amount of
data needed for complex behavior is very large. The amount of data could be reduced by
implementing the kinematic equations of motion for the legs in the MRC11, but this
would require significant work on the part of the programmer and the processor. The
current data uses only a small fraction of the 64k of memory available on the MRC11

board, so for now it seems better to leave the processor free to perform higher-level tasks.

12

6. Sensors

6.1 Photosensor

Bob is equipped with a CdS photocell, which is used to detect the ambient light
level. The photocell acts as a variable resistor, with resistance inversely proportiona to
light level. The sensor circuit consists of the photocell in series with a resistor. The
resistor value was chosen to give a wide range of output voltages. The output is the
voltage across theresistor. Total darkness gives an analog port reading of about 50, while

bright light gives areading of about 225.

6.2 Infrared Emitter/Detector

Bob also possesses an infrared emitter/detector pair of the standard MIL type. The
detector is a Sharp Digital IR detector which has been modified to provide an analog
output. The emitter is housed in a cylindrical container in order to control the spread of
the IR beam somewhat. The analog port reading idles at about 90, and rises to about 130
for an object which is very close to the sensor. A reading of about 120 indicates an object

within about afoot of the robot.

13

6.3 Tilt Sensor

A mercury switch is mounted on Bob as a poor-man’s level-sensor. The switch is
wired and provides valid input to the MRC11, but it has not been calibrated to a specific
angle, and no behaviors are currently implemented using this sensor. To receive useful
information about the position of the platform would require at least four of these sensors,

two on each axis.

6.4 Sound Sensor

In response to the requirement to develop a "new" sensor for the IMDL project, |
decided to build a sensor which would let me create an audiotropic behavior in my robot.
The initial design for the audio sensor used a LM 386 audio amplifier IC to amplify the
signa from the microphone. The LM386 caused distortion in the microphone, so the
sensor was developed on the LM 741 general-purpose op-amp instead. The sensor works
will in this configuration, however, the LM741 is a dua-power chip, and is therefore
unsuitable for a mobile platform. Attempts were made to port the circuit to the LM 324,
and problems similar to the LM386 were encountered. Due to time constraints, further
development was not carried out, and the sensor is not currently implemented on Bob.
The development and testing of the sound sensor are described in more detail in Section

8.

14

7. Behaviors

Since Bob looks and moves like a small animal, it made sense to implement animal -

like behaviors. Two behaviors are currently implemented.

7.1 Hibernation

When the photocell detects a low light level, Bob crouches down and turns off his
servos. In nature, a small animal might react this way to the shadow of a passing bird.
Bob reactivates and resumes moving about when he detects a bright light source. For an
intermediate light level, Bob keeps doing what he was aready doing - moving or

hibernating.

7.2 Obstacle Detection/Avoidance

When the forward IR detects an object nearby, Bob raises up to his full height, in
order to try and scare it away. If it doesn’'t move away in a short time, he decides that it
must not be scared of him, so he retreats until he doesn’t see it anymore, and then turns

away and goes back to wandering. Similar behavior can be observed in many animals.

15

8. Experimental Results

The only formal experiments conducted were on the sound sensor.

summarized here.

The amplifier/rectifier circuit based on the LM 741 is shown in Figure 8.1. The two
primary factors in choosing the components were the need for a large output voltage
change for a small input signal, and the need to maintain a large difference between the
idle output voltage and the saturation output voltage. Increasing the gain to accomplish

the first goal also increased the DC offset at the output, defeating the second goal, so a

compromise had to be made.

i
End

wic

e
Ol
I

 —_
LN ITLI .

THGETR

T TuF

.

nk

Figure 8.1 - Sound Sensor Schematic

The frequency response of the microphone was measured by using a signal of 10V

amplitude output through a small speaker, a a constant position relative to the

16

These are

microphone. The results of this testing are shown in Table 8.1 and Figure 8.2. This test
actually measures the combined response of the speaker and the microphone, but a better

test could not be done without a sound pressure level meter.

Table 8.1 - Microphone Frequency Response

Yin 22 Wop-p
f Yout Gain Gain
{kHz) (' p-p) {dB)
018 11 0.000%5 -BA
.35 28 0.0013 -53
0.76 18 0.000a -G
1.1 27 n.oo1z -53
2.0 514 0.0030 -51
2.0 220 0.0100 -40
3.9 113 0.0051 -46
6.1 110 0.0050 -46
8.2 21 00010 -G
97 12 0.000%5 -B5
a0 T
-0 1 1]
L]]
Gain [dE] -50 + m
LI - |
G0 1 . Il
-]
70 r + |
] § 10
Frequency [(kHe]

Figure 8.2 - Microphone Frequency Response

17

The frequency responses of the amplifiers were measured individualy by inputting
asignal from a function generator. The results are shown in Table 8.2 and Figure 8.3 for

the first amplifier and Table 8.3 and Figure 8.4 for the second amplifier.

Table 8.2 - Frequency Response of First Amplifier

Yin 22 s
i Wit Zain Gain
(kHz) ()] (dB)
0.0496 125 ot a4
0.30 9.9 440 53
0.50 a.6 3491 a2
072 a 364 a1
093 7.6 ad4a a1
1.0 7.5 341 a1
1.1 7.3 a3z a0
1.6 6.9 a4 a0
2.0 5.6 285 43
3.0 3.9 177 45
40 3 136 43
5.0 26 118 41
6.1 2.1 95 40
7.1 1.8 a2 a8
8.2 1.5 Ga ar
9.3 1.3 a4 35
10.3 1.1 a0 34

[u11]
I
ﬁl:l-.‘l

Gain [dE]]

40+ m

a0

Frequency [kHe)

Figure 8.3 - Frequency Response of First Amplifier

18

Table 8.3 - Frequency Response of Second Amplifier

Yin 21 my a-p

i Wit Zain Gain
(kHz) () (dB)
0.8y 140 6.7 16
0.20 180 a.6 149
0.30 182 ar 149
0.40 182 ar 149
0.50 180 a.6 149
0.61 177 a4 149
071 177 a4 149
n.az 176 a4 18
n.4az2 174 a3 18
1.0 171 a1 18
1.1 164 2.0 18
1.2 166 749 18
2.1 151 7.2 17
3.0 132 6.3 16
41 115 A5 15
5.1 102 449 14
6.1 93 4.4 13
7.1 a3 40 12
8.2 7 ar 11
9.3 53] a3 10
10.3 A4 2.0 10

7]

w4 ™ m

-]
Gain [dB) 14 4 a
-]
12 4]
<]

10 4 .

] } } |

0.oo 5.00 10.00 1500

Frequency [k He)

Figure 8.4 - Frequency Response of Second Amplifier

19

9. Conclusions

At this point, Bob has met the semester objectives of creating a walking platform
with obstacle avoidance and hard-coded flat-floor walking. So far, no new ground has
been covered by this project, but Bob is a good platform which can be used for more
advanced studies at a later time. In addition, Bob is an improvement in many ways over
his ancestor, Thing. Bob is cheaper, smaller, lighter, uses fewer processors and is of
simpler construction than Thing.

Some future extensions which | envision for Bob are:

- add more movement types: walking sideways, turning right, waving a paw, etc.

- add the ability to climb objects. this probably involves the development of
contact sensors for the feet.

- improve obstacle avoidance with more IR sensors and perhaps whisker-type
Sensors.

- add acharging circuit
- improve and implement the sound sensor

20

References

Alexander, R. McN., “The Gaits of Bipeda and Quadrupedal Animals.”, International
Journal of Robotics Research, Summer, 1984.

Coggin, D., "Bot'arina", University of Florida Intelligent Machines Design Laboratory,
1995.

Fryman, J., "Antaean”, University of Florida Intelligent Machines Design Laboratory,
1996.

Hirose, Shigeo, “A Study of Design and Control of a Quadrupedal Walking Vehicle.”
International Journal of Robotics Research, Summer, 1984.

Huber, M., MacDonald, W., Grupen, R., “A Control Basis For Multilegged Walking.”
| EEE Conference on Robotics and Automation, April 1996, Volume 4, pp. 2988-2993.

, “Building Walking Gaits for Irregular Terrain from Basis Controllers.” |EEE
Conference on Robotics and Automation, 1997.

Klein, Charles, et. al., “Use of Force and Attitude Sensors for Locomotion of a Legged
Vehicle over Irregular Terrain.”, International Journal of Robotics Research, Summer,
1983.

MacDonald, W.S., "Design and Implementation of a Multilegged Walking Robot",
University of Massachusetts - Amherst Laboratory for Perceptual Robotics, 1994.

Osorio, R.J., "Spot: An autonomous mobile platform™, University of Florida Intelligent
Machines Design Laboratory, 1997.

Reddish, A., "Dogbot", University of Florida Intelligent Machines Design Laboratory,
1997.

Reibert, Marc, Legged Robots That Balance, MIT Press, 1986.

Van Anda, J., "Quadro”, University of Florida Intelligent Machines Design Laboratory,
1997.

21

APPENDICES

Appendix A - Parts List

Table A.1 - Component Listing with Costs

Part Quan | Manufacturer Source Price
MRC11 Board for 68HC11 1 Mekatronix MIL $70 est
MSCC11 Board for 68HC11 1 Mekatronix MIL $30
MB2325 Serial Board 1 M ekatronix MIL $11
XC68HC711E9 MPU 2 Motorola N/A N/A
HS-300 Servo 8 Hitec Major Hobby $80
FP-S28 Servos 4 Futaba N/A $60 est
3/32"x12"x24" plywood 2 $6
Bearings 4 Home Depot $6
GP1U58X IR Sensor 1 Sharp MIL $3

IR LED 1 MIL $1
Misc Electronics Various Various $20 est
Misc Hardware Various Various $20 est
TOTAL ~$300

23

Appendix B - Weights

TableB.1 - Component Weights

Component Weight (02)
MSCC11 Board

MRC11 Board

6V Battery for Servos 8.5

9.6V Battery for Electronics 7.1

Servo 1.7

Entire Assembly 56.7

24

Appendix C - Mechanical Drawings*

e S

J__ i Lij

Figure C.1- Leg And Shoulder Box

! Drawings are not at a constant scale.

25

O
O b
O

]
L

Figure C.2 - Upper and Lower Platforms

26

Appendix D - Servo Code

khkkhkhkhkhkhkhkhkhhkhkhkhhhhhhkhkhhhhhhkhkhhhkhkhkhkhkhkhkhhhhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*%x

* TH S | S THE PROGRAM VWHI CH ALLOAS A USER TO CONTROL UP TO 16 SERVCS *
* FROM A TERM NAL OR FROM A HI GHER LEVEL PROCESSOR. BASI CALLY, IT *
* | NCLUDES THE | NI TI ALl ZATI ON CODE AND THE OC2I SR | NTERRUPT ROUTI NE *
* VR TTEN BY JENNY AND PARTI ALLY BY ERI K. *
khkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhhhkhhhhhkhhhhhkhkhkhhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkx*x*%
* ZERO PAGE EQUATES *
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhkhkhkhkhhkhkhkhkhkhkhhhkkkkk*x*%x
* A 152 ENTRY TABLE OF 16-BI T VALUES | S RESERVED AT LOCATIONS *
* $0000 THROUGH $012F (| NDEXED AS 0 THROUGH 151). ENTRY X IS *
* FOUND AT LOCATION 2*X I N THE MEMORY MAP. EACH ENTRY IS A *
* TURN- OFF BI TMAP WTH EACH BIT (BIT 15 TO BI T 0) REPRESENTI NG *
* SERVO NUMBER 0 TO 15 RESPECTI VELY. AT A TIME G VEN BY 164. 5uS*
* PLUS THE QUANTITY [13.5uS * (150-X)], THE CONTROL PULSES TO *
* THE SERVCS SPECI FI ED BY THE Bl TMAP AT ENTRY X ARE TURNED OFF. *
* TABLE_OFFSET |'S A PO NTER TO THE LAST TABLE VALUE. THE TABLE *
* |' S PROCESSED FROM HI GHEST TO LOWEST | NDEX FROM ENTRY $A7 TO *
* $00 W TH THE ENTRY A7 BEING A NULL ENTRY USED TO PROPERLY *
* ALI GN THE CONTROL PULSES. ATTEMPTS TO WRI TE TO THE $97 | NDEX *
* W LL BE REDI RECTED TO THE $96 | NDEX. *
TRENA EQU $0C ; Transmit, Receive ENAbl e

RDRF EQU $20 ; Receive Data Register Full

TDRE EQU $80 ; Transmit Data Register Enpty
TABLE_OFFSET EQU $14A ; Last record in turn-off table

CHANL EQU $10 ; CHANNELS 1-4

CHAN2 EQU $14 ; CHANNELS 5-8

ADON EQU $80 ; AD PONER UP

ADOFF EQU $7F ; AD PONER DOWN

SPI ON EQU $4C ; ENABLE SPI

SPI OFF EQU $0C ; DI SABLE SPI

SPI DONE EQU $80 ; SPI TRANSFER COVPLETE

WAl T_SHORT EQU #9 ; 67 us on | oop

WAI T_M D EQU #248 ; 1501 us in |oop

TURN_DELAY EQU #1000 ; TURN DELAY
khkkhkkhkkhkkhkhkhkhkhkhkhhhkhhkhhkhkhhhhhhhhhhhkhhkhkhkhkhhhkhkhkhkhhhkkkkkx*x*%x
* STANDARD EQUATES *
khkkhkhkhkhkhkhkhkhkhkhkhhkhhhhhkhhkhhhhhhkhhhkhhkhkhkhkhkhkhhhhhhhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkkhkhkkkkkk*x*x
PORTA EQU $1000 ; PORT A data register

PORTC EQU $1003 ; PORT C data register

PORTB EQU $1004 ; PORT B data register

PORTD EQU $1008 ; PORT D data register

DDRC EQU $1007 ; PORT C direction register

PORTE EQU $100A ; PORT E data register

CFORC EQU $100B ; Tiner Conpare Force

TOC2 EQU $1018 ; Timer Qutput Conpare register 2

TOCL EQU $1016 ; Tinmer CQutput Conpare register 1

TOC5 EQU $101E ; Tinmer CQutput Conpare register 5

TCTL1 EQU $1020 ; Tinmer ConTroL register 1

TCTL2 EQU $1021 ; Tiner ConTroL register 2

TMBK1 EQU $1022 ; Tinmer interrupt MaSK register 1

TFLGL EQU $1023 ; Tiner interrupt FLaG register 1

RTFLGL EQU $23 ; Relative to $1000 Timer interrupt FLaG register 1
TMBK2 EQU $1024 ; Tiner interrupt MaSK register 2

TFL&X EQU $1025 ; Tinmer interrupt FLaG register 2

PACTL EQU $1026 ; PULSE ACCUMULATOR CONTROL

OC1D EQU $100D ; QUTPUT COWPARE 1 DATA REG STER

SPCR EQU $1028 ; SPI Control Register

SPSR EQU $1029 ; SPI Status Register

SPDR EQU $102A ; SPI Data Register

BAUD EQU $102B ; SCl Baud Rate Control Register

27

SCCR1 EQU $102C ; SCI Control Register 1

SCCR2 EQU $102D ; SCI Control Register 2
SCSR EQU $102E ; SCI Status Register
SCDR EQU $102F ; SCI Data Register
ADCTL EQU $1030 ; A/D CONTROL Regi ster
ADR1 EQU $1031 ; RESULT 1
ADR2 EQU $1032 ; RESULT 2
ADR3 EQU $1033 ; RESULT 3
ADR4 EQU $1034 ; RESULT 4
OPTION EQU $1039 ; OPTI ON Regi ster
TCNT EQU $100E ; TOCNT Register
REVWALK1 EQU $EL70 ; Reverse Wl k nunmber 1
REWALK2 EQU $E2F0 ; Reverse WAl k nunber 2
TURNLEFT EQU $E470 ; Turning left walk
STARTAD EQU $EO000 ; Begi nning address of wal k tables
* REG STER STRUCTURES *
ORG $014C
CURRENT_CFF RVB 16 ; The current turn-off val ues
ONVASK RVB 2 ; The nmask of selected servos
STORAGE RVB 2 ; Tenporary Storage
STORAGE2 RVB 2 ; Tenporary Storage 2
ONWAI T RVB 2 ; Signal Alignnent Variable
WAI T_COUNT RVB 2 ; Signal Alignnent Variable
COUNTER RVB 2 ; A 16-bit Counter for WAIT function
FLAGS RVB 1 ; HEADER FLAG
COWPLETE RVB 1 TABLE COWPLETE FLAG
HOLD RVB 2 ; Tenp regi ster
* SETUP AND | NI TI ALI ZATI ON CODE *
ORG $D000 ; $D000 is the beginning of EPROM
START
LDS #$01FF ; Set stack at the top of ram
LDAA #$30 ; Set baud to 9600
STAA BAUD ; Set the port baud
CLR SCCR1 ; Set node if indetermined to N81
LDAA #TRENA ; Load mask for Tx, Rx
STAA SCCR2 ; Enabl e the serial subsystem
LDAA #SFF ; Set for output
STAA DDRC ; All port C pins now out put
CLRA ; Initialize outputs to
STAA PORTC ; zero to prevent jerking
STAA PORTB ; zero to prevent jerking
LDAA #ADON ; Power on
STAA OPTI ON ; A/D system
LDX #ONVASK+1 ; Start at end of timng tables
CLEARLCOP:
CLR 0, X ; Clear the location
DEX ; Move to previous cell
BNE CLEARLOCP ; Keep clearing
CLR 0, X ; Clear the $00 | ocation too
* SET UP | NTERRUPT FOR OC2 *
LDAA #$40 ; Set up OC2 bitmap
STAA TFLGL ; Clear the interrupt flag register
STAA TMVBK1 ; Request hardware interrupt sequence
LDX #$1000 ; Set X to beginning of control registers
I NI T_PACTL
BSET $26, X $88 ; Set PA7 for output
PWLINIT
BSET $0C, X $BO ; Set OCl to control OCl1, OC3, OC4
CLR OC1D ;o Al OCx pi ns go low on a conpare of OCl
LDAA H#BAA ; Set OC3-4 to go |low and OC5, OC2 go |ow.

STAA TCTL1
* VARI ABLE ONWAI T HOLDS THE | TERATI ON OF THE SERVO TURN- ON CYCLE
* AT WHI CH THE ONMASK IS FI RST ASSERTED ONTO THE SERVO PORTS

LDX #CURRENT_OFF+14 ; 15 | oops desired before turn on
TI MEST

STX ONWAI T ; Store the wait val ue

CLR COUNTER ; Clear interrupt counter

CLR COUNTER+1 ; Counter is 16 bits

28

LDD
STD
CLR
CLI

CLR
LDX
STX

GETB

JSR
CVPA
BNE

READY

LDX

LocP

JSR
CVPA
BLS
ANDA
TAB
FCB
CLRA
XGEY
I NY
TST
BNE

STLOO

DEY
BEQ
LDD
LSRD
STD
BRA

ENDL OO

EE I T

JSR
CVPA
BEQ
TST
BNE
STAA
LDD
ORAA
ORAB
STD
BRA

TST
BNE

LDD
COVA
covs
ANDA
ANDB
STD
BRA

THE FOLLOW NG CODE ENABLES S

Low

#$0000
ONVASK
FLAGS

FLAGS
#$8000
HOLD

GETCHAR
#3$BB
GETB

#CURRENT_OFF

GETCHAR
#$BF
WOW
#$0F

$3A

FLAGS

ENDLOO
HOLD

HOLD
STLOO

GETTI ME
#SAA
OFF
FLAGS
WOW
0, X
HOLD
ONVASK
ONVASK+1
ONVASK
WOW

FLAGS
WOW
HOLD

ONVASK
ONMASK+1
ONIVASK
WOW

ERI AL TRANSM TI ON BY FORCI NG OC2
IT 1S ASSUMED THAT THE OC2 PIN I S WRED TO AN ENABLE LI NE

i Al
; This is crucia

Turn on interrupts

onmask fl ag

Get the character from serial
; Looking for header character (term na
is conmunicating with processor

Ter mi nal

servos are initially off
to nmake servos not go

port
header)

X contains the positions table pointer

Get servo nunber ($C0-$CF)

Of directive?
Yes
Test flags
Fl ag was set
Put servo position in table
; Put onmask flag in D
Turn respective servo on

tbnplenent
Conpl enent
Turn of f respective servo

ON THE TRANSM TI NG DEVI CE OR THE CTS, DSR, AND DCD PINS OF THE
CONSCLE RS-232 CABLE. (PINS 5,6 AND 8 RESPECTI VELY) THE ENABLE

SI GNAL BLOCKS SERI AL COMMUNI CATI ON DURI NG THE | NTERRUPT ROUTI NE
AND |'S ACTI VE LON COWPLYI NG W TH RS-232 STANDARDS. NOTE THAT THE
0OC2 PIN DCES NOT PRODUCE RS-232 LEVEL QUTPUT AND THE SI GNAL SHOULD
BE FED | NTO A MAX232 OR MC145407P BEFORE BEI NG SENT OVER A SERI AL

LI NE.

LDAA
STAA
LDAA
STAA
LDAA
STAA
CLI

#3$80
TCTL1
#3$40
CFCORC
#$Q0
TCTL1

; prepare to force interrupt
; line back to | ow
; load bitmap for 0OC2
; force line high
; restore the go-high
; request code
Turn on interrupts

’
EE R e R R R X X

|/ O AND TRANSLATI ON FUNCTI ONS

EE e R R X X

*

*

khkhkhkhkhkhkhkhkhhhkhkhkhhhhkhhkhkhhhhhhhhhkhhkhkhkhkhhkhkhkhhhhhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*%

ROUTI NE CLI P: TAKES A BYTE AND SETS AT $69 | F BETWEEN $69 AND $EO *

*

29

* VALUES BETWEEN $E1 AND $FF ARE SET TO $00 *

EE I R e X X

CLIP

CVPA #3AA ; This is the "off" command

BEQ GETDONE ; Done

CMPA #$A5 ; $A5 is the maxi mum position

BHI PRCS_NEG ; This nunber is |arger
GETDONE

RTS ; Return value in A
PROS_NEG

CVPA #$EO ;o limt value

BHI PUTZERO ; Greater than $e0

LDAA #$A5 ; Limt value to $69

BRA GETDONE ; Get out of routine
PUTZERO

LDAA #$00 ; Underfl ow from subtract

BRA GETDONE ; Done
* ROUTINE GETTI ME: RETURNS A VALID TIM NG VALUE FROM CONSOLE *
GETTI ME

PSHB ; SAVE B REQ STER

JSR GETCHAR ; GET A CHARACTER

BSR CLIP ; ASSURE RANGE | S APPRCPRI ATE

PULB ; RESTORE B REG STER

RTS
IR RS R E R RS RS R E SRS RS R E R E SRS R RS R R SRR R RS EE RS R E R EEREEREEREEREEEEEEEEEESEEEESEEE]
* ROUTI NE GETBYTE: CONSTRUCTS A BYTE VALUE FROM TWO ASCI | | NPUTS *
IR RS R E R R R RS R E SRS RS R E R RS RS R RS R R SRR R RS EE RS R R R R REEREEREEREEEEEEEEEESEEEESEEE]
GETBYTE

PSHB ; SAVE B REQ STER

BSR GETCHAR ; GET A CHARACTER

BSR XLATE ;. TRANSLATE TO NI BBLE

LSLA ;. TRANSFER TO HI GH NI BBLE

LSLA ;. USI NG FOUR

LSLA ; SUCCESSI VE SHI FTS

LSLA ; TO THE LEFT

TAB ; STORE I N B REG STER

BSR GETCHAR ; GET THE SECOND HALF

BSR XLATE ;. TRANSLATE TO NI BBLE

FCB $1B ; CREATE FULL BYTE

PULB ; RESTORE B REGQ STER

RTS ; RETURN BYTE IN A
* ROUTI NE XLATE: TRANSLATES ASCI | CHARACTER | NTO NI BBLE *
XLATE CWPA #$39 ; 1S I T A NUMBER?

BGT LETTER ; TREAT AS LETTER

ANDA #$0F ; GET ABSOLUTE VALUE

BRA XDONE ; FINIl SHED W TH NUMBER
LETTER ANDA #$5F ;. MAKE UPPERCASE

SUBA #55 ; ADJUST TO HEX NUMBER
XDONE RTS ;. FAIRLY EASY

EE o R R R R X X

* ROUTINE GETCHAR GETS BYTE FROM SERI AL PORT AND ECHOS TO CONSOLE *

EE R R X R X

GETCHAR
LDAA SCSR ; CHECK RECEI VE REGQ STER
ANDA #RDRF ; FOR | NCOM NG CHARACTER
BEQ GETCHAR ; NOT' THERE, KEEP TRYI NG
GETC
LDAA SCDR ; GET THE CHARACTER IN A
RTS ; RETURN CHARACTER

’
khkkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhkhhhhhhhhhhhkhkhkhkhkhkhhhkhkhhhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk*x*x*%x

* SUBROUTI NE GETCHARNP: GETS BYTE FROM SERI AL PORT AND DOES NOT ECHO *

* | T TO CONSOLE. RESULT IS | N ACCUMJLATOR A *
IR EEEEEEEEEEEEEEEEEEEREEEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS E SRS
GETCHARNP

LDAA SCSR ; CHECK RECEI VE REGQ STER

ANDA #RDRF ; FOR | NCOM NG CHARACTER

BEQ GETCHARNP ; NOT THERE, KEEP TRYI NG

LDAA SCDR ; GET THE CHARACTER IN A

RTS ; RETURN CHARACTER
khkkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhkhhhhhhhhkhhhhkhkhkhkhkhkhkhhkhkhhkhhkkkkkk*x*x*
* SUBROUTI NE XDECI: TRANSFORMS 1 BYTE OF HEX | N ACCUMULATOR A *

30

* | NTO DECI MAL NUMBER | N ACCUMULATOR A: *

o R

XDECI

PSHB ; SAVE B ON STACK

PSHA ; SAVE A ON STACK

ANDA #$FO ; | SOLATE H GH NI BBLE ON A

LSRA ; MOVE H GH NI BBLE TO LOW NI BBLE

LSRA ; N ORDER TO MULTIPLY IT

LSRA ;"

LSRA ;"

LDAB #10 ; MULTI PLY CONTENTS OF A WTH 10 IN B

MUL ;"

PULA ; RESTORE A | NTO ACCUMULATOR A

ANDA #$0F ; | SOLATE LOW NI BBLE

FCB $1B ; ADD THE TWO AND PUT RESULT IN A

PULB ; RESTORE B

RTS ; DONE
khkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhhhhhkhhhhhhhkhhhhkhkhkhhkhhkhkhkhkhkhkhhkhhkkkkkk*x*%
* THE | NTERRUPT ROUTI NE *
khkhkhkhkhkhkhkhkhhkhkhhkhkhhhhhhhhkhkhhhhhhkhhhkhhkhkhkhkhkhkhkhkhkhhhhkhhkkkkkk*x*%
* First reset for the next interrupt
oc2I SR

LDD #40000 ; 40,000 E's is 20ns

ADDD TOC2 ; Add directly to

STD TOC2 ; preserve timng accuracy

LDAA #$40 ; prepare to clear the

STAA TFLGL ; interrupt flag

LDD COUNTER ; get the current count

ADDD #1 ; increnment 16-bit val ue

STD COUNTER ; store into the 20ns counter

* Look at conplete table flag
Take positions fromsecondary table and put themin primary table
Cl ear FLAGS and COVPLETE fl ags

LDAA #1

STAA FLAGS

CLR COWPLETE

* %

* Process the current servo list
* Now set the new turn-off val ues
* THE LOCATI ON STORAGE HOLDS A BI TMAP WTH A 16-BI T VALUE CORRESPONDI NG *
* TO THE CURRENT SERVO BEI NG PROCESSED. FOR EXAMPLE, THE BI TMAP $40000 *
* | S USED TO PROCESS SERVO 1. (0100... RECALL THAT | NDEXI NG STARTS AT *
* ZERO ONMASK HOLDS THE 16-BI T Bl TMAP OF THE SERVOS CURRENTLY DSI RED *
* TO BE ON. ALL SERVCS THAT ARE ON WLL HAVE THE Bl TMAP | N STORAGE *
* APPLIED TO THE ($97-X) ENTRY IN THE TI M NG TABLE WHERE X | S THE TI M NG *
* VALUE | N THE CORRESPONDI NG CURRENT_OFF REG STER. SI NCE MORE THAN ONE *
* SERVO M GHT HAVE THE SAME TURN OFF TIM NG VALUE, THE BI TMAP | N STORAGE *
* |S "ORED' WTH THE PREVI QUS VALUE TO PREVENT OVERWRI TI NG ANY OTHER *
* SERVO S | NFORVATI ON. *
khkhkhkhkhkhkhkhkhhkhkhhhkhhhhkhkhhhkhhhhhhkhkhhhhhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*x*x*%x

LDD #$8000 ; Set active bitnmap to servo one

STD STORAGE ; Save the bitnmap

LDD ONVASK ; Find out what servos are on

STD STORAGE2 ;. Working bitnap

LDY #CURRENT_OFF-1 ; Get the first servo address
SLOOP

LDD 0,Y ; Save the address

CLRA ; Zero for address usage

LSLD ; Offset for 16-bit value

XGDX ; Get address of the servo tinme register

LDD STORAGE2 ; Get active bitmap

LSLD ; Get status in carry flag

BCS SERVO_ACTI VE ; Servo active

* I'N THE ONVASK | NDI CATES THAT THE SPECIFIED SERVO IS ON, IT IS

* PROCESSED AT SERVO ACTI VE ROUTI NE. OTHERW SE, THE SERVO OFF ROUTI NE
* WLL UPDATE THE SELECTI ON MASK I N STORAGE AND WASTE ENOUGH TI ME SO
* AS TO BALANCE THE SERVO_ACTI VE ROUTI NE

SERVO_OFF:
STD STORAGE2 ; Match delay of the other routine
LDD STORAGE ; Get the active bitnmap
LSRD ; Shift for next channel
STD STORAGE ; Store the active bitnap
TST 0, X ; Burn 6 cycles
TST 0, X ; Burn 6 cycles
TST 0, X ; Burn 6 cycles

31

BRA T_ON_CHECK ; Now ready to resune routine
SERVO_ACTI VE:

STD STORAGE2 ; Store active bitnmap

LDD STORAGE ; Restore the active bitmp

ORAA 0, X ; Inclusive Or to prevent

ORAB 1, X ; overwiting another servo's
STAA 0, X ; turn-of f request.

STAB 1, X ;

LDD STORAGE ; Rel oad bitnap

LSRD ; Set bitmap for next servo channel
STD STORAGE ; Save bitmap

* AT TH'S PO NT, CHECK |IF THE TURN-ON PO NT OF THE CHANNELS HAS BEEN
* REACHED. THE CONTROL OF THE TURN-ON PO NT IS ACHI EVED BY CHECKI NG
* FOR A CERTAIN NUMBER OF LOOPS THROUGH THE UPDATE RQOUTI NE. THE NUMBER
* OF LOOPS BEFORE TURN ON IS GVEN IN ONWAIT. AS IT IS NOW THE TI ME
* DELAY BETWEEN TURN ON AND THE BEG NNI NG OF TURN OFF IS 0.484 Ms
T_ON_CHECK:

I NY ; Go to next table entry

CcPY ONWAI T ; See if X | oops done

BNE NEXT_SERVO ; Bypass servo turn on

LDD ONVASK ; Find which servos are active

STD PORTC ; and turn them on
NEXT_SERVQO

CPY #CURRENT_OFF+15 ; Done if at this address

BNE SLOOP ; Keep transfering table val ues

NOW UPDATE THE LAST_OFF TABLE. SI NCE THE TABLES ARE OFFSET BY
EXACTLY 16 BYTES, THERE IS NO NEED FOR TWD | NDEXES. TWD VALUES
ARE UPDATED AT A TIME, SO ONLY 8 LOOPS ARE REQUI RED.

THE TURN-OFF LOOP G VI NG 13.5uS PER LOCP AT 8MHz

TH S | S THE TI GHTEST PGCSSI BLE WAY TO EXECUTE THE TURN OFFS.

THE TABLE MUST BE PROCESSED BACKWARDS BECAUSE COWPARI NG THE | NDEX
TO A FI NAL VALUE AND BRANCHI NG CONDI TI ONALLY TAKES MORE Tl ME THAN
DECREMENTI NG AND BRANCHI NG ON ZERO. THE ADDI TI ONAL TURNCOFF CYCLE
I'S NECESSARY AFTER THE OFFLOOP BECAUSE THE BRANCH ON ZERO DOESN T
PROCESS THE ENTRY AT | NDEX ZERO

L O .

TURNOFF
LDX #TABLE_OFFSET ; GET TI M NG TABLE ADDRESS
* TIMED LOOP STARTS HERE: 27E' S = 13.5 uS PER LOOP
OFFLOOP
LDD 0, X ; GET THE TI M NG VALUE
EORA PORTC ; XOR TO TAKE HI GH LI NE
EORB PORTB ; LOW AND THEN
STD PORTC ; UPDATE TO SERVO CHANNELS
DEX ; GO TO NEXT 16 BIT
DEX ; TABLE VALUE
BNE OFFLOOP ; I|'F NOT DONE CONTI NUE TABLE
* TI MED LOOP ENDS HERE
LDD 0, X ; MUST TO FI NAL TABLE VALUE
EORA PORTC ; SINCE A COVPARI SON TO ZERO
EORB PORTB ;. WAS THE Tl GHTEST LOOP
STD PORTC ; POSSI BLE
* CLEAR TURN OFF TABLE
LDX #CURRENT_OFF-1 ; Prepare to get servo turn off tines
CLEAR_LOOP
LDD 0, X ; Prepare to clear value
CLRA ; Zero high byte of address
LSLD ; Adjust for 16 bit value
XGDY ; Get timng address in Y
CLR 0,Y ; Now clear |ocation
CLR 1,Y ; and the other half
I NX ; G to next location
CPX #CURRENT_OFF+15 ; Have all locations been initialized
BNE CLEAR LOOP ; Keep clearing

NOW FORCE THE OC2 PI N BACK LOW TO ALLOW SERI AL COMVUNCATI ON AND
* RESET THE TCTL1 CODE SO THAT THE NEXT | NTERRUPT FORCES | T BACK
* H GH

LDAA #$80 ; prepare to force interrupt
STAA TCTL1 ; line back to | ow
LDAA #$40 ; load bitmap for OC2
STAA CFORC ; force line high
LDAA #$CO ; restore the go-high
STAA TCTL1 ; request code
RTI ;| NTERRUPT DONE
CLEAR FCB $1B, $5B, $32, $4A
FCB $00
CR FCB $0D, $0A, $00

32

* ANY UNI MPLEMENTED | NTERRUPTS ARE RETURNED | MVEDI ATELY

ALL UNUSED VECTORS HERE

EE R e R R X X

*

EE R X X

E9 VECTORS START AT $FFCO
RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SCl Serial System

ORG $FFBF
BADI NT RTI
* | NTERRUPT TABLE

ORG $FFQ0
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB oC2I SR
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB BADI NT
FDB START
END

SPI

Serial Transfer Conplete

Pul se Accunul ator | nput Edge
Pul se Accunul ator Overfl ow
Ti mer Overflow

In Capture 4/ CQutput Conpare 5 (TI405)

Ti
Ti
Ti
Ti
Ti
Ti
Ti

ner
ner
nmer
ner
nmer
ner
nmer

Real

Qut put Conpare 4 (TOC4)
Qut put Conpare 3 (TOC3)
Qut put Conpare 2 (TOC2)
Qut put Conpare 1 (TOC1)
I nput Capture 3 (TIC3)
I nput Capture 2 (TIC2)
I nput Capture 1 (TICl)

Tinme Interrupt (RTI)
External Pin or Parallel 1/0 (IRQ
Pseudo Non- Maskabl e Interrupt (Xl RQ

Software Interrupt (SW)
Il'legal Opcode Trap ()
COP Failure (Reset)

0
COP d ock Mnitor Fail (Reset) ()
| RESET

33

Appendix E - High-Level Code

/* bobdefs.h */

#define NUM SERVCS 12
#defi ne REPEAT 4

#define RR_LIFT 0xCQ0
#define RR_EXT OxC2
#define RR_SW NG 0xCl
#define LR LIFT 0xC6
#define LR EXT 0OxC5
#define LR _SWNG 0xC7
#define RF_LIFT 0xC9
#define RF_EXT 0OxCB
#define RF_SW NG 0xCA
#define LF_LIFT OxCE
#define LF_EXT OxCF
#define LF_SWNG 0xCD

/* bob.c - main program */

/ *#defi ne BORLAND*/
#i ncl ude "icc2bc. h"
#i ncl ude "bobdef s. h"
#i ncl ude "posns. c"
voi d setservo(int servo, int posn)
{
int i
for(j=0;] <REPEAT; j ++){
put chr (0xBB) ;
put chr (code[servo]);
put chr (posn);
}
return;
}
void UnRise(void)
{
i nt i, k;
f or (k=0; k<MAXRI SEPCS; k++) {
for(i=0;i <NUM_SERVCS; i ++) {
setservo(i, risepos[Kk][i]);
}
}
return;
}
voi d Ri se(void)
{
int i, k;
for (k=MAXRI SEPCS- 1; k>-1; k--){
for(i=0;i<NUM SERVCS; i ++) {
setservo(i,risepos[Kk][i]);
}
return;
}

voi d UnCrouch(voi d)
{

i nt i, k;
f or (k=0; k<MAXCROUCHPCS; k++) {
for(i=0;i <NUM_SERVCS; i ++) {
setservo(i,crouchpos[K][i]);
}

return;

}
void O f(void)
{

int i, k;
f or (k=MAXCROUCHPGS- 1; k>-1; k--){
for(i=0;i<NUM SERVCS; i ++) {
setservo(i, crouchpos[k][i]);
}

}
for(i=0;i<NUM SERVCS; i ++) {
setservo(i, OxAA);

}

return;
}
voi d Crouch(voi d)
{

i nt i, k;

f or (k=MAXCROUCHPGS- 1; k>- 1; k--) {
for(i=0;i<NUM_SERVCS; i ++) {
setservo(i, crouchpos[Kk][i]);
}

return;

35

}
void Left(void)

{
i nt i, k;
for (k=MAXLEFTPGCS- 1; k>-1; k--){
for(i=0;i <NUM_SERVCS; i ++) {
setservo(i,turnleftpos[k][i]);
}
}
return;
}
void Forward(void)
{
int i,k;
f or (k=MAXFWDPOS- 1; k>-1; k--) {
for(i=0;i<NUM_SERVCS; i ++) {
setservo(i, wal kf wdpos[Kk][i]);
}
return;
}

voi d Back(void)
{

i nt i, k;
f or (k=0; k<MAXBACKPCS; k++) {
for(i=0;i <NUM_SERVCS; i ++) {
setservo(i, wal kbackpos[k][i]);

}
return;
}
voi d mai n()
int light, IR front;
int nmode=0, count er =0;
UnCr ouch();
whi l e(1){
swi t ch(node){ / *movenent */
case O:

Forward() ;

count er ++;

i f (counter==8){
node=1;
count er =0;

br eak;

case 1.

Left();

count er ++;

i f (counter==10) {
node=0;
count er =0;

}

br eak;

case 4.
Back();
br eak;

defaul t:
br eak;

}

i ght =anal og(7);

I R_front=anal og(5);

printf("\'nlight=%l\tFLI R=%l\tnode=%l\n",1ight,|R front, node);

swi t ch(node){ | *sensor s*/
case 0:
case 1:
if(light<90){
node=3;
of();
telse if (IR front>120){
node=4;

36

Rise();
sl eep(3500) ;

UnRi se();
}
br eak;
case 3:
if(light>165){
UnCr ouch();
count er =0;
node=0;
}
br eak;
case 4:
i f (IR front<110){
node=1;
}
br eak;
defaul t:
br eak;

37

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	1. Executive Summary
	2. Introduction
	2.1 Legged Robots
	2.2 Number of Legs
	2.3 Objectives
	2.4 Organization of Paper

	3. Integrated System
	4. Mobile Platform
	4.1 Requirements
	4.2 Construction

	5. Actuation
	5.1 Servos
	5.2 Controllers

	6. Sensors
	6.1 Photosensor
	6.2 Infrared Emitter/Detector
	6.3 Tilt Sensor
	6.4 Sound Sensor

	7. Behaviors
	7.1 Hibernation
	7.2 Obstacle Detection/Avoidance

	8. Experimental Results
	9. Conclusions
	References
	Appendix A - Parts List
	Appendix B - Weights
	Appendix C - Mechanical Drawings
	Appendix D - Servo Code
	Appendix E - High-Level Code

