
University of Florida
Department of Electrical and Computer Engineering

Intelligent Machine Design Laboratory
EEL 5666

Final Report:
HERMES

      Student Name:  Brent Leary
Date:  4/21/99
T.A.s: Scott Jantz

Aamir Qaiyumi



Table of Contents
• Abstract                                                                 3
• Executive Summary                                              4
• Introduction                                                           5
• Integrated Systems                                                5
• Mobile Platform                                                    6
• Actuation                                                               6
• Sensors                                                                  7
• Behaviors                                                               9
• Experimental Layout and Results                         10
• Conclusions                                                           13
• References                                                             14
• Appendix A: Vendor Information                         15
• Appendix B: Diagrams                                          16
• Appendix C: Code                                                 18



ABSTRACT
Hermes is designed to track and follow a moving light source while avoiding obstacles.  In order
to accomplish this, a special sensor equipped with five CDS cells is mounted on top of a talrik
platform.  The light-sensor is actuated by two servos that enable it to move horizontally and
vertically in space.  Its goal is to keep itself pointing at a single source of light (i.e. a lamp).  The
Talrik’s body moves in the direction the light-sensor is pointing while trying to avoid any objects
in its path.



EXECUTIVE SUMMARY

Hermes was developed to determine whether real time light tracking in three dimensions with

any degree of precision was possible.  He is controlled by a HC6811 microprocessor with an

ME11 daughter card.  The platform consists of two main parts, the Talrik body and the pan-tilt

head that holds the light-sensor.  The pan-tilt head is mounted on top of the Talrik body.  It is

actuated by two servos and can rotate horizontally and vertically 180 degrees.  This allows the

light-sensor to face any point in a hemisphere above it.   The body of the Talrik is equipped with

IR emitters, IR detectors, and bump switches for collision avoidance and detection.  Hermes

behaviors include collision detection, collision avoidance, light sensing, light following and light

finding.



INTRODUCTION

Hermes is an autonomous mobile agent designed for light navigation.  He consists of a Talrik

platform and is controlled with and HC6811 microprocessor mounted in an EVBU board with

and attached ME11 daughter card.  The objective of his design is to be able to pinpoint the

location of an ambient light source.  This ability allows a wide range of behaviors to be

implemented.  My original intent was mapping, but since the Vector 2X digital compass and the

motors both use the same pins for control in PORTD, I chose light following based behaviors.  I

will include the digital compass as one of my sensors even though it was not used in the final

demo because I had it fully working on my platform when I discovered the resource conflict.

INTEGRATED SYSTEMS

Hermes has a total of 20 sensors.

• 10 bump switches

• 4 IR detectors

• 5 CDS cells

• 1 digital compass

Their readings are fed into the HC6811 microprocessor through the header on the EVBU board.

All of them except the digital compass use the HC’s analog port.  Hermes has an output latch at

0x6000 and an analog multiplexor chip in order to expand the number of analog inputs to 14.

The output latch is used to control the analog multiplexor and the digital compass.  All ten

bump switches use only a single analog port.  This is done by wiring them into a voltage divider



different voltage when bumped.  The four IR detectors are hacked to provide an analog output

and are attached to the HC’s analog port.  The IR detectors are used in obstacle avoidance and

are used to detect the 40kHz light given off by the 12 IR emitters evenly spaced around the

diameter of Hermes.  The IR emitters are attached to the ME11 and are controlled with an

output latch at 0x7000.  The 5 CDS cells are wired into a voltage divider circuit with the other

resistance being 5k.  The result of the voltage divider circuit is fed into an analog port through

the analog multiplexor chip.  Two servos using OC4 and OC5 pins PA3 and PA4 respectively

control the pan-tilt head which houses the 5 CDS cells in the light-sensor.  The motors are

controlled by OC2 and OC3 using pins PD1, PD2, PA2, and PA3.   The digital compass

communicates the heading to the HC6811 through the SPI system.  The current heading can be

sampled at about 10hz.  Hermes uses his CDS cells in the light-sensor to keep the pan-tilt head

pointing at a moving light source.  By knowing the current position of the servos used in the

pan-tilt head, the direction of the light relative to Hermes current orientation is known and

therefore corrections to the motors can be made so that he turn in the direction of the light.

MOBILE PLATFORM

Hermes uses a Talrik platform.  The pan-tilt array is mounted on top of a bridge that straddles the

platform’s body.  This gets it above the wiring and circuitry so it can rotate freely.  The platform

is a pre-established design that best suited my intention of testing out a pan-tilt head.

ACUTATION



into the servo.  The servos are hacked into motors by taking out the physical stops and the

potentiometer.  A full hack is needed because the heat generated by running the motors for long

periods of time will fry the potentiometer’s circuitry.

SENSORS

IR Sensor Suite

Hermes has four IR detectors, two facing forward and two facing backward on the Talrik

platform.  Three are connected to lines five, six, and seven of my analog multiplexor and the

other is connected to analog port PE1.  The detectors have been hacked to allow analog output

roughly within the range of 80 – 120 on an analog port.

Twelve evenly spaced IR emitters encircle the platform.  They are broken into four groups of

three – forward left, forward right, backward left, and backward right.  A group is powered by a

40kHz signal generated by dividing the 68HC11’s E-clock with a 74HC390 decade counter on

the ME11 daughter board.

Bump Sensor Suite

Ten evenly spaced bump switches surround Hermes’ perimeter, and are surrounded by a rigid

bumper.  Each bump switch is wired as shown in Appendix C.  When a value other than 0 is read

on PE2, Hermes has bumped something, and that value carries information about which bump

switch was hit.



CDS Sensor Suite

The CDS sensors are mounted in a light-sensing device best described as wooden box with one

side missing.  Circular holes are cut into the sides of the box and the CDS cells are inserted

facing the box’s interior.   The box is then mounted on the pan-tilt head that is able to rotate

horizontally and vertically.  The sensor’s goal is to accurately keep itself pointing at a light

source as Hermes moves about his environment.  In order to accomplish this task, the sensor

must be able to tell which direction the light moving across its dish and be able to make

adjustment that will keep the light directly in the center of the sensor.  The following diagram

illustrates the light-sensors use:

The direction of the light source is binary, left or right.  By having Hermes try to keep the CDS

cell values the same with servo commands, the sensor will follow the light source.

Digital Compass Sensor Suite

Light
Source

Shadow

 CDS cell



companies web page (Appendix A).  The compass can be used to keep Hermes from going in

circles without having to calibrate his motors, but its primary use will be to give the heading

from a point of origin.

BEHAVIORS

Hermes reactions to different combinations of sensor stimulus are called behaviors.  The

following is a list of behaviors and conditions that evoke them.

• A bump switch is pressed - back up about a foot and rotates 90 degrees

• A single IR senses an object – turn away from the object

• Both IR sense an object – stop and rotate until both IR do not sense an object

• No light present – positions both servos for the pan-tilt head at 90 degrees and stop motors

• Light present – actuate servos to follow light, actuate motors to turn towards the direction the

horizontal servo is pointing

• Light directly overhead – stop motors

Precedence for the behaviors is created using if-then-else statements in icc with the lowest

precedence behavior appearing last.  Each behavior, when active, has control of the motors.  To

control the pan-tilt head’s servos, the difference between the left and right CDS cells is used to

determine the horizontal servo’s direction and the difference between the top and bottom CDS

cells is used to control the vertical servo’s direction.  The sign of difference (positive or

negative) determines in which direction the servo is incremented.



EXPERIMENTAL LAYOUT AND RESULTS

IR

To determine the range of a hacked IR detector, I used IC to read an analog port with an attached

IR detector.  One reading was taken with no IR emitters turned on and the other with an IR

emitter directly facing it.  A range of 80 – 120 was found.

To determine if my IR emitters were indeed emitting IR light, I held them up to a video camera

available in the IMDL lab.  The monitor attached to the video camera will display 40kHz IR light

in the visible spectrum making it easy to test if the emitters were operational.

Bump

Making use of IC and the analog(#) function, I depressed each individual bump switch while

taking readings off analog port PE2. Each switch returned a distinct value when pressed.

Light-Sensor

Hermes’ light-sensor has undergone three revisions with the final one being used:

• A flat dish with collimated CDS cells arranged in an X pattern

• A dish with slightly raised sides using collimated CDS cells arranged in an X pattern

• A box painted black using CDS cells with no collimation

The first two underwent testing for my sensor report, and as a result of those tests, I felt a re-

design was needed, so the third and final design was used on Hermes.

To test the first two sensors, I propped them up and approximately five feet away moved a light

perpendicularly across their face.  Using half inch collimated CDS cells inserted into a flat dish,



Notice the direction of the light’s movement across the sensor is impossible to tell because all of

the CDS cell’s intensities vary together.  However, a dish with slightly raised sides results in the

following data:



Notice that the right sensor’s intensity reading is low, while the middle and left sensor’s readings

are high.  From this difference in intensity the direction of the lights movement can be obtained.

The focus of this version with only slightly inset sides was too broad.  I noticed that the only

visible difference between the CDS cells values resulted from the shadow being cast by the inset

sides, but in order for the CDS to be in shadow the light source needed to be at an extreme angle

to the sensor.  Raising the inset to a 90 angle on the final version gave the sensor a very narrow

focus because, unless the light is directly above the sensor, one of the CDS cells will be in direct

light and the other in shadow.

Digital Compass

Vector 2x

The Vector 2x digital compass interfaces with the HC6811 through its SPI system.  I configured

the Vector 2x as the master and the 68HC11 as the slave.  I chose this configuration because it

was the simplest and I have no other devices that need to use the SPI system.  The wiring

schematic is provided in appendix C.  The compass is set to give continuous reading through the

SPI system, so when the HC6811 wants to take a reading, two bytes are received through the

HC6811’s SPDR register.  The Vector 2x’s manual states that data is ready on a rising clock



rising edge, and the CPHA bit set to one, so the first edge of the SCLK began a transfer not the

SS line, in the SPCR register.  The compass works with both bits zero for binary mode, and

CPOL set to 1 for BCD mode. I believe the CPOL settings are backward.  The compass is

accurate when Hermes is rotating, staying in the same position on the floor.  However, in the

imdl lab when running him across the floor while reading the compass heading output to

hyperterminal, the heading can vary by 10 degrees due to the metal in the floor.  The Vector 2x

has plus or minus one degree of error, but the error does not build because it can be polled for a

new heading every .2 seconds.  A weak magnetic field will slow down this sampling rate.  The

compass can compensate for static magnetic field distortions such as those created by hard iron,

but cannot compensate for the non-static distortions of an A/C motor or soft iron (ferrous metal).

The digital compass on the SPI system uses the same port as the motors when using the ME11

daughter card.  They both use PORTD pins 1 and 2.

CONCLUSION

Hermes is a robot capable of following a moving light while avoiding any obstacles in its path.

He integrates the behaviors of collision avoidance, obstacle avoidance and light tracking.  The

pan-tilt head with mounted light sensor operated as planned, tracking a single ambient light

source as it moved about in space.  With this ability, an autonomous mobile agent is free to

wander about while having the constant knowledge of the direction and distance of a light

source.  Future improvements to the light-sensor could include replacing the resistors in the CDS

cells voltage divider circuit with digital potentiometers.  This would give the light-sensor the



REFERENCES

Hermes would not have been realized without the help from the following sources:

• The IMDL T.A.’s Scott Jantz and Aamir Qaiyumi

• My classmates, especially Jamie, who provided their input and assistance

• My friend Peter Collins



Appendix A: VENDOR INFORMATION

Vendor Information                               Parts Purchased                             Price

Mekatronics
316 NW 17th St., Suite A
Gainesville, FL 32603
(407)672-6780
http://www.mekatronics.com

Precision Navagation, Inc.
555 Skylane Blvd., Suite E
Santa Rosa, CA 95403
(707) 566-2261
http://www.precisionnavigation.com

• LED emitter                               $0.75
• Detector: Sharp GPIU58Y         $3.00
• Bump Switches                          $0.75
• CDS cells                                   Free
• Diamond Servo                          $11.50
• Dubro model aircraft wheel       $3.00

• VECTOR 2Xtm                              $50.00



Appendix B: DIAGRAMS
Diagrams

Vector 2x Schematic

UNCONNECTED
LATCH

LATCH

5V

MOSI

SCLK

5V

GND

5V

GND

LATCH

LATCH

GND

5V
UNCONNECTED

UNCONNECTED

5V



Hermes

Ambient Light
      Source

∅  = 30o A

B = 8’

From the angle ∅  derived from the sensor array and the known height of a light source, the distance A
to a point of origin can be calculated as follows:

tan 30o  = 8’ / A
A = 8’ / tan 30 o

A = 13.85’

Derivation of Distance A

Origin

Bump Switch Schematic



Appendix C: CODE
HERMES.C
/* Brent Leary
 * 3/31/99
 * Hermes' Brain

hermes.c

/*********************Includes******************/

include "me11oc45.h"

/********************Constants********************/

define IRLATCH    *(unsigned char *)0x7000

define OUTLATCH   *(unsigned char *)0x6000

define LATCHSTATE *(unsigned char *)0x010F

define LEFT  1

define RIGHT 0

define HORZ  1

define VERT  0

define RIGHTBIAS  0   /* CDS cell biases */

define LEFTBIAS   0

define TOPBIAS    0

define BOTTOMBIAS 10

define VERTTHRESH 20

define HORZTHRESH 25

define HINC       3

define VINC       1

define LIGHTHEIGHT 6  /* feet */

define MOTORINC    1

define IRDIFF      7

/********************Variables******************/

IRhigh;  /* higher IR threshold */



cds sensor data */
struct cds

LTCH  0x00   0x01     0x02   0x03    0x04 */
int   left,  right,  middle,  top,  bottom; /* Current */
int  dleft_right, dtop_bottom;              /* difference */
_data;

servos current positions */
struct servo

unsigned int horz;
unsigned int vert;

servo_data;

motors PW */
struct motor

int lpw;
int rpw;

motor_data;

/***********UPDATE SENSORS************/
void IRbump_sense()

IRbump_data.bump = analog(2);

   /* IRLATCH = 0x04;        turn on fron left IR  */
IRbump_data.fl_eye = analog(1);  /*( - IRlow)/scale; */

   /* IRLATCH = 0x08; */
      SET_BIT(LATCHSTATE, 0x07);   /* 7 */
      OUTLATCH = LATCHSTATE;

IRbump_data.fr_eye = analog(0);

   /* IRLATCH = 0x02; */
      CLEAR_BIT(LATCHSTATE, 0x01); /* 6 */
      OUTLATCH = LATCHSTATE;

IRbump_data.l_eye = analog(0);

   /* IRLATCH = 0x01; */
      CLEAR_BIT(LATCHSTATE, 0x02); /* 5 */
      SET_BIT(LATCHSTATE, 0x01);
      OUTLATCH = LATCHSTATE;

IRbump_data.r_eye = analog(0);

   /* IRLATCH = 0x00;  turn off IR */

/***********UPDATE SENSORS************/
void cds_sense()

      SET_BIT(LATCHSTATE, 0x04);
      CLEAR_BIT(LATCHSTATE, 0x03); /* 4 */



      OUTLATCH = LATCHSTATE;
cds_data.middle = analog(0);

      CLEAR_BIT(LATCHSTATE, 0x02); /* 1 */
      SET_BIT(LATCHSTATE, 0x01);
      OUTLATCH = LATCHSTATE;

cds_data.top = analog(0) + TOPBIAS;

      CLEAR_BIT(LATCHSTATE, 0x01); /* 0 */
      OUTLATCH = LATCHSTATE;

cds_data.bottom = analog(0) + BOTTOMBIAS;

      /* CALCULATE DIFFERENCES */
cds_data.dleft_right = cds_data.left - cds_data.right;
cds_data.dtop_bottom = cds_data.top  - cds_data.bottom;

/**************ACTUATION***************/
void motor_actuate()

motor(LEFT, motor_data.lpw + 2);
motor(RIGHT, motor_data.rpw);

/**************ACTUATION***************/
void servo_actuate()

servo(HORZ, servo_data.horz);
servo(VERT, servo_data.vert);

/***********TERMINAL OUTPUT**********/
void cds_output()

cds_sense();
numout(cds_data.left);
write(" ");
numout(cds_data.middle);
write(" ");
numout(cds_data.right);
write("    ");
numout(cds_data.top);
write(" ");
numout(cds_data.middle);
write(" ");
numout(cds_data.bottom);
write("    ");
numout(cds_data.dleft_right);
write(" ");
numout(cds_data.dtop_bottom);
write("\r");

/***********TERMINAL OUTPUT**********/
void IRbump_output()



write(" ");
numout(IRbump_data.bump);
write(" ");
numout(IRlow);
write("\r");

/**************BEHAVIORS***************/
void sensor_light_follow()
{ /* updates CDS cell info and

      * actuates horizontal and vertical servos
      * depending on the CDS cell information
      * 255 is absolute dark
      *  0  is absolute light */

cds_sense();  /* update cds cell's info */

      /* Calc Horz Movement */
if(servo_data.vert < 2750)

         if (cds_data.dleft_right > HORZTHRESH && servo_data.horz <= 4300)
         {/* right cds darker */
            servo_data.horz = servo_data.horz + HINC;
         }

         else if (cds_data.dleft_right < -HORZTHRESH && servo_data.horz >= 1000)
         {/* left cds darker */
            servo_data.horz = servo_data.horz - HINC;
         }

        /* Reverse for opposite vert position */
else

         if (cds_data.dleft_right > HORZTHRESH && servo_data.horz >= 1000)
         {
            servo_data.horz = servo_data.horz - HINC;
         }

         else if (cds_data.dleft_right < -HORZTHRESH && servo_data.horz <= 4300)
         {
            servo_data.horz = servo_data.horz + HINC;
         }

      /* Calc Vert Movement */

if (cds_data.dtop_bottom > VERTTHRESH && servo_data.vert <= 4500)
      {/* bottom cds darker */
         servo_data.vert = servo_data.vert + VINC;

else if (cds_data.dtop_bottom < -VERTTHRESH && servo_data.vert >= 1000)
      {/* top cds darker */
         servo_data.vert = servo_data.vert - VINC;



         servo_data.vert = 2750;
         servo_data.horz = 2650;

servo_actuate();

/**************BEHAVIORS***************/
void light_loop(int loops, int length)

int i, a;
for (i = 0; i < loops; i++)

         for (a = 0; a < length; a++)
         {
            sensor_light_follow();
         }

/**************BEHAVIORS***************/
void front_collision()

motor_data.lpw = -30;
motor_data.rpw = -30;
motor_actuate();
light_loop(4,500);
if (servo_data.horz < 2750)

         motor_data.lpw = 30;
         motor_data.rpw = -30;

else

         motor_data.lpw = -30;
         motor_data.rpw = 30;

motor_actuate();
light_loop(3,250); /* 180 == light_loop(3,500); */
motor_data.lpw = 0;
motor_data.rpw = 0;
motor_actuate();

/**************BEHAVIORS***************/
void hermes_light_follow()

      /* KEEP LIGHT IN FRONT */
if (servo_data.vert > 2900)

         if (servo_data.horz < 2750)
         {
            motor_data.lpw = -20;
            motor_data.rpw = 20;
         }
         else



         light_loop(3,175);
         motor_data.lpw = 0;
         motor_data.rpw = 0;
         motor_actuate();

IRbump_sense();

      /* BUMP AVOIDANCE */
if (IRbump_data.bump < 9)

      {/* No bump */

else if (IRbump_data.bump < 14)
      {/* middle right */
         front_collision();

else if (IRbump_data.bump < 18)
      {/* Front middle */
         front_collision();

else if (IRbump_data.bump < 31)
{  /* Front middle right */

         front_collision();

else if (IRbump_data.bump < 47)
{ /* Front middle left */

         front_collision();

else if (IRbump_data.bump < 81)
{ /* Front left */

         front_collision();

else if (IRbump_data.bump < 135)
{ /* Back */
/*  motor_data.lpw = 0;

           motor_data.rpw = 0;
           motor_actuate();
           delay(500,5000); */

        /* IR AVOIDANCE */
if (IRbump_data.fr_eye >= 100 &&

         IRbump_data.fl_eye >= 100)
{ /* Both detect object */

         if (IRbump_data.l_eye > IRbump_data.r_eye + 5)
         {/* right side clearer turn right*/
            motor_data.lpw = 20;
            motor_data.rpw = -20;
         }
         else
         {/* left side clearer turn left */
            motor_data.lpw = -20;
            motor_data.rpw = 20;
         }
         motor_actuate();
         while(IRbump_data.fl_eye > 90 ||



else if (IRbump_data.fr_eye > IRbump_data.fl_eye + IRDIFF)
      {/* front right eye detected object */
         if (motor_data.lpw > 0)
         { motor_data.lpw = motor_data.lpw - 5; }
         if (motor_data.rpw < 70)
         { motor_data.rpw = motor_data.rpw + 1; }

else if (IRbump_data.fr_eye + IRDIFF < IRbump_data.fl_eye)
{ /* front left eye detected object */

         if (motor_data.lpw < 70)
         { motor_data.lpw = motor_data.lpw + 1; }
         if (motor_data.rpw > 0)
         { motor_data.rpw = motor_data.rpw - 5; }

      /* STOPPING CONDITION */
else if (servo_data.vert > 2700 && servo_data.vert < 2800)
{ /* stop */

         if (motor_data.lpw > 0)
         { motor_data.lpw = motor_data.lpw - 1; }
         if (motor_data.rpw > 0)
         { motor_data.rpw = motor_data.rpw - 1; }

      /* CHASE LIGHT */
else if (servo_data.horz > 2700 && IRbump_data.l_eye < 90)
{  /* turn left */

         if (servo_data.horz >= 4000)
         {
            motor_data.lpw = 0;
            motor_data.rpw = 60;
         }
         else if (servo_data.horz > 3600)
         {
            motor_data.lpw = 5;
            motor_data.rpw = 60;
         }
         else if (servo_data.horz > 3300)
         {
            motor_data.lpw = 10;
            motor_data.rpw = 60;
         }
         else if (servo_data.horz > 3000)
         {
            motor_data.lpw = 20;
            motor_data.rpw = 60;
         }
         else
         {
            motor_data.lpw = 30;
            motor_data.rpw = 60;
         }

else if (servo_data.horz < 2600 && IRbump_data.r_eye < 90)
{ /* turn right */

         if (servo_data.horz < 1400 )



         else if (servo_data.horz < 2000)
         {
            motor_data.lpw = 60;
            motor_data.rpw = 10;
         }
         else if (servo_data.horz < 2300)
         {
            motor_data.lpw = 60;
            motor_data.rpw = 20;
         }
         else
         {
            motor_data.lpw = 60;
            motor_data.rpw = 30;
         }

       /* STOPING CONDITION */
else

         motor_data.lpw = 98;
         motor_data.rpw = 98;

motor_actuate();

/**************BEHAVIORS***************/
distancefromlight()

double angle = (servo_data.vert - 1000) / 19.44444;
if (angle == 90)

         return 0; }
else

         return LIGHTHEIGHT/tan(angle); }

/*********MAIN*************/
void main()

     /* HARDWARE INITIALIZATIONS */
init_serial();
write("Initialized Serial\n\r");

init_analog();
write("Initialized Analog\n\r");

init_motors();
write("Initialized Motors\n\r");

init_servos();
write("Initialized Servos\n\r");

     /* VARIABLE INITIALIZATIONS */
IRbump_data.fl_eye = IRbump_data.fr_eye = IRbump_data.l_eye = 0;



motor_data.rpw = 0;
motor_data.lpw = 0;

IRhigh = 115;
IRlow = analog(1);
scale = IRhigh - IRlow;

      IRLATCH = 0xFF;  /* turn on IR */

while (1)

         sensor_light_follow();
         hermes_light_follow();



COMPASS.C
/* Brent Leary
 * 3/31/99
 * Compass Code

/**************BEHAVIORS***************/
void turn(int degrees, int direction)

int templpw = motor_data.lpw;
int temprpw = motor_data.rpw;
int desiredheading;
int curheading = compass_data.heading;
numout(curheading);
write(" Current Heading\r\n");
if (direction == LEFT)

         if ((curheading - degrees) < 0)
         {desiredheading = 360 - degrees;}
         else
         {desiredheading = (curheading - degrees);}

         motor_data.lpw = -7;
         motor_data.rpw = 7;
         motor_actuate();
         while (compass_data.heading != desiredheading - 1 &&
               compass_data.heading != desiredheading     &&
               compass_data.heading != desiredheading + 1)
         {
            compass_sense();
            write(" LEFT desired heading "); numout(desiredheading);
            write(" Current Heading "); numout(compass_data.heading);
            write(" LPW "); numout(motor_data.lpw);
            write(" RPW "); numout(motor_data.rpw);
            write("\r");
         }

else

         desiredheading = (curheading + degrees) % 360;
         motor_data.lpw = 7;
         motor_data.rpw = -7;
         motor_actuate();
         while (compass_data.heading != desiredheading - 1 &&
               compass_data.heading != desiredheading &&
               compass_data.heading != desiredheading + 1)
         {
            compass_sense();
            write(" RIGHT desired heading "); numout(desiredheading);
            write(" Current Heading "); numout(compass_data.heading);
            write(" LPW "); numout(motor_data.lpw);
            write(" RPW "); numout(motor_data.rpw);
            write("\r");
         }



   * Initializes SPI system as 68HC11 as SLAVE
   *    Bits 7     6     5      4     3     2
   * SPCR = int   sys   wired  M/S   CPOL  CHPA
   *        on    on     or    1 0   0 Rs   1
   *         0     1     0      0     0     1   0x44
   *                                  1     0   0x48
   *                                  0     0   0x40
   * DDRD Setting automatic when hc11 is a slave

   /* SPCR = 0x48;  */  /* works with BCD */
      SPCR = 0x40;      /* works with Binary */

/************INIT COMPASS****************/
void init_compass()

/*            8      7       6     5      4  3  2  1
         OUTLATCH *RES *BCD/BIN  *P/C  *RESET      C  B  A */

      /* Reset compass 5V = *SS-tied high, *CAL-tied high, *RESET, P/C */
      CLEAR_BIT(LATCHSTATE,0xF0);
      SET_BIT(LATCHSTATE,0x70);
      OUTLATCH = LATCHSTATE;

/*  10 msec  */
delay(5,5000);

      /* 0Vs *reset */
      CLEAR_BIT(LATCHSTATE,0x10);
      OUTLATCH = LATCHSTATE;

      /* 10 msec */
delay(5,5000);

      /* 5v *reset */
      SET_BIT(LATCHSTATE,0x10);
      OUTLATCH = LATCHSTATE;

      /* 500 msec */
delay(10,5000);

      /* P/C 0Vs contious output */
      CLEAR_BIT(LATCHSTATE,0x20)
         OUTLATCH = LATCHSTATE;

/***********UPDATE SENSORS************/
void compass_sense()

      /* GET READING FROM COMPASS */
int test1 = 0;
int test2 = 0;
compass_data.headingpp = compass_data.headingp;
compass_data.headingp = compass_data.heading;



       /* calculate heading */
if (compass_data.reading2 == 1 && compass_data.reading1 < 104)

         compass_data.heading = 256 + compass_data.reading1;
         compass_data.error_count = 0;

else if (compass_data.reading2 == 0)

         compass_data.heading = compass_data.reading1;
         compass_data.error_count = 0;

else

         compass_data.error_count += 1;

      /* Reset compass if to many errors */
if (compass_data.error_count > 100)

         compass_data.error_count = 0;
         init_compass();

/***********TERMINAL OUTPUT**********/
void compass_output()

compass_sense();
numout(compass_data.heading);
write("  ");
numout(compass_data.headingp);
write("  ");
numout(compass_data.headingpp);
write("  ");
numout(compass_data.error_count);
write("  ");

/* Compass Sensor Data */
struct compass

int reading1;
int reading2;
int heading;
int headingp;
int headingpp;
int error_count;

compass_data;



MY INCLUDE FILE
ME11OC45.H

Interupt Control */
define INTR_ON() asm(" cli")
define INTR_OFF() asm(" sei")
define bit(x) (1 << (x))

/* SCI bits */
define RDRF bit(5)
define TDRE bit(7)
define T8 bit(6)
define R8 bit(7)

/* SPI bits */
define MSTR bit(4)
define SPE bit(6)
define SPIF bit(7)

/* EEPROM */
define EEPGM bit(0)
define EELAT bit(1)

/* Bit control */
define CLEAR_BIT(x,y) x &= ~y;
define SET_BIT(x,y) x |= y;
define CLEAR_FLAG(x,y) x &= y;

/* Registers */
define _IO_BASE 0x1000
define PORTA *(unsigned char volatile *)(_IO_BASE + 0x00)
define PIOC *(unsigned char volatile *)(_IO_BASE + 0x02)
define PORTC *(unsigned char volatile *)(_IO_BASE + 0x03)
define PORTB *(unsigned char volatile *)(_IO_BASE + 0x04)
define PORTCL *(unsigned char volatile *)(_IO_BASE + 0x05)
define DDRC *(unsigned char volatile *)(_IO_BASE + 0x07)
define PORTD *(unsigned char volatile *)(_IO_BASE + 0x08)
define DDRD *(unsigned char volatile *)(_IO_BASE + 0x09)
define PORTE *(unsigned char volatile *)(_IO_BASE + 0x0A)
define CFORC *(unsigned char volatile *)(_IO_BASE + 0x0B)
define OC1M *(unsigned char volatile *)(_IO_BASE + 0x0C)
define OC1D *(unsigned char volatile *)(_IO_BASE + 0x0D)
define TCNT *(unsigned short volatile *)(_IO_BASE + 0x0E)
define TIC1 *(unsigned short volatile *)(_IO_BASE + 0x10)
define TIC2 *(unsigned short volatile *)(_IO_BASE + 0x12)
define TIC3 *(unsigned short volatile *)(_IO_BASE + 0x14)
define TOC1 *(unsigned short volatile *)(_IO_BASE + 0x16)
define TOC2 *(unsigned short volatile *)(_IO_BASE + 0x18)
define TOC3 *(unsigned short volatile *)(_IO_BASE + 0x1A)
define TOC4 *(unsigned short volatile *)(_IO_BASE + 0x1C)
define TOC5 *(unsigned short volatile *)(_IO_BASE + 0x1E)
define TCTL1 *(unsigned char volatile *)(_IO_BASE + 0x20)
define TCTL2 *(unsigned char volatile *)(_IO_BASE + 0x21)
define TMSK1 *(unsigned char volatile *)(_IO_BASE + 0x22)
define TFLG1 *(unsigned char volatile *)(_IO_BASE + 0x23)
define TMSK2 *(unsigned char volatile *)(_IO_BASE + 0x24)



define SCCR2 *(unsigned char volatile *)(_IO_BASE + 0x2D)
define SCSR *(unsigned char volatile *)(_IO_BASE + 0x2E)
define SCDR *(unsigned char volatile *)(_IO_BASE + 0x2F)
define ADCTL *(unsigned char volatile *)(_IO_BASE + 0x30)
define ADR1 *(unsigned char volatile *)(_IO_BASE + 0x31)
define ADR2 *(unsigned char volatile *)(_IO_BASE + 0x32)
define ADR3 *(unsigned char volatile *)(_IO_BASE + 0x33)
define ADR4 *(unsigned char volatile *)(_IO_BASE + 0x34)
define OPTION *(unsigned char volatile *)(_IO_BASE + 0x39)
define COPRST *(unsigned char volatile *)(_IO_BASE + 0x3A)
define PPROG *(unsigned char volatile *)(_IO_BASE + 0x3B)
define HPRIO *(unsigned char volatile *)(_IO_BASE + 0x3C)
define INIT *(unsigned char volatile *)(_IO_BASE + 0x3D)
define TEST1 *(unsigned char volatile *)(_IO_BASE + 0x3E)
define CONFIG *(unsigned char volatile *)(_IO_BASE + 0x3F)

define PERIODM 65,500          /* Pulse period for motors */
define PERIOD 40000            /* Pulse period for servos */
define PERIOD_1PC 655

unsigned int read_sci();
unsigned char read_spi();
void write_eeprom(unsigned char *addr, unsigned char c);
void write_sci(unsigned int);
void write_spi(unsigned char);

typedef enum {
   BAUD9600 = 0x30, BAUD4800 = 0x31, BAUD2400 = 0x32,
   BAUD1200 = 0x33, BAUD600 = 0x34, BAUD300 = 0x35

BaudRate;
void setbaud(BaudRate);

extern void motor0(), motor1(), servo_OC4(), servo_OC5();
extern void _start(); /* entry point in crt11.s */

pragma abs_address:0xffd6
void (*interrupt_vectors[])() =

   0,  /* SCI */
   0,  /* SPI */
   0,  /* PAIE */
   0,  /* PAO */
   0,  /* TOF */

servo_OC5, /* TOC5 */
servo_OC4, /* TOC4 */
motor1,    /* TOC3 */
motor0,    /* TOC2 */

   0,  /* TOC1 */
   0,  /* TIC3 */
   0,  /* TIC2 */
   0,  /* TIC1 */
   0,  /* RTI */
   0,  /* IRQ */
   0,  /* XIRQ */
   0,  /* SWI */



duty_cycle[2];  /* Specifies the PWM duty cycle for two motors */
unsigned width[2];  /* Holds PWM value for the two servos */

/*************MOTORS**********************/
void init_motors(void)

   /* Function: This routine initializes the motors
   * Inputs:   None
   * Outputs:  None
   * Notes:    This routine MUST be called to enable motor operation!

      INTR_OFF();

   /* Make PORTD pins 4 and 5 output pins */
      SET_BIT(DDRD,0x30);

   /* Set all OCx pins to output low */
      SET_BIT(TCTL1, 0xAA);
      CLEAR_BIT(TCTL1, 0x55);

   /* Set PWM duty cycle to 0 first */
duty_cycle[0] = duty_cycle[1] = 0;

   /* Enable motor interrupts on OC2 and OC3 */
      SET_BIT(TMSK1, 0x60);

      INTR_ON();

/*************MOTORS**********************/
void motor(int index, int per_cent_duty_cycle)

   /* Function: Sets duty cycle and direction of motor specified by index
   * Inputs:   index in [0,1]
   *           -100% <= per_cent_duty_cycle <= 100%
   *           A negative % reverses the motor direction
   * Outputs:  duty_cycle[index]
   *           0 <= duty_cycle[index]<= PERIOD (Typically, PERIOD = 65,500)
   * Notes:    Checks for proper input bounds

if (per_cent_duty_cycle < 0)

         per_cent_duty_cycle = -per_cent_duty_cycle;
      /* Set negative direction of motors */
         if (index == 0) CLEAR_BIT(PORTD, 0x10);
         if (index == 1) SET_BIT(PORTD, 0x20);

else

      /* Set positive direction of motors */
         if (index == 0) SET_BIT(PORTD, 0x10);
         if (index == 1) CLEAR_BIT(PORTD, 0x20);



/*************MOTORS**********************/
void motor0()

   /* Function: This interrupt routine controls
    *            the PWM to motor0 using OC2
    * Inputs:   duty_cycle[0] (global)
    * Outputs:  Side effects on TCTL1, TOC2, TFLG1.
    * Notes:    init_motors() assumed to have executed

   /* Keep the motor off if no duty cycle specified.*/

if(duty_cycle[0] == 0)

         CLEAR_BIT(TCTL1, 0x40);

else
         if(TCTL1 & 0x40)
         {
            TOC2 += duty_cycle[0];            /* Keep up for width */
            CLEAR_BIT(TCTL1, 0x40);           /*  Set to turn off */
         }
         else
         {
            TOC2 += (PERIODM - duty_cycle[0]);
            SET_BIT(TCTL1, 0x40);             /* Set to raise signal */
         }
      CLEAR_FLAG(TFLG1, 0x40);                /* Clear OC2F interrupt Flag */

/*************MOTORS**********************/
void motor1()

   /* Function: This interrupt routine controls the PWM to motor1 using OC3
   * Inputs:   duty_cycle[1] (global)
   * Outputs:  Side effects on TCTL1, TOC2, TFLG1.
   * Notes:    init_motors() assumed to have executed

   /* Keep the motor off if no duty cycle specified.*/

if(duty_cycle[1] == 0)

         CLEAR_BIT(TCTL1, 0x10);

else
         if(TCTL1 & 0x10)
         {
            TOC3 += duty_cycle[1];         /* Keep up for width */
            CLEAR_BIT(TCTL1, 0x10);        /*  Set to turn off */
         }
         else
         {
            TOC3 += (PERIODM - duty_cycle[1]);



      INTR_OFF();
      CLEAR_BIT(PACTL,0x04);       /* Set IC4/OC5 to OC5 */
      SET_BIT(TCTL1,0x0A);         /* Set OC4 & OC5 to 0v */
      CLEAR_BIT(TCTL1,0x05);

width[0] = width[1] =0;      /* Set PWM's to 0 first */
      SET_BIT(TMSK1,0x18);         /* Enable interupts */
      INTR_ON();

/***************SERVOS********************/
void servo(int index, unsigned newwidth)

   /* Sets a servo to a certain pulse width */

width[index] = newwidth;

/***************SERVOS********************/
void servo_OC4()

if(width[0] == 0)

         CLEAR_BIT(TCTL1, 0x04);

else if(TCTL1 & 0x04)

         TOC4 += width[0];                /* Keep up for width */
         CLEAR_BIT(TCTL1,0x04);           /*  Set to turn off */

else

         TOC4 += (PERIOD - width[0]);
         SET_BIT(TCTL1,0x04);             /* Set to raise signal */

      CLEAR_FLAG(TFLG1,0x10);             /* Turn off OC4 interrupt */

/***************SERVOS********************/
void servo_OC5()

if(width[1] == 0)

         CLEAR_BIT(TCTL1, 0x01);

else if(TCTL1 & 0x01)

         TOC5 += width[1];              /* Keep up for width */
         CLEAR_BIT(TCTL1,0x01);         /*  Set to turn off */

else

         TOC5 += (PERIOD - width[1]);
         SET_BIT(TCTL1,0x01);           /*   Set to raise signal */



/***************ANALOG******************/
reads analog port */
int analog(int port)

   /* Takes one reading from the analog port
and returns the value read

    * Return Value : Value read from A/D port

ADCTL=port;
while((ADCTL & 0x80) != 0x80);
return(ADR1);

/***************SERIAL******************/
initializes SCI port 9600 baud */
void init_serial()

      CLEAR_BIT(SPCR,0x20);
      BAUD = 0xb0;  /* 0xbO is 9600 0x35 is 300 baud */
      SCCR2 = 0x0C;

/***************SERIAL******************/
displays character */
void put_char(int outchar)

int test = 0;

while (test == 0)

         test = SCSR & 0x80;

      SCDR = outchar;

/***************SERIAL******************/
void puts(unsigned char *s)

while (*s)

         put_char(*s);
         s++;

/***************SERIAL******************/
/* Displays number */

numout(unsigned int n)

int i;
unsigned int k;
unsigned char digits[7];



/***************SERIAL******************/
displays character string */
void write(char strng[80])

int index = 0;
int a=0;

while(strng[index] != 0) {
         if ((strng[index] == 0x5c) && (strng[index+1] == 0x6e))
         {
            put_char(10);
            put_char(13);

            index += 2;
         }
         else {
            put_char(strng[index]);
            index++;
         }

/***************WASTE TIME**************/
/*  void delay (int loops, int length)

int i, a;
for (i = 0; i < loops; i++)

         for (a = 0; a < length; a++);


