
University of Florida

Search, And, Destroy:
The Intimate Life of Three Robots…

Dr. A. Arroyo
EEL 5666

IMDL

Jose Garcia-Feliu

2

Table of Contents

Abstract

Executive Summary

Introduction

Integrated System

Mobile Platform

Actuation

Sensors

Sensor Experiments

Behaviors

Experimental Layout and Results

Problems

Conclusion

Documentation

Appendices

Figure 1: Location of bumper switches

Figure 2: Location of IR

Figure 3: Location for sonar and tower

Figure 4: Emitter Sonar Circuit

Figure 5: Detector Sonar Circuit

Figure 6: Flow chart of behaviors

Figure 7a: Picture of robots in playing field

Figure 7b: Picture of Search

Figure 7c: Picture of Robots from every angle

Figure 8a: Picture of Servos

Figure 8b: Picture of IR

Program Code (Interactive C)

3

Abstract

The objective of our design is to make robots that will simulate
a friendly game of search and destroy. Three robots will enter the
playing field and search the opponent with the intent to shoot sonar at
it. Each contender can only be shot 8 times. Whenever the robot
detects the opponent shooting at it, it will find and return fire to
the attacker. If the robot has been “hit” too many times, it must
return to its base for fixing and reloading. If the robot cannot find
the base before it is hit its maximum, the robot will stop
indefinitely.

Introduction

We will go through all of the steps required to design, assemble,

program and activate these robots. We decided to perform a game

platform, since I have already done a task-performing robot for my

senior design. This format helps make the design more fun, interesting

and at the same time more demanding for the robots to interact. This

design is not as simple as it seems. We chose to design and program

these robots the same, so that a multitude of robots could be built, if

desired, and added to the game without any further modifications. The

advantage is a more flexible assembly of the robots. However,

disadvantage that this format brings are that because they have the

same behaviors, very complex combinations can be achieved. Below, we

will describe all the systems and behaviors encountered and expected

from these robots. Furthermore, we will explain the relations between

their behaviors and how the combination of sensors affects this complex

set of actions.

4

Executive Summary

This project was very successful. We accomplished the goals of making robots that would have

multiple behaviors and also to show them. The robots wandered until they saw signs of another running

near them. Then shoot sonar waves at each other. We had a bit of difficulty with the sonar, because the

same sonar detector cannot distinguish between its own and another robot. We dealt with this by making

the robot that just shot to wait a bit and then to detect sonar. This way the sonar wave that bounced off the

robot or wall would have passed them. The robots first start by rotating in a counter-clockwise manner.

Doing this helps the robots calibrate their infrared. This is accomplished by reading from the environment

any signal from the IR detector. If a lower value than a preset value is found, that lower value becomes the

new lower bound for the range for that IR. This enables the robot to better approximate the types of

changes when the robot encounters an object. The robot is also equipped with an LED bar graph and a

piezo buzzer. The bar graph lets the spectators see at a glance the status of the game, while the buzzer lets

them hear when a shot is being fired. At the beginning of the game, after the robots finished calibrating,

the bar graph sequentially turns on and off the LEDs to show that everything is working. The buzzer will

then play a funny tone. Once the robots are ready, they will start looking for each other. This is performed

by detecting infrared from the environment. If they detect it, it must be that another robot is present. The

robots are also equipped with a sonar detector tower consisting of three detectors. We used relays to switch

from one to the next in a clockwise manner. The advantage of using relays is that one can physically

connect and disconnect to each detector. The disadvantage is that because they are mechanical devices,

they are slower than the rest of the circuit. To overcome this problem, we only switched once at every

completion of a cycle of the main program. The main program has many simulations of behaviors. They

have a total of 13 detectable behaviors. However, we found out that more complex behaviors surged from

this combination. We noticed that the robots were searching in a very random manner. We suspect that

this is the result of mixing the behaviors of collision avoidance, sonar detection, avoiding physical contact

and infrared detection. Each behavior act by itself, but because the processor examines all of them many

times a second, a new random behavior surfaced. Overall, the robot performed as expected.

5

Integrated System

Once all of the hardware is tested and put in the correct place,

we will use the program to control the behaviors of the robots. The

board is in charge of managing, 1 set of IR for wall-following, 1 set

for base-finding, 1 sonar for shooting opponent, 3 sonars on a tower

for receiving shots, 4 contact sensors, a status LED bar graph, and a

piezo buzzer. Each behavior will be programmed separately until it

works properly. Since many behaviors are incorporated, we will resolve

any problem they may have with other sensors and their possible new

behavior. Refining the behavior interaction can be done as the robots

achieve a working format. The behavior interaction can be seen by the

following flow-chart in Figure 6, in the appendix section at the end of

the report. Here we see how all behaviors are related to each other

and when does a particular behavior is allowed and when it is not.

This combination of behaviors and reactions will permit each robot to

perform the objectives described in the introduction. One of the most

difficult and challenging problems will be with the sonar. Because of

its long-range capabilities, incorporating the sonar to the design will

increase the chances of, not only error, but also of flexibility

requirements. Because each robot will have 20 sensors and 2 motors,

coordinating all of them will be a real challenge. For this reason, we

chose the TJ Pro board as our desired processor board. This board

offers plenty of flexibility, and possesses many of the needed

connections and pins as part of its layout. Being the purpose of the

game for the robots to find each other, it is a requirement that the

robots be agile enough but also well equipped with many sensors. The

TJ body offers a simple structure with many levels for different

6

sensors. Proper integration of all components, including correct

behaviors, is vital to our success in this project.

Mobile Platform

The body of our robot is the familiar Talrik Junior or TJ for

short. A picture of the TJ can be seen in Figure 7a in the appendix

section. The TJ body offers the strength of a hard and simple frame,

and a horizontal circular cap, which will later help to separate

sensors for specific purposes. But most important of all, it offers

savings on weight. We intend the robots to be agile and fast. The

structure has enough space for two servos, which will drive the robot

using 3-inch wheels. It also has a surrounding flexible bumper used to

detect physical contact with the field’s wall, obstacles or the other

robots. Inside the structure, we can also see the board, which

operates all of the sensors and gives the robot its commands and

behaviors. Because all of the robots wiring and devices are hidden on

the inside, we were able to spray paint the frames and make the robots

presentable. Also, because the purpose of the game is for spectators

to constantly watch them, the more uniform and smooth looking

appearance makes them more friendly and pleasing to the eye. We cut

out the layout of the TJ the first day in lab. Each sheet of wood has

enough pieces for two TJs, therefore, we got two. We used an upside

down sander to smooth out the corners and sides of the newly cut parts.

We also used super glue to hold the pieces together. After a minute of

drying, we applied more glue to the joints to strengthen them. An

embarrassing mistake made was to miscount the number of pieces from one

robot by gluing extra pieces on the other. To make up for the missing

7

pieces, we looked around in the lab and found extra pieces of an old

layout that apparently broke in half. Once the body was glued, we took

the robots home and sprayed them each a different color. One important

tip to remember when spray painting is to wear eye goggles or glasses

when cleaning the spray while looking really closely at the tip. The

robot named “Search” was painted white, ”And” was sprayed metallic

silver, while the robot named “Destroy” was painted red. This will

help us to distinguish between them. To make them even more creative

and colorful, we exchanged the circular section to a different color,

so that each one would have two colors. Figure 7b in the Appendix shows

the diversity of colors for each one.

Actuation

The robots use two servos for mobility. A picture of the servos

can be found in Figure 8a, under the appendix section. The board, using

a fairly simple program, will control these devices. The program will

tell the servos what speed to rotate by sending it a number. We will

use the command “motorp(a, b);” where a is the number for the left or

right servo (0 or 1). In turn, b will be the relative speed of the

motor. We hacked these servos to make them work as motors by

physically breaking off the connection between the final gear and the

position potentiometer. Each servo includes a controller that tells

the current position and the desired one. The farther the degree

difference the faster it will rotate. Therefore, the variable b used

previously is used to tell the servo how fast to go. Just like the TJ

body, these servos are also lightweight and very efficient. The servo

motion will help the robot in the search-and-destroy behavior by

8

turning the entire robot in the direction of the opponent. Once

aligned with the enemy, the shooting sonar will be ready for use.

Mounted onto the servos are two big 3-inch wheels. These will help the

robot have a smooth ride and provide enough underside space for the

base-detecting sensors. Because of its lightweight characteristic,

each robot will be able to smoothly drive over objects without too much

trouble. Another important aspect of the servos is that they are not

entirely calibrated to zero as their stopping motion. Therefore, we

had to make a calibration system so different clones of the robot can

use the same program without the need of further changes. We

approached this problem by first finding out the exact value for which

each robot would be at zero. To our surprise, all six servos had about

the same value. The value for the left one was 6, while the right one

stopped moving at –13. We then proceeded to make global variables at

the beginning of the program where these values could be entered. By

adding these values to the desired values, we accomplished to send the

servo controller boards the correct values. Most important of all,

these variables can be changed in case the robot re-calibrates or if

another robot having different values is used.

Sensors

The robot will be loaded with a number of sensors to help it move

smoothly around the field and towards its target. It will use IR

sensors to help it follow a wall while it is looking for the base. A

sample IR is shown in Figure 8b in the appendix section. To detect the

base, it will have an IR set underneath to sense the dark floor of the

base. We will use a piece of flat black plastic. To locate its

9

opponent, it will use sonar to sense the direction of shots, while also

using infrared to detect close presence of the opponent. Many evasive

maneuvers can be developed from this combination of sensors. Along

with these sensors, each unit will have touch sensors (bumper), in case

the robots make contact or an unexpected obstacle is present. This is

necessary because the robots turn and move at great speed. To aid

spectators view the status of the game, each robot contains a 10-LED

status segment connected to an 8-bit flip-flop chip. From these 10

LEDs, we will use 8 of them. Each segment will light up every time the

opponent robot accomplishes a hit onto the target. After 4 hits, if

the robot successfully reaches the base, the segments will then clear.

To show the creativity of the game, we also added a function that makes

the bar graph sequentially turn on and off each LED in order back and

forth. The robots will also be equipped with a piezo buzzer, which

will announce to the audience that a shot has been fired. The same

piece will also indicate when one of the robots has perished by giving

a “flat-line” sound.

The sensors used by our robots will enable them to view the

world around it in a general but limited way. The sensors will give

information with respect to objects in the proximity and moving objects

in front of it. With this data, the robot can satisfy its only

purpose… to find the other robots and to shoot sonar in their

direction. Because integrating so many sensors in one robot might

overwhelm the processor, we had to rely on better programming and logic

to device a program that will read sensors and using data only when it

needs it. In this paper, we will see how we adapted each sensor to the

robot and how we incorporated them together.

10

Bumper Sensors

The bumper sensor is a series of switches positioned around

a movable bumper frame around the head of the robot. We can see their

location in Figure 1. When the robot bumps into an object, the switch

closes and the processor can then inspect the analog-to-digital

converter PE0. The TJPRO board is setup so that four switches can be

individually connected. When PE0 is checked, each switch is

differentiated in steps. In our robots, we only used two switches, one

in the rear and three parallel connected in the front. Because these

switches are positioned on the top section of the TJ, objects smaller

than that height will not make contact and therefore will not be

discovered. Knowing this, the bumper sensors are a last resort in

avoiding running into things. Overall, the bumper will not be used for

the main purpose of the game, but becomes important, since one of the

11

behaviors will be to further injure an already badly injured robot.

Therefore, a robot that has been hit more than 4 times will further

have an extra shot if bumped. These features are mostly to avoid

collisions between fast moving robots.

Infrared Sensors

We are using five infrared sensors and emitter pairs on each

robot. The location of the IR sensors is drawn in Figure 2. The IR

emitters are connected to pre-wired connections of 40KHz signals.

These can individually be controlled by using the command

poke(0x7000,0xff), where ff can be replaced by the actual combination

of sensors desired to be on. We have three IR placed in front of the

robot below each of the front bumper switches. Each connected to PE2,

PE3, PE4, PE5 and PE7. Every detected value has a range from

approximately 80 to 130. The A-to-D converters give a digital value to

12

the processor about how far an object would be from the robot. At the

beginning of the main program, we call a subroutine called calib_IR().

his routine makes the robot spin slowly and take measurements of the

lowest value of the IR. This helps set the lower bound for each IR

set. This self-calibration step is needed since each sensor does not

necessarily possess the same characteristics as others might. We also

positioned another IR on the right side of its body. This sensor aims

perpendicular to its forward path and it is intended to measure its

distance from the playing field wall. This IR is used when the robot

has been hit more than half of the allowable number of times. When

this occurs, the robot follows the wall until it finds the base. When

this behavior is active, the robot will run away from battle and

attempt to find the base, which we assume will be near the wall of the

playing field. This way, the robot can give full “attention” to the

wall following mechanism. At the base, the robot can then clear the

number of hits and go back to the game. The last IR is used to aid in

the search of the base. This “base-finder” IR works simply by

detecting a lack of IR. This only occurs when either the robot is

lifted or when a black, non-reflective surface is directly underneath

the robot. We must assume that the base is found somewhere next to the

wall. The other feature of the base-finder is that the robots stop

when they are picked up. This becomes handy when dealing with

multiple robots. This last IR sensor is always pointing down and

therefore, cannot be calibrated. This is why it is used in a digital

format (if there is IR, keep going; else, stop).

13

Sonar Sensors

The final sensor used by the robots is the sonar. Their

location can be seen in Figure 3. The sonar is a simple device that

transmits ultrasonic waves. When the waves encounter an object, they

bounce back and are detected. The sensor can then determine how long

it took the wave to travel. We will make the robot stop before we use

the sonar. Emitting these waves without moving the robot is essential

to the accuracy of the sonar. To help avoid false detection, we will

give the robot a certain degree of error. The signal processed by the

robot will be a number from 0 to 255, just like the IR. But because we

added a low pass filter to the output signal, we got a value from 1 to

60. The advantage of this extra step is to convert the value so that

14

the higher the value the closer the sonar shot. The sonar emitters

will be connected to the 40KHz pre-wired outputs in the TJPRO board.

The emitter will only be turned on when the TJ is stopped and ready to

shoot. However, the detector will always be detecting. The detector

will be connected to PE6. The code will constantly check this for

possible hits. If a hit is detected, then the robot will know another

robot is in pursuit. We will have three sonar detectors per robot.

These will be pointed to face in different directions on each. We will

space each one about 120 degrees apart. This setup will maximize the

sensitivity of the sonar. This pinpoint aid tells the robot from what

direction is the opponent shooting from. At this point, the target

robot would then turn towards the direction of the opponent and reply

with a sonar shot. Then the target robot would move away and relocate

the opponent for extra defense.

Sensor Experiments

Bumper Experiment

To test the correct working order of the bumper sensors, we wrote

a simple program which would call the subroutine bumper(). Table 1

shows the results obtained from this experiment. This routine would

check the bumpers for any sign of contact. If any of the switches were

detected to be close, then the robot would move in reverse and rotate

in the opposite direction. This code checks for any of the bumpers to

be closed. If any of them has contact, the routine would play out its

instructions. Otherwise, it would do nothing. The bumpers are

15

located at a height of 3.25 inches from the ground. If we assume the

ground to be level, any contact between robots or any objects within

the playing field should, at worst case, contact at that height.

SENSOR LOCATION ANALOG READING

Bumper Front 45

Bumper Front-Left 45

Bumper Front Right 45

Bumper Rear 250

Table 1: Bumper results

Infrared Experiments

The infrared sensors were tested similarly. To protect the

sensitive IR, we enclosed them underneath the upper body. The base

finder was hidden within the center of the main body. This would

ensure that any bumps would not directly affect the sensors, or the

calibration. We wrote a simple program routine for obstacle avoidance.

This code is shown in Appendix B. This code shows how as each sensor

senses an obstacle, the motors are arranged so that the robot swerves

around it. The base finder sensor was tested when we picked up the

robot and the robot stopped moving. Below, we show Table 2 of the IR

sensors and what the robot does when an obstacle is directly in front.

The IR sensors were located slightly below the bumper switches at a

height of 3 inches. Anything much higher than 3 inches would not,

otherwise, be detected by the sensors. The base finder is located at a

distance of 0.5 inches from the ground. Our tests showed that if the

16

robots were raised over a height of 18 inches, the robot would stop.

This is equivalent to the robot passing a dark surface. This is very

important, since they cannot get confused when searching for the base.

The forward and side looking IR reacted at a distance of 4 inches.

This relatively small distance was intentionally chosen to maximize the

space within the playing field, as well as, to give the robots a really

closed feel when detecting each other.

SENSOR ACTION A/D FUNCTION

Front-Left Avoid left PE3 Detect obstacles on left

Front Avoid front PE7 Detect obstacles head on

Front-Right Avoid right PE2 Detect obstacles on right

Wall Follower Follow wall PE5 Detect wall

Base finder Detect black PE4 Detect base when needed

 Table 2: IR sensor table

Sonar experiment

The sonar was used to detect shots. We performed a series

of simple tests. The results are shown in Table 3. We put the robot

in front of another robot shooting at intervals and programmed it to

sense sonar measurements. At the end of the measurements, the robot

either would light up the bars from 1 to 8 if there was sonar detected.

The first would be lit if the robot detected a signal with a value from

10 to 19, the second if the value was from 20 to 29, etc. The results

from the sonar test showed that the sonar would work at a distance of

17

over 3 feet, which was more than enough to give each robot enough

capability. Because the sonar is a wave, the calibration routine did

not need to adjust the sonar. To distinct between it’s own shot and

the opponents’ shooting, we made the program wait a bit long before it

measured any readings from the detector. Otherwise, if the robot

detects a sonar signal not from itself, it would be considered a hit.

We positioned the detectors on top of the robot and made them aim

outward 120 degrees apart. This will give the robot the maximum range

of detection. The circuit design for the sonar emitter is shown in

Figure 4 in the Appendix and the circuit for the detector in Figure 5.

SENSOR EMITTER DISTANCE(ft) RESULT(# LEDs)

Sonar off any 0

Sonar on 0.5 6

Sonar on 1.0 5

Sonar on 1.5 4

Sonar on 2.0 3

Sonar on 2.5 2

Sonar on 3.0 1

Sonar on 3.5 0

Sonar on 4.0 0

Sonar on 4.5 0

 Table 3: Sonar sensor table

We can also see in Figure 4, the layout of the schematics used

for the sonar emitter.

18

In Figure 5, we also show the circuit layout of the sonar

detector.

Behaviors

The robots will have quite a few behaviors, which we hope to

combine to make more complex behaviors. The first behavior is to avoid

physical contact. It accomplishes this by using the four bumper

19

switches. A basic behavior for the robots will be collision avoidance.

The three IR sets located in front of the robot will aid in this task.

Another behavior is to find the base by using the IR pointing down.

This behavior will be used primarily in conjunction with wall

following. The wall following behavior will use side-positioned IR

sets to compare the distance to the field wall and to follow that wall

until the base is found. Positive reinforcement is given when the

robot reaches the base while injured. At the base the robots can get

“repaired” and “reloaded”, they need to find the base and stay there

for at 10 seconds. A behavior characteristic of this game will be to

find the other robot. Shooting and detecting shots is a vital behavior

for this game, using sonar as the sensor of choice. It also simulates

injury by slowing down its speed. At the same time, it shows a

preference of flight (not fight) behavior when seriously injured. When

in this situation, the robot will eagerly look for the base and not

shoot the opponent in hopes of not attracting attention to itself. It

can also detect the direction of the shot using the detector tower.

Once the direction is specified, the robot can proceed to reply to that

section of the area with a shot. A very important behavior occurs at

the beginning of the game. The robots rotate at a slow speed and

calibrate their IR. This accomplished by taking readings of the

environment and comparing the lowest possible value to a predetermined

variable. If the value is lower, then that variable is updated with

that value. In essence, this calibration helps determine the changes

in infrared ranges. Here, the robot under attacked, will start to move

and shoot back in the direction of the shot. It will then search and

try to locate the enemy for a more precise hit. The last behavior

these robots will perform is to simulate the end of existence by

stopping indefinitely. The sequential light shows this on the bar

20

graph and the “flat-line” sound from the buzzer. Below we show a

summary of the behaviors in Table 4.

Behaviors Preferred Sensor

1. Avoid Physical Contact (Bumpers)

2. Collision Avoidance (IR)

3. Wall Following (IR)

4. Base Finding (IR)

5. Self-Calibration (of IR)

6. If “stuck” in corner, gets out (Random stop and go)

7. Shoots and detects shots (Sonar)

8. Senses direction of Shot (Sonar Tower)

9. Simulates injury (Change in speed)

10. Negative reinforcement (Shot if too close to wall)

11. Recuperates after injury (If it makes it to base)

12. Flight (not fight) behavior (If shot more than half)

13. Simulates end of existence (Gives a flat line and light)

Table 4: Behaviors at a glance

Experimental Layout and Results

We will be testing the MTJPRO11 boards using simple programs to

test the servos. A simple board test will also be used to check the

correct working condition of all of its elements. We need to perform

these tests to assure the working order of the robots, since these

21

boards were assembled in the lab. The next test will check for correct

direction of the servo rotation to assure correct response from each

servo. The memory test will check for correct space handling from the

32K bytes of RAM in the boards. Along with the servo test, we need to

check if the new 3-inch wheels will fit and not interfere with any

other component from inside the TJ.

Problems

Below is a table describing the problems we had while completing

this project. These are found in Table 5.

- Sonar contradiction: Hard to distinct between own shot and

opponent’s shot.

(SOLUTION: wait long enough, then detect opponent’s.)

- Relay delay: Mechanical limitations on relay speed.

(SOLUTION: change relays about once every complete cycle of the

main program.)

- 3 sonars and 1 circuit: Needs constant attention of detector.

(SOLUTION: use relays to physically connect to each one.)

- Modularity of components: Every module must be exchangeable between

robots.

(SOLUTION: be patient and hope for the best.)

- 74HC574’s only have 8 Flip-flops, not 10: The bar graghs have 10

LEDs, what to do with extra two.

(SOLUTION: change to 8 maximum shots, not 10.)

- Beware of Murphy’s Law: The day before the final demo all robots

had sudden problems.

22

(SOLUTION: do not panic, pray…)

Conclusion

The robot construction was a definite success. We built these

robots using a modular approach. Each part of its total 12 sections

was built identically. This helped us to later test them by simply

interchanging them with robots loaded with a testing program. We

design the program using the same approach. The software has many

modules or subroutines. Each one can easily be tested individually.

This format helped us later in the programming by providing an easy to

understand and compose a sequence of behaviors. We met our original

goal: to make a friendly game of search and destroy. Of also designing

a platform that can be copied exactly and replicated infinite times and

expected to perform the same way. We also accomplished other goals of

building modular hardware identically enough that it can be exchanged

between robots. Also to use software to help solve conflicts in

differentiating sonar pulses from different sources. And last, to

develop a modular software flexible enough that it can adapt to any of

the robots. Other future improvements that can be added are: a self-

diagnostic program (which could detect if any of the components are not

working), add multiple robots (to see the behavior change in having

more robots), adding behaviors to remember the location of the base,

(maybe even moving the base to the middle of the playing field).

23

Documentation

The following is a list of our sources for information,
specifications, and design:

Fred Martin, The 6.270 Robot Builder’s Guide, MIT Media Lab,
Cambridge, MA, 1992.

Intelligent Machines Design Laboratory Web page:
http://www.mil.ufl.edu/
http://www.mil.ufl.edu/imdl

Mekatronix home page:
http://www.mekatronix.com/

Appendices

24

Figure 7a: picture of the robots in playing field

25

Figure 7b: picture of one “Search” from top

Figure 7c: picture of the robots from every angle

26

Figure 8a: picture of servo

Figure 8b: picture of infrared

ROBOT PROGRAM

27

/**\
**
** **
** Title: TJPRO.C **
** **
** Programmer: Jose Garcia-Feliu **
** **
** Description: Program to control TJ's for game. **
** **
**
**/
int i = 0; /* Variable for calibration */
int IR2=99,IR3=99,IR4=99; /* Variables for calibration */
int IR5=99,IR7=99; /* Variables for calibration */
int y = 0, h = 0, j = 0, m = 0; /* Variable for sonar loop */
int counter, counter_b, motion; /* Variable for Sonar */
int shots = 0; /* Number of shots */
int sonar_counter = 0; /* Variable for sonar detection */
int m0 = -13, m1 = 6; /* Calibration for motors at stop */
/************************ Program *******************************/
void main() { /* Start of Main */

/************************ Setup *********************************/
 poke(0x7000,0x00); /* Turn IR off */
 poke(0x6000,0x00); /* Turn Bars off */
 poke(0x1008,0x00); /* Turns beeps off */
 sleep(.1); /* Relax for a bit */
 servo_on(); /* Turn servos on */
/************************ Calibration ***************************/
 calib_IR(); /* Calls calibration routine */
 sounds(); /* Makes funny sounds */
 display_seq(); /* Uses display before program */
 display_0(); /* Clears display */
/************************ Infinite Loop *************************/
while (1) { /* Infinite Loop */
 if (shots < 4) {bumpers(); /* Avoids physical contact */
 IR(); /* Controls IR */
 detect_sonar(); /* Detects sonar */
 if (y > 100){y = 0; /* Reset variable, every so often */
 sonar(); } /* Uses sonar to find opponent */
 }
 if (shots >= 8) {game_over(); } /* Robot is disabled */
 if (shots >= 4) {bumpers(); /* Avoid physical contact */
 wall(); /* If close to dying */
 detect_sonar(); } /* Detects sonar */
 y = y + 1; /* Increase variable */

 } /* End while - infinite */
} /* End Main */
/************************ End of Program ***********************/

/**/
/* Calib_IR */
/**/

28

void calib_IR() { /* Calibrates the minimum values for
IR */
 motorp(1,12+m1); /* Goes around slowly */
 motorp(0,-12+m0);
while (i < 20) { /* Loop to calibrate all IR */
 poke(0x7000,0x04);

 if (analog(2) < IR2) {IR2 = analog(2);}
 poke(0x7000,0x01);

 if (analog(3) < IR3) {IR3 = analog(3);}
 poke(0x7000,0x80);

 if (analog(4) < IR4) {IR4 = analog(4);}
 poke(0x7000,0x10);

 if (analog(5) < IR5) {IR5 = analog(5);}
 poke(0x7000,0x02);

 if (analog(7) < IR7) {IR7 = analog(7);}
 i = i + 1;
 sleep(.1); }

} /* End of subroutine */

/**/
/* Sounds */
/**/
void sounds() { /* Beeps speaker */

 poke(0x1008,0x10);
 sleep(.45);
 poke(0x1008,0x00);
 sleep(.2);
 poke(0x1008,0x10);
 sleep(.2);
 poke(0x1008,0x00);
 sleep(.1);
 poke(0x1008,0x10);
 sleep(.2);
 poke(0x1008,0x00);
 sleep(.1);
 poke(0x1008,0x10);
 sleep(.1);
 poke(0x1008,0x00);

 sleep(.1);
 poke(0x1008,0x10);
 sleep(.1);
 poke(0x1008,0x00);

 sleep(.2);
 poke(0x1008,0x10);

 sleep(.3);
 poke(0x1008,0x00);
 sleep(.4);
 poke(0x1008,0x10);
 sleep(.1);
 poke(0x1008,0x00);
 sleep(.1);
 poke(0x1008,0x10);
 sleep(.1);
 poke(0x1008,0x00);

} /* End of subroutine */

/**/

29

/* Display_seq */
/**/
void display_seq() { /* Displays the bar graph */
 while (h < 2) { /* Loop for bars */

 poke(0x6000,0x01);
 sleep(.1);
 poke(0x6000,0x02);
 sleep(.1);
 poke(0x6000,0x04);
 sleep(.1);
 poke(0x6000,0x08);
 sleep(.1);
 poke(0x6000,0x10);
 sleep(.1);
 poke(0x6000,0x20);
 sleep(.1);
 poke(0x6000,0x40);
 sleep(.1);
 poke(0x6000,0x80);
 sleep(.1);
 poke(0x6000,0x40);
 sleep(.1);
 poke(0x6000,0x20);
 sleep(.1);
 poke(0x6000,0x10);
 sleep(.1);
 poke(0x6000,0x08);
 sleep(.1);
 poke(0x6000,0x04);
 sleep(.1);
 poke(0x6000,0x02);
 sleep(.1);
 poke(0x6000,0x01);
 sleep(.1);
 h = h + 1; } /* End of While */
 h = 0; /* Reset value of H */

} /* End of subroutine */

/**/
/* Display_0 */
/**/
void display_0() { /* Displays the bar graph */

 poke(0x6000,0x00); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_1 */
/**/
void display_1() { /* Displays the bar graph */

 poke(0x6000,0x01); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_2 */
/**/
void display_2() { /* Displays the bar graph */

 poke(0x6000,0x03); /* Display '0' bars */

30

} /* End of subroutine */

/**/
/* Display_3 */
/**/
void display_3() { /* Displays the bar graph */

 poke(0x6000,0x07); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_4 */
/**/
void display_4() { /* Displays the bar graph */

 poke(0x6000,0x0f); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_5 */
/**/
void display_5() { /* Displays the bar graph */

 poke(0x6000,0x1f); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_6 */
/**/
void display_6() { /* Displays the bar graph */

 poke(0x6000,0x3f); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_7 */
/**/
void display_7() { /* Displays the bar graph */

 poke(0x6000,0x7f); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Display_8 */
/**/
void display_8() { /* Displays the bar graph */

 poke(0x6000,0xff); /* Display '0' bars */
} /* End of subroutine */

/**/
/* Bumper */
/**/
void bumpers() { /* Avoid physical contact */
 if((analog(0)>10)&&(analog(0)<70)) { /* If bumped from front */
 motorp(1,-20+m1); /* Backs up */
 motorp(0,-20+m0);

 sleep(1.0); /* Then turn around */
 sonar_emitter(); /* Sounds shot */
 shot_sound(); /* Gets angry if bumped */
 motorp(1,-50+m1); /* Go elsewhere */
 motorp(0,50+m0);
 if (shots >= 5) {shots = shots + 1;}/* If bumped when weak */

31

 sleep(1.0); }
 else if (analog(0) > 100) { /* If bumped from behind */
 motorp(1,20+m1); /* Move forward for a bit */
 motorp(0,20+m0);

 sleep(1.0); /* Then turn around */
 motorp(1,-50+m1);
 motorp(0,50+m0);
 sleep(.85);

 motorp(1,0); /* Stops */
 motorp(0,0);

 shots = shots + 1; /* When hit from behind */
 sonar_emitter(); /* Sends sonar */
 shot_sound(); } /* And make sounds */

} /* End of subroutine */

/**/
/* IR */
/**/
void IR() { /* Controls IR sensors */

 if ((setIR_2())&&(analog(2) > (IR2+(130-IR2)/2))) {
 detect_ir(); /* Detects other robots */
 motorp(1,-50+m1); /* If obstacle on right */
 motorp(0,50+m0); }
 else if ((setIR_3())&&(analog(3) > (IR3+(130-IR3)/2))) {
 detect_ir(); /* Detects other robots */
 motorp(1,50+m1); /* If obstacle on left */
 motorp(0,-50+m0); }
 else if ((setIR_7())&&(analog(7) > (IR7+(130-IR7)/2))) {
 detect_ir(); /* Detects other robots */
 motorp(1,-50+m1); /* If obstacle in front */
 motorp(0,50+m0); }
 else { /* If no obstacles on IR */
 motorp(1,50+m1);
 motorp(0,50+m0); }
} /* End of Subroutine */

/**/
/* wall following */
/**/
void wall() { /* Follows the contour of wall
*/
 if (setIR_4()&&(analog(4) < (IR4+2*(130-IR4)/3))) {

 motorp(1,0); /* When base is found */
 motorp(0,0); /* Gets fixed and reloaded */
 sounds(); /* Let know the base is found */

 sleep(10.0); /* Wait a little bit */
 shots = 0; /* Resets shots */
 display_0(); } /* Clears display */
 else if (setIR_2()&&(analog(2)>(IR2+2*(130-IR2)/3))) {
 motorp(1,-20+m1);
 motorp(0,20+m0); }
 else if (setIR_7()&&(analog(7)>(IR7+2*(130-IR7)/3))) {
 motorp(1,-20+m1);
 motorp(0,20+m0); }
 else if (setIR_5()&&(analog(5)>(IR5+5*(130-IR5)/7))) {
 motorp(1,15+m1);

32

 motorp(0,25+m0); }
 else if (setIR_5()&&(analog(5)>(IR5+(130-IR5)/4))) {
 motorp(1,25+m1);
 motorp(0,15+m0); }
 else { /* If no wall, go straight */
 motorp(1,20+m1);
 motorp(0,20+m0); }
} /* End of Subroutine */

/**/
/* setIR_0 */
/**/
void setIR_0() { /* Turns all IRs off */
 poke(0x7000,0x00);
 sleep(.05); } /* End of Subroutine */

/**/
/* setIR_2 */
/**/
int setIR_2() { /* Turns corresponding IR */
 poke(0x7000,0x04);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* setIR_3 */
/**/
int setIR_3() { /* Turns corresponding IR */
 poke(0x7000,0x01);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* setIR_4 */
/**/
int setIR_4() { /* Turns corresponding IR */
 poke(0x7000,0x80);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* setIR_5 */
/**/
int setIR_5() { /* Turns corresponding IR */
 poke(0x7000,0x10);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* setIR_7 */
/**/
int setIR_7() { /* Turns corresponding IR */
 poke(0x7000,0x02);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/

33

/* setIR_73 */
/**/
int setIR_73() { /* Turns corresponding IR */
 poke(0x7000,0x03);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* setIR_75 */
/**/
int setIR_75() { /* Turns corresponding IR */
 poke(0x7000,0x12);
 sleep(.05);
 return 1; } /* End of Subroutine */

/**/
/* sonar */
/**/
void sonar() { /* Sends sonar signal */

 motorp(1,0); /* Robot stops */
 motorp(0,0);

while(m < 10) {
 detect_ir();
 detect_sonar();
 m = m + 1; } /* Increases variable */
 m = 0; /* Resets variable */
} /* End of Subroutine */

/**/
/* sonar_emitter */
/**/
void sonar_emitter() { /* Sends sonar signal */

 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(2L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(3L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(4L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(5L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(6L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */

34

 msleep(1L); /* Waits a little bit */
 poke(0x7000,0x40); /* Send sonar pulse */
 msleep(7L); /* Waits a little bit */
 poke(0x7000,0x00); /* Turns sonar emitter off */
 sonar_counter = 0; /* Resets variable */

} /* End of Subroutine */

/**/
/* Detect_sonar */
/**/
void detect_sonar() { /* Detects shots */

if (sonar_counter > 0) {
 if (1) {poke(0x1008,0x00);} /* Looks at front sonar */
 else if (j == 2){poke(0x1008,0x04);} /* Looks at rear left sonar */
 else if (j == 4){poke(0x1008,0x0c); /* Looks at rear right sonar
*/
 j = 0; }

 if (analog(1) > 10) { /* If shot */
 shots = shots + 1; /* Then increase variable */
 if (shots==1){display_1();} /* Update bar graph */
 else if (shots==2){display_2();} /* Update bar graph */
 else if (shots==3){display_3();} /* Update bar graph */
 else if (shots==4){display_4();} /* Update bar graph */
 else if (shots==5){display_5();} /* Update bar graph */
 else if (shots==6){display_6();} /* Update bar graph */
 else if (shots==7){display_7();} /* Update bar graph */
 else if (shots==8){display_8();} /* Update bar graph */
 if (0) {shot_sound();
 sonar_emitter(); } /* Shoots if fired from front
*/
 else if (0){motorp(1,-10+m1); /* Rotate to direction of shot */
 motorp(0,10+m0);
 sleep(.5);
 shot_sound(); /* And shoot */
 sonar_emitter(); }
 else if (0){motorp(1,10+m1); /* Rotate to direction of shot */
 motorp(0,-10+m0);
 sleep(.5);
 shot_sound(); /* And shoot */
 sonar_emitter();
 j = 0; } } /* Resets variable */
 j = j + 1; /* Increases variable */
 sonar_counter = 0; } /* Reset variable */
 sonar_counter = sonar_counter + 1; /* Increases value */

} /* End of Subroutine */

/**/
/* Detect_ir */
/**/
void detect_ir() { /* Detects robots */

 setIR_0(); /* Turns all IRs off */
 if (analog(2) > IR2) {sonar_emitter();

35

 shot_sound();}
 else if (analog(3) > IR3) {sonar_emitter();
 shot_sound();}
 else if (analog(4) > IR4) {sonar_emitter();
 shot_sound();}
 else if (analog(5) > IR5) {sonar_emitter();
 shot_sound();}
 else if (analog(7) > IR7) {sonar_emitter();
 shot_sound();}

while (0) { /* TESTING */
 if (j == 0) {poke(0x1008,0x00);} /* Looks at front sonar */
 else if (j == 1) {poke(0x1008,0x0c);} /* Looks at rear left sonar */
 else if (j == 2) {poke(0x1008,0x08);} /* Looks at rear right sonar */
 poke(0x7000,0x00);
 sleep(.5);
 shot_sound();
 sonar_emitter();
 if (analog(1) > 10) { /* If shot */

 shots = shots + 1; /* Then increase variable */
 if (shots==1) {display_1();} /* Update bar graph */
 else if (shots==2){display_2();} /* Update bar graph */
 else if (shots==3){display_3();} /* Update bar graph */
 else if (shots==4){display_4();} /* Update bar graph */
 else if (shots==5){display_5();} /* Update bar graph */
 else if (shots==6){display_6();} /* Update bar graph */
 else if (shots==7){display_7();} /* Update bar graph */
 else if (shots==8){display_8();} /* Update bar graph */
 else {display_0();} } /* In case of error, reset */
 j = j + 1; } /* Increases variable */

} /* End of Subroutine */

/**/
/* Shot_sound */
/**/

void shot_sound() { /* Beeps speaker */

 poke(0x1008,0x10); /* Makes shooting sound */
 sleep(.15);

 poke(0x1008,0x00); /* Turns beep off */
} /* End of Subroutine */

/**/
/* Game_over */
/**/
void game_over() { /* Robot is disabled */

 while(1) {
 poke(0x7000,0x00); /* Stops emitting IR and sonar
*/
 motorp(1,0); /* Stops motors indefinetely */
 motorp(0,0);
 display_seq(); /* Displays lights */
 poke(0x1008,0x10); /* Beeps forever */
 } /* End of infinite loop */

36

} /* End of Subroutine */

/**/
/* t */
/**/

