
1

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machine Design Laboratory

Final Report :
MOJO the Robot Arm

by Preston Faiks
April 21, 1999

Instructor: Dr. Antonio Arroyo
TAs: Scott Jantz, Aamir Quaiyumi, Patrick O'Malley



2

Table of Contents:
• Abstract 3
• Executive Summary 4
• Introduction 5
• Integrated System 6
• Mobile Platform 8
• Actuation 12
• Sensors 14
• Sensor Experiments 17
• Behaviors 19
• Conclusion 20
• Appendix A: Vendor information 21
• Appendix B: Advice for IMDLers 22
• Appendix C: Code 23
 



3

 

 Abstract
 
 MOJO is a robot arm mounted on a mobile platform.  He searches randomly for objects to
pick up while at the same time avoiding obstacles.  Obstacle Avoidance is achieved using
IR sensors on the fingers and on the base.  Upon detecting an object he stops and tries to
determine if the object is the right size to pick up by using two IR sensors mounted on the
tips of the fingers.  After determining that it is the correct size he moves to pick up the
object.  Once the object is detected between the gripper, the fingers close until there is
enough pressure to pick up the object.  A force sensor is used to determine when the
fingers have gripped the object tight enough.  Once an object is acquired MOJO moves the
object to the side and moves forward to try and find more objects.  If the object is too big
or cannot be picked up for some reason, MOJO exhibits a failure behavior by shaking his
head.



4

 Executive Summary
 
 MOJO was designed to demonstrate object recognition and manipulation by a robotic arm.

The goal was to get the robot to pick up objects with specific properties, including size,

shape and color and sort them accordingly.  In order to accomplish this the robot needed

to be very maneuverable and have several sensors.

 

 MOJO’s robot arm has 5 degrees of freedom, base rotation, arm elevation, wrist rotation,

wrist elevation, and a gripper.  The mobile base has 2 motors mounted in the middle to

allow for full speed and direction control.  This gives MOJO the maneuverability to

perform the tasks that it was intended to do.

 

 MOJO has 5 IR sensors and a force sensing resistor.  Two IR sensors for collision

avoidance, two for aligning objects, and one for detecting objects between the fingers.

The FSR (Force Sensing Resistor) allows the fingers to put the right amount of pressure

on the objects being picked up.  These allow for very simple object detection, but more

sensors would be required to perform all of the tasks that I intended to implement.

 

 Using these sensors and the maneuverability of the arm, MOJO has the following

behaviors.  Scanning for small objects and avoiding large ones is MOJO’s basic behavior.

When an object is detected MOJO starts a series of behaviors designed to acquire the

object.  If the object is not acquired he shakes his head to show that he could not obtain

the object.



5

Introduction:

 Getting a machine to recognize and manipulate objects has been the subject of many

research projects in robotics.  It is a challenge for a machine to inteligently dicifer between

objects of different sizes and shapes, and even more challenging to pick them up and

manipulate them.  This project was an experiment to see how well a small robot could

recognize and manipulate small objects.

 

 This paper will discuss building a mechanical arm, and the challenge of integrating sensors

and software with it to create a robot capable of detectign, recognizing, and handling small

objects.



6

 Integrated System

 The robotic arm, consisting of 5 servos is mounted onto a simple rectangular platform

with a motor on each side.  The main arm can swing back and forth across the entire front

end of the robot and it is this motion that allows MOJO to scan for objects.

Scanning
Area

 The mobile base just moves around and attempts to avoid obstacles.  Since the arm

protrudes in front of the base, it must scan at a height above the IR sensors mounted on

the base.  Although it is possible to scan the ground, collision avoidance would not be

possible, because the IR sensors would detect the arm in front of them and not walls and

other obstructions.  The range of the IR on the base extends just beyond the reach of the

arm, meaning it must turn sharply as soon as it detects an obstacle.  The sensors on the

fingers look for possible objects and serve as backup sensors for collision avoidance.  The

wrist motions allow the finger sensors to move in many different positions to determine

the characteristics of an object.  Once a possible object is detected, the mobile base stops

and the object acquisition behaviors begin.



7

 

Collision Avoidance

Scan and Detect

Object
Detected?

N
O

Align Object

Y
E

S

Object
Aligned?

Aquire and Grip Object

Y
E

S

Object
Aquired?

Move Object and do Happy Dance

Y
E

S

Fail

NO

N
O

 

 Right now only the simple characteristic of width is checked by the robot.  I did not have

time to program more complicated object recognition routines.  A color sensor was also

attempted but never mounted on the robot because it was unreliable.

 

 



8

 Mobile Platform

 MOJO uses an original design that was drawn in AutoCad and cut out on the t-tech

machine.  The arm was designed in AutoCad so that simple modifications could be made

easily to accommodate adding sensors at the end.  As it turns out, the sensors were added

too late to make platform modifications to accommodate them, the result was a lot of tape

and hot glue holding sensors on. After being cut out on the t-tech, some parts needed the

dremel tool’s help to make them fit.  These parts are indicated in Appendix C.  Otherwise

the platform was a good design.

 

 The gripper box is probably the most mechanically complicated portion of the robot.  It

was designed so that the fingers would always be parallel no matter how far apart they

were.  This is beneficial because the finger sensors always point straight out, and for most

objects, the surface area in contact will be maximized.  Two gears being turned by one

servo allowed for control of the gripper.

Gipper Design

 



9

 The gripper box is attached to a rotation box that allows for the gripper box to be rotated

a full 180°.  The rotation box had attachments on the side so that it itself could be rotated.

 

Wrist Rotation

Wrist Elevation

Attached to
Gripper box

 On the end of the arm was a servo attached to the rotation box that could raise and lower

the entire hand from straight up to straight down.  The axis of rotation was not exactly in

the center of mass of the hand, but because the servo of the rotation box stuck out behind

the axis, this problem was not too serious, and the hand could be rotated easily with a

relatively small servo.

 

Servo

Gripper Box

Side View of Wrist

Wrist Elevation

Wrist Rotation

 The base of the arm was attached to an axle that rotated freely.  A large weight was added

to counter balance the large torque caused by the three servos sitting about 10 -12 inches



10

from the base.  Two large lead weights were used and placed so that they exactly balanced

the arm when it was not picking anything up.  Therefor the servo was responsible for

lifting only the weight of the object.  This servo was mounted to the side and attached

with screws into the main shaft.  This was beneficial to attaching the servo directly to the

axle, because the weight of the arm was being supported by the supports and not the

servo.

 

The Main Arm

Base
Rotation

Servo

Servo horn with
screws into main arm

Supports

Servo holder

 This whole structure was then mounted onto a Lazy Suzan platform.  This is simply a

rotating base with ball bearings that has a hole in the center.  A servo mounted under this

base sticks through the center and rotates the arm, while the Lazy Suzan supports the

weight of the arm and keeps it stable by supporting it on the edges and not in the center.

 

 The mobile platform was a simple rectangular platform with wheels on the center and

castors at either end for balance.  It has a place to mount all of the electronics and the

batteries.



11

 

 I learned a lot of things while constructing this robot.  First of all, I had planed for many

pieces to be glued together as the method attachment.  This is fine if the design is perfect,

but using brackets and screws can reduce problems when disassembling is required for one

reason or another.  I also learned how much the hardware store has to offer.  I could have

made the design a lot better if I had known what hardware stores had to offer at the

beginning of the semester.  You can get almost any piece required for any application.

Lastly, small flaws in AutoCad design can be corrected by using the dremel tool or the

drill press, holes that are too small can be made bigger, not vice versa so always

underestimate if you do not know exact specifications.



12

 Actuation:

 MOJO uses 5 servos and 2 gear head  motors for actuation.  Of the servos, 3 are standard

42 oz-in and 2 are 60 oz-in.  The main need for torque is in the two actuators that move

the arm and wrist up and down.  For these the 60 oz-in were used.  The length of the are

is about 12 inches, and since the weight of the arm is balanced, this servo only needs to

pick up the weight of the object.  (60 oz-in)/(12 inches) = 5oz maximum object weight.

The wrist is only about 4 inches long, but it is not totally balanced so the 60 oz-in servo is

needed to counter the inherent torque and lift the object.  (60 oz-in)/(4 in) = 15oz

maximum object plus hand weight.  The 42 oz-in servos control wrist rotation --which is

totally balanced and does not weight much-- and base rotation, which is only under stress

when the servo moves, and never when the servo is stationary.  The other 42 oz-in was

used for the gripper, and was able to deliver enough pressure to hold an object of

moderate weight.  These calculations seemed fine, but when put to the test, some of the

servos where under a lot of stress.  The main arm elevator worked, but could be easily

moved by bumps and jerks, making it shake when in use.  Increasing this servo’s power

would have solved the problem.  The other problem was that the base rested on the ball

bearings of the Lazy Suzan piece, giving it very little friction.  The base rotation servo

could move the arm, but would oscillate when it reached it’s desired position.  Even when

it was perfectly in place, a bump or jerk would make it go out of alignment and start to

oscillate.  My solution was to add friction with foam between the base and the arm, this

provided a dampening to the oscillation and reduced the problem to almost nothing.

Again, a more powerful servo would also have worked.

 



13

 The two gear head motors were attached to 3” wheels on the base and used to move the

entire robot.  I used powerful motors with low rpm, giving me the torque I needed and

sacrificing speed which was not needed.  These motors worked well and I had no

problems.

 

 To control the servos, I wrote an interrupt service routine that altered an output port.  The

servos control lines were connected to the port and received a 30Hz pulse width

modulated signal.  The details of the code are in appendix C.  It is important to note that

this code can only be used for servos, because it is meant only to send short pulse widths.

The duty cycles of all the pins added together cannot exceed 100%.  This is fine for servos

which normally operate at around 6%, meaning about 16 servos can be controlled using

this one ISR.   The motors uses the output compare functions of the 68HC11 and the

ME11 board.



14

 Sensors:

 IR Sensors

 MOJO used IR sensors for almost all of his behaviors.  Two IR sensor/emitter pairs were

positioned on the front sides of the base and angled slightly outward.  The calumniation

length of these emitters was very short --about ¼ of and inch -- because these sensors

needed to see a wide range in front of the robot.  Two more sensor/emitter pairs were

placed at the ends of the fingers for object detection.  The calumniation on these emitters

were longer --about ¾ of and inch-- so that the sensors would only detect objects directly

in from of them.  One more sensor/emitter pair was used underneath the gripper to detect

an object between the fingers.  This one used about ¾ of an inch calumniation and black

electrical tape was placed on the underside, to prevent reflection from the gripper box

itself.  Objects needed to extend about ¼ of an inch below the bottom of the fingers in

order to be detected by this sensor.

 

Undeside IR
Sensor

Fingers

Servo

 All emitters used the 40kHz signal from the ME11 board and 330Ω resistors.  All IR

sensors were Sharp GP1U58Y infrared sensors hacked to produce an analog signal.

 

 Force Sensing Resistor (FSR)

 This sensor was used on the inside of the fingers to tell if an object was being squeezed

hard enough.  This sensor gave an almost infinite resistance under no pressure, and



15

dropped sharply to under 100kΩ once slight pressure was applied.  I used a simple voltage

divider circuit with a 6.6 kΩ resistor --as shown in the figure—and attached it to an

analog port.

 

+5V

To analog port

FSR

 
FSR with wood on top

 The active area of this sensor is a circle about ¼ of an inch in diameter.  In order to

increase this, I used a small piece of wood with a small spot of hot glue.  The spot was

placed over the active area and the wood was taped to the finger.  Doing this effectively

increased the active area because wherever the wood wad being pressed, it would transfer

some of the force back to the FSR.  This allowed for objects to be picked up anywhere

inside of the pinchers.

 

 Color Sensor:

 This sensor was intended to give MOJO color recognition, but due to poor performance it

was never actually used.  The theory was to put color filters over Cds cells and pointing

them at objects to determine color.  I used some cheap filters from Edmund Scientific,

which did not come with transmission vs. wavelength graphs.  I feel that much better

results could be obtained if I used better filters that can with transmission graphs.  The

results of this sensor are given in the experiments section.

 



16

 Sensor Integration

 MOJO’s sensor’s were highly integrated.  The two collision sensors worked together to

decide where to turn, and the finger sensors provided backup collision avoidance.  The

Finger sensors also worked together to align objects in front of the arm so that they could

be picked up.  The underneath sensor triggers the gripping behavior which is controlled by

the FSR.



17

 Sensor Experiments:

 All of the following tests used display.c (Appendix B) to send sensor values on the serial

port.

 IR sensors

 Testing different materials resulted in different results because materials all have vastly

different infrared reflectance’s.  This table shows what the range and reflective dependence

the IR sensors have.  The values given are analog port readings.

  Material Used as Object

 Distance (in)  Green Folder  Black Folder  Hand

 1  124  120  124

 3  124  109  120

 5  120  92  110

 7  115  88  105

 9  104  87  96

 11  94  87  90

 13  89  87  88

 15  87  87  87

 

 FSR

 I tested the FSR by pressing on it with my finger and reading the analog port value.  I used

a 6.6kΩ resistor voltage divider circuit.

 No Force  0     
 small force  30  My finger resting on then sensor  
 medium force  120  My finger pushing on the sensor  



18

 large force  210  Pushing as hard as I can (within reason)
 

 Color sensor

 Although I never used it I did several experiments.  As you can see the results were not

promising, but the sensor data does show how certain colors could be singled out for

detection.  I just used different colored folders for these tests.

   Room Light    
       
  RED   GREEN   BLUE  

 no object  104  100.00%  94  100.00%  155  100.00%
 blue  49  47.12%  6  6.38%  25  16.13%
 green  50  48.08%  12  12.77%  38  24.52%
 red  59  56.73%  7  7.45%  35  22.58%
 yellow  58  55.77%  15  15.96%  35  22.58%
 purple  50  48.08%  5  5.32%  17  10.97%

       
       
    Room light plus 60 watt bulb nearby  
       
  RED   GREEN   BLUE  

 no object  93  100.00%  75  100.00%  132  100.00%
 blue  72  77.42%  38  50.67%  110  83.33%
 green  71  76.34%  45  60.00%  91  68.94%
 red  118  126.88%  41  54.67%  146  110.61%
 yellow  173  186.02%  78  104.00%  150  113.64%
 purple  76  81.72%  39  52.00%  120  90.91%

       
       
   Room Light plus 40 watt bulb nearby  
       
  RED   GREEN   BLUE  

 no object  104  100.00%  91  100.00%  142  100.00%
 blue  60  57.69%  20  21.98%  60  42.25%
 green  60  57.69%  25  27.47%  60  42.25%
 red  94  90.38%  20  21.98%  98  69.01%
 yellow  97  93.27%  44  48.35%  108  76.06%
 purple  64  61.54%  20  21.98%  80  56.34%

 



19

 Behaviors

 MOJO starts out in his basic behavior which is to move around, avoid obstacles and look

for objects.  As a backup, if  the finger mounted sensors detect a large object or wall close

by, MOJO will turn sharply until the obstruction is no longer there.  Upon detection of an

object from the finger mounted IR sensors a whole series of behaviors begin.  First is the

aligning behavior.  MOJO will stop moving and the base will swing from side to side

trying to get the object to line up right between the sensors.  If MOJO is able to align the

object the acquiring behavior begins.  During this behavior MOJO moves toward the

object until the under mounted IR detects that the object is between the fingers.  Once

there, the gripper slowly closes down until the pressure reaches a certain critical value, or

the gripper is fully closed.  If the object is in the grips of the arm, MOJO simply moves the

object to the side, and does a happy dance showing off the range of motion that each

servo has.  After dancing, MOJO returns to the basic scan and avoid behavior.  If any of

the acquisition behaviors fail for one reason or another, MOJO shakes his head to indicate

failure and then returns to the basic behavior.

 

 When controlling the servos on the arm, each behavior moves the arm slowly, by changing

the pulse width a little bit at a time.  This make the movements smoother and gives the

sensors time to react when the arm moves around.

 The basic software design goal was to have modular behaviors that could be turned on and

off and also set certain triggers when sensor values go to a certain point.  In my code,

Appendix C, each behavior is a function called in a continuos loop, and one function takes

in all of the triggers and starts and stops behaviors appropriately.



20

Conclusion

 In summary I was able to get MOJO to recognize and pick up an object.  Some of the

behaviors, such as alignment, and gripping worked very well.  Others, such as the acquire

behavior that gets objects between the fingers performed poorly.  Collision avoidance

worked moderately well.  The biggest problem that I found was that MOJO could not tell

the difference between an object and approaching a wall at an angle.  If the sensors on the

fingers got different values from a wall at an angle, MOJO would attempt to align the

object, when it failed, it would return to scan mode and immediately detect the same thing.

This illustrates the fundamental flaw in my design.  I believed that the majority of the

robot’s time would be spent looking for objects, and only a small portion would be spent

looking at them.  In fact the opposite is true.  Even with many more sensors and much

more code, scanning for objects, while trying to avoid obstacles is not practical.  If it takes

30 seconds to recognize an object, then even if MOJO knows not to pick it up, it would

have to inspect it again just to find out that it is the same object.  Without some sort of

complicated mapping system, MOJO would never know if he was checking the same

object over and over again.

 

 Instead there should be a fixed area to scan for objects, such as a conveyor belt, than can

be started and stopped by the robot.  In this case the environment is more restricted, and

the robot can do tests on the object without worrying about the fact that it could be

checking the same object over and over.

 



21

 Still this is still an interesting challenge and even MOJO could be outfitted with more

sensors and given more complicated behaviors to achieve a practical task.  For future

work I would like to improve the torque of a few servos to get more crisp and precise

movements.  I would like to perfect the color sensor, and add a more accurate distace

ranging device.  These improvements in combination with better software and a more

restricted environment would allow me to accomplish all of the goals that this robot was

originally conceived to do.

 



22

 Appendix A - Vendor Information

• Force sensing resistor Interlink Electronics (805)484-1331      

$3.50

• Color filters Edmund Scientific (609) 573-6250

• Servos (including the clear 60 oz) Hobby Shack   ( IMDL Home page)

$10 - 42oz-in $22 - 60 oz-in

• Gear Head Motors Jameco Electronics

(www.jameco.com) part #155838

$19.95



23

 Appendix B - Advice for IMDLers

 General Advice

• Work on your sensors from the very beginning.

• When constructing hardware try to stay away from glue, secure things with screws

instead.

• Hardware stores have lots of good things,  check out what they have to help in your

mechanical design.

• Always get more servo power than you think you will need.

• Ask for engineering samples from companies, they give away a lot of free stuff.

 Debugging your programs - a list of common mistakes

• Is the flag being cleared in your ISR?

• Is the ISR in the right spot in vectors.c?

• When is the next interupt being set to go off?

• Is the correct ISR being initialized?   Are interupts being turned on?

• Using = instead of ==

• array[8] is indexed as array[0..7] not array[0..8]

• remember to run initialization routines

• use prototypes for functions

• don’t #include the same file more than once, even in separate files

• variables declared inside a function will loose their value when you exit the function

• use -e in the comme11.bat file to accept C++ style code



24

Appendix C - Code

//-- Written by Preston Faiks, 1999
// The Main Robot Program

#include "vectors.c"
// ********* Global variables and functions from Included Files ********
// **** Only shows prototypes and variables intended for global use ****

// ** servo.c **
// void init_servos(void); // initializes Servos

// ** ansmotor.c**
//  void init_motors(void); // initializes Motors
//  void motor(int index, int per_cent_duty_cycle)
//       Sets duty cycle and direction of motor specified by index
//       -100% <= per_cent_duty_cycle <= 100%  A negative % reverses the motor direction

// ** serial2.c **
// void init_serial(void) // initializes Serial functions
// char get_char(void) // gets character from serial port
// void put_char(char outchar) // outputs character from serial port
// void write(char strng[80])  // outputs a string of characters to serial port
// void put_int(int number) // outputs an integer to serial port
// void write_int(int number)  // same as put_int with extra space at end

// ** analog2.c **
// void AD_on(void); // Turn on A/D system
// void AD_off(void); // Turn off A/D system
// void AD_normal(void); // Update ANLG[0] to ANLG[7]
// void AD_mux(void); // Update ANLG[8] to ANLG[15]
// void AD_all(void); // Update ANLG[0] to ANLG[15]
// unsigned char ANLG[16]; // All analog values

// **digital.c **
// void Update(void); // Updates all Digital Values
// void Update_IN(void); // Update Digital Inputs
// void Update_OUT(void); // Update Normal Outputs
// void Update_40k(void); // Update 40k Outputs
// void Update_Servo(void); // Update Servo Values
// unsigned char DO[8]; // Normal Digital Outputs
// unsigned char DI[8]; // Normal Digital Inputs
// unsigned char D40k[8]; // 40kHz Digital Outputs
// int spulse[5],spwr[5]; // Servo Values for power and pulse length

// **display.c **
// void display (void); //Displays all Global values on Screen

/*************************** Prototypes *********************************/
void Initialize(void); // Initializes the Robot
void Servo_Control(void); // Manual Servo Control
int  poww(int , int); // like pow(x,y) but for intergers only
void SimpleAvoid(void); // Collision Avoidance
void Scan(void); // Scan for Objects
void Detect(void); // Detect Objects
void Allign(void); // Allign Object
void Aquire(void); // Aquire Object
void Move(void); // Move the Object



25

void Shake(void); // Shake Head
void Dance(void); // Do victory Dance
void Evade(void); // Quick Avoid
void Flaghandle(void); // Handles flags

/***************************** Globals **********************************/
enum modes {basic,allign,aquire,evade,move,dance,shake} mode;   // Operation Modes
int mmove ;  //move mode
char shakemode; //used for shake routine
int alligntimer; // timer for allign mode
int dancetimer; // timer for victory dance
int s0mode,s1mode,s2mode,s3mode,s4mode;  // used for dance
char alligned,gotit,objectnear,tooclose;
char toobig,movedone,fail,resume,eflag;           // sensor triggers
/************************** Main Program ********************************/

int main(void)
{
int multi;
INTR_OFF();
Initialize();  //This will turn Interupts back on
Update();
spulse[0] = 3000;  //base rotator
spulse[1] = 3800;  //wrist (up/down)
spulse[2] = 3000;  //wrist rotator
spulse[3] = 2800;  //gripper
spulse[4] = 3800;  //main arm
s0mode = s1mode = s2mode = s3mode = s4mode = 5;
mmove = 5;
alligntimer = 0;
multi=0;
mode = basic ;
objectnear = 0;
tooclose = 0;
toobig = 0;
fail = 0;
alligned = 0;
gotit = 0;
movedone = 0;
resume = 0;

while(1)
{

multi+=1;
if (multi >= 50) {multi=0;}
Update();
AD_all();
if (multi == 1) display();
D40k[0] = 1; D40k[1] = 1; D40k[2] = 1;
D40k[3] = 1; D40k[4] = 1; D40k[5] = 1;
D40k[6] = 1; D40k[7] = 1;

// Servo_Control();
SimpleAvoid();
Scan();
Detect();
Allign();
Aquire();
Move();
Dance();
Shake();



26

Evade();
Flaghandle();

}
}

/************************** Functions ********************************/

void Initialize()
{

int i;
for (i=0 ; i<=4 ;i++)
{

spulse[i] = 3000 ;
spwr[i] = 1;

}
for (i=0 ; i<=7 ; i++)
{

D40k[i]=0;
DO[i]=0;

}
init_serial();
AD_on();
init_servos();
init_motors();
motor(0,0);motor(1,0);
INTR_ON();

}

void Servo_Control()
{

int i,buffpulse;
unsigned char tempnum,temppwr,temppulse[4];
if (SCSR & 0x20)
{

write("Type Motor number ");
tempnum = get_char();
put_char(tempnum);
tempnum = tempnum - 0x30;

write("\n\rPower on/off ? (1/0) ");
temppwr = get_char();
put_char(temppwr);
temppwr = temppwr - 0x30;

write("\n\rNew Pulse width ? ");
buffpulse = 0;
for (i = 3; i>=0 ; i--)
{

temppulse[i] = get_char();
put_char(temppulse[i]);
temppulse[i] = temppulse[i] - 0x30;
buffpulse = buffpulse + (temppulse[i] * poww(10,i));

}

write("\n\rPress Y to confirm: Num= "); put_int(tempnum);
write("  Power= "); put_int(temppwr);
write("  Pulse Length= "); put_int(buffpulse); write(" \n\r");
if (get_char() == 'y')
{

put_char(0x1B);put_char(0x5B);put_char(0x32);put_char(0x4A);



27

spwr[tempnum] = temppwr;
spulse[tempnum] = buffpulse;
servo(tempnum,spulse[tempnum]);
power(tempnum,spwr[tempnum]);

}
} //end if

}

int poww(int x, int y)
{

int n,ans;
ans = 1;
for (n=1 ; n<=y ; n++)
{

ans = ans * x ;
}
return ans;

}

void SimpleAvoid()
{

int diff;
diff = ANLG[5] - ANLG[6];
if (mode == basic)
{
//write("avoid ");
if ((diff < -8)||(diff >8))
{

motor(1,5*diff);motor(0,-5*diff); //turn
}
else
{
  if ((ANLG[5] >96) || (ANLG[6] >96))

{motor(1,-50);motor(0,-50);} // back up
  else  {motor(1,50);motor(0,50);}   //go forward
}
}
else {motor(1,0);motor(0,0);}  // stop

}

void Scan()
{

if (mode == basic)
{
//write("scan ");
if (spulse[0] > 4000) mmove = -3;
if (spulse[0] < 2200) mmove = 3;
spulse[0] += mmove;
spulse[1] = 3800;  //wrist (up/down)
spulse[2] = 3000;  //wrist rotator
spulse[3] = 2550;  //gripper
spulse[4] = 3800;  //main arm
}

}

void Detect()
{

int diff;
diff = ANLG[3] - ANLG [4] ;



28

if (mode == basic)
{
//write("detect ");
if ((diff < -10) || (diff >10))
{ objectnear = 1;}
else
{ if ((ANLG[3]>100)||(ANLG[4]>100))
   { tooclose = 1;}
}
}

}

void Allign()
{

int diff;
diff = ANLG[3] - ANLG [4] ;
if (mode == allign)
{

write("allign ");
alligntimer += 1;
if ((diff < -5)&&(spulse[0] >2200))
spulse[0]+= -1;
if ((diff>5)&&(spulse[0] <4000))
spulse[0]+= 1;
if (((diff > -3)&&(diff <3))&&(alligntimer>400))
  {
    if ((ANLG[3]>100)||(ANLG [4]>100))
       {toobig = 1;}
    else

{alligned = 1;}
  }

}
}

void Aquire()
{

if (mode == aquire)
{
write("aquire");
motor(1,25);motor(0,25);
if (ANLG[2] > 100)
{eflag = 1;}
if (eflag == 1)
{

motor(1,0);motor(0,0);
spulse[3] += 3;
if (ANLG[8] > 150)
  {gotit = 1;}
if (spulse[3] > 4000)
  {fail = 1; spulse[3] =2550;}

}
}

}

void Evade()
{

if (mode == evade)
{
//write("evade ");



29

motor(0,100),motor(1,-100);
if (spulse[4] <4200)
  {spulse[4] += 5;}
if ((ANLG[3]<100)&&(ANLG[4]<100))
{
   resume = 1;
   spulse[4] = 3800;
}
}

}

void Shake()
{

if (mode == shake)
{
 //write("shake ");
 if (shakemode == 0)
   {
     spulse[2] += 15;
     if (spulse[2] > 5000)
       { shakemode = 1;}
   }
 if (shakemode == 1)
   {
     spulse[2] += -15;
     if (spulse[2] < 1800)
       { resume = 1;

 spulse[2] = 3000;
}

   }
 }

}

void Move()
{

if (mode == move)
{
  //write("move ");
  spulse[0] += -4;
  spulse[1] = 4500;
  spulse[4] = 3600;
  if (spulse[0] <= 2200)
   {

spulse[3] = 2900;
movedone = 1;

   }
}

}

void Dance()
{

if (mode == dance)
{
  write("dance ");
  motor(0,-25);motor(1,25);
  if (spulse[0] >= 4000)
  { s0mode = -5 ; }
  if (spulse[0] <= 2200)
  { s0mode = 5 ; }



30

  if (spulse[1] >= 5000)
  { s1mode = -5 ; }
  if (spulse[1] <= 1800)
  { s1mode = 5 ; }

  if (spulse[2] >= 5000)
  { s2mode = -5 ; }
  if (spulse[2] <= 1800)
  { s2mode = 5 ; }

  if (spulse[3] >= 3800)
  { s3mode = -5 ; }
  if (spulse[3] <= 2800)
  { s3mode = 5 ; }

  if (spulse[4] >= 4600)
  { s4mode = -5 ; }
  if (spulse[4] <= 3500)
  { s4mode = 5 ; }

spulse[0] += s0mode;  //base rotator
spulse[1] += s1mode;  //wrist (up/down)
spulse[2] += s2mode;  //wrist rotator
spulse[3] += s3mode;  //gripper
spulse[4] += s4mode;  //main arm
if (dancetimer > 1000)
  { resume = 1;}
dancetimer += 1;
}

}

void Flaghandle(void)
{

if (objectnear == 1)
{

objectnear = 0;   // Clear Flag
alligntimer = 0;  // Set timer
mode = allign;  // Switch to align mode

}
if (tooclose == 1)
{

tooclose = 0; // Clear Flag
mode = evade; // Switch to emergency avoid

}
if (alligned ==1)
{

alligned = 0; //Clear Flag
mode = aquire; // Switch to Aquire mode
eflag = 0;

}
if (toobig == 1)
{

toobig = 0;
mode = shake;   //Switch to shake head
shakemode = 0;

}
if (fail == 1)
{

fail = 0;
mode = shake;   //Switch to shake head



31

shakemode = 0;
}
if (gotit == 1)
{

gotit = 0;
mode = move;    // Switch to move object

}
if (movedone == 1)
{

movedone = 0;
dancetimer = 0;  // Clear timer
mode = dance; // Switch to dance mode

}
if (resume == 1)
{

resume =0;
mode = basic;  //Switch back to basic mode

}

}

/******************************************************************
* Vectors for my Code
*
* Programmer: Preston Faiks
*******************************************************************/

/**************************** Includes **********************************/
#include <hc11.h>
#include <mil.h>
#include "servo.c"
#include "serial2.c"
#include "ansmotor.c"
#include "analog2.c"
#include "digital.c"
#include "display.c"

extern void _start(); /* entry point in crt11.s */
/************************************************************************/

/**************************** Vectors *********************************/
#pragma abs_address:0xffd6
/* change the above address if your vector starts elsewhere
 */
void (*interrupt_vectors[])() =

{
/* to cast a constant, say 0xb600, use
   (void (*)())0xb600
 */
(void (*)())0x0,  /* SCI */
(void (*)())0x0,  /* SPI */
(void (*)())0x0,  /* PAIE */
(void (*)())0x0,  /* PAO */

    (void (*)())0x0,  /* TOF */
    (void (*)())0x0,  /* TOC5 */
    (void (*)())0x0,  /* TOC4 */
    motor1,   /* TOC3 */
    motor0, /* TOC2 */



32

    servo_ISR, /* TOC1 */
(void (*)())0x0,  /* TIC3 */
(void (*)())0x0,  /* TIC2 */

    (void (*)())0x0,  /* TIC1 */
(void (*)())0x0,  /* RTI */
(void (*)())0x0,  /* IRQ */
(void (*)())0x0,  /* XIRQ */
(void (*)())0x0,  /* SWI */
(void (*)())0x0,  /* ILLOP */
(void (*)())0x0,  /* COP */
(void (*)())0x0,  /* CLM */

_start   /* RESET */
};

#pragma end_abs_address

//-- Written by Preston Faiks, 1999

// 16 servo motor driver

// This code can only be used for servos.  Actually, the total pulse lengths
// can not add up to more than $FFFF(32 ms) This is fine for servos, but
// motors will need another ISR.
/**************************** Includes **********************************/
//#include <hc11.h>
//#include <mil.h>

/*********************** Output ports where servos are ******************/
#define OUT1 *(unsigned char volatile *)(0x4000)
#define OUT2 *(unsigned char volatile *)(0x2000)

/************************************************************************/

/*************************** Prototypes *********************************/
#pragma interrupt_handler servo_ISR()

void init_servos(void);
void servo(unsigned char,int);
void power(unsigned char, unsigned char);
void servo_ISR(void);
/************************************************************************/

/***************************** Globals **********************************/
unsigned int servo_pulse[16];
unsigned char servo_power[16];
unsigned char index;
const int last = 4 ; //* number of servos attached(0..last)*/
/************************************************************************/

// This routine initializes the servos and the OC1 interupt

void init_servos()
{
  char i;
  INTR_OFF();
  OC1M = (0x00);     //interrupt will affect no pins in port A



33

  for(i = 0 ; i <= last ; i++)
  {
    if (i <= last )
    {
    servo_power[i] = 1; //Turn on servo
    servo_pulse[i] = 3000; //Set to mid position

}
    else

{
   servo_power[i] = 0; //Turn off servo
   servo_pulse[i] = 3000; //Set to mid position just in case

  }
  }

  TOC1 = 0; //start interupts at 0

  SET_BIT(TMSK1,0x80);  /* Enable OC1 interrupt */

//  INTR_ON();
}

void power(unsigned char servonum, unsigned char on_off)
{

   if (servonum <= last )
        {
          servo_power[servonum] = on_off;
        }

}

void servo(unsigned char servonum, int pulse_len)
{
  if (servonum <= last )
        {
          servo_pulse[servonum] = pulse_len;
        }

}

void servo_ISR()
{

CLEAR_FLAG(TFLG1,0x80); // Clear OC1 flag

while ( (servo_power[index]==0) && (index<=last))
index++; // Skip to servo that is ON

if ((index < 7) && (index <= last))
{
 OUT1 = (1 << index);  //index bit goes on, others are turned off
 TOC1 += servo_pulse[index]; //it will stay high for this length
 index++;
}

else
   if (index <= last)

{



34

OUT1 = (0x00);
OUT2 = (1 << (8 - index));    //index bit goes on, others are turned off
TOC1 += (servo_pulse[index]); //it will stay high for this length

}
else
{

TOC1 = (0x0000);   // All servos are done
index = 0 ;    // next Interupt will start with index=0
OUT1 = OUT2 = (0x00);

}
}

//-- Written by Preston Faiks, 1999

// Analog input reader for systems with or without analog MUX

// This code will read all of the analog inputs and store them
// to the global array variable ANLG[15]

// ANLG[0] to ANLG[7] represent the normal Port E inputs
// ANLG[8] to ANLG[15] represent the analog mux inputs

// NOTE: since ANLG[7] is used by the analog MUX its value
//     should never be used with an AMUX setup.  Use 8-15 instead.

/**************************** Includes **********************************/
//#include <hc11.h>
//#include <mil.h>
#define MUX *(unsigned char volatile *)(0x5000)

/*************************** Prototypes *********************************/
void AD_on(void); // Turn on A/D system
void AD_off(void); // Turn off A/D system
void AD_normal(void); // Update ANLG[0] to ANLG[7]
void AD_mux(void); // Update ANLG[8] to ANLG[15]
void AD_all(void); // Update ANLG[0] to ANLG[15]
/************************************************************************/

/***************************** Globals **********************************/
unsigned char ANLG[16];

/************************************************************************/

// This routine turns on the A/D system
void AD_on()
{
  int wait;
  SET_BIT(OPTION,0x80);
  asm("psha\n"  // 3 cycles

"ldaa #0x26\n" // 2 cycles



35

"lloop1 : deca\n" // 2 cycles
       "bne lloop1\n"  // 3 cycles
       "pula"); // 4 cycles
    //wait 200 e-cycles for system to power up
}

// This routine turns off the A/D system
void AD_off()
{

CLEAR_BIT(OPTION,0x80);
}

// This routine updates ANLG[0] to ANLG[7]
void AD_normal(void)
{

ADCTL = 0x10 ;  //Start Conversion
while((ADCTL & 0x80) != 0x80);
   //wait for conversion to complete
ANLG[0] = ADR1;
ANLG[1] = ADR2;
ANLG[2] = ADR3;
ANLG[3] = ADR4;

ADCTL = 0x17 ;  //Start Conversion
while((ADCTL & 0x80) != 0x80);
   //wait for conversion to complete
ANLG[4] = ADR1;
ANLG[5] = ADR2;
ANLG[6] = ADR3;
ANLG[7] = ADR4;

}  

//This routine updates ANLG[8] to ANLG[15]
void AD_mux(void)
{

unsigned char i;
for (i=0 ;i<=7 ; i++)
{

MUX = i;
ADCTL = 7;  //Start Conversion
while((ADCTL & 0x80) != 0x80);

// asm("psha\n"  // 3 cycles
// "ldaa #0x05\n" // 2 cycles
// "lloop2 : deca\n" // 2 cycles
//       "bne lloop2\n"  // 3 cycles
//        "pula"); // 4 cycles
    //wait 34 E-cycles for conversion to complete
    
    ANLG[8+i] = ADR1; //Store Value
    }
}

//This routine updates ANLG[0] to ANLG[15]
void AD_all(void)
{

AD_normal();
AD_mux();

}



36

//-- Written by Preston Faiks, 1999

#define DOUT *(unsigned char volatile *)(0x5000)
#define DIN  *(unsigned char volatile *)(0x4000)
#define DOUT40k *(unsigned char volatile *)(0x7000)

/*************************** Prototypes *********************************/
void Update(void); // Updates all Values
void Update_IN(void); // Update Digital Inputs
void Update_OUT(void); // Update Normal Outputs
void Update_40k(void); // Update 40k Outputs
void Update_Servo(void);// Update Servo Values

/************************************************************************/

/***************************** Globals **********************************/
unsigned char DO[8], DI[8], D40k[8] ;
unsigned int spulse[5];
unsigned char spwr[5];

/************************************************************************/

// This routine Updates the Digital Inputs
void Update_IN()
{
  unsigned char temp;
  temp=DIN;
  DI[0] = ((temp & 1)==1) ;
  DI[1] = ((temp & 2)==2) ;
  DI[2] = ((temp & 4)==4) ;
  DI[3] = ((temp & 8)==8) ;
  DI[4] = ((temp & 16)==16) ;
  DI[5] = ((temp & 32)==32) ;
  DI[6] = ((temp & 64)==64) ;
  DI[7] = ((temp & 128)==128) ;
  
}

// This routine Updates the Digital Outputs
void Update_OUT()
{
  unsigned char temp,i;
  temp = 0;
  for (i=0 ;i<=7 ;i++)
  {
  DO[i] = (DO[i] && 1);  //Ensures DO is either 0 or 1
  temp += (DO[i] << i);
  }
  DOUT = temp;
}

// This routine Updates the 40kHz Digital Outputs
void Update_40k()
{
  unsigned char temp,i;
  temp = 0;



37

  for (i=0 ;i<=7 ;i++)
  {
  D40k[i] = (D40k[i] && 1);  //Ensures D40k is either 0 or 1
  temp += (D40k[i] << i);
  }
  DOUT40k = temp;
}

// This routine Updates the Servo values
void Update_Servo()
{
  int i;
  for (i=0 ;i<=4 ;i++)
  {
  spwr[i] = (spwr[i] && 1);
  
  if (spulse[i] > 5000)
  spulse[i] = 5000;
  
  if (spulse[i] < 1200)
  spulse[i] = 1200;
  
  power(i,spwr[i]);
  servo(i,spulse[i]);
  }
}

// This routine Updates all Values
void Update()
{
  Update_IN(); // Update Digital Inputs

Update_OUT(); // Update Normal Outputs
Update_40k(); // Update 40k Outputs
Update_Servo(); // Update Servo Values

}
//-- Written by Preston Faiks, 1999

void display (void);

void display()
{

int i;
// put_char(0x1B);put_char(0x5B);put_char(0x32);put_char(0x4A);
    put_char(0x1B);put_char(0x5B);put_char(0x3B);put_char(0x48);
//  ANSI sequence to clear screen and move cursor to home

write("Analog Inputs\n\r");

write("ANLG[0]: "); put_int(ANLG[0]); write("    ");
write("ANLG[1]: "); put_int(ANLG[1]); write("    ");
write("ANLG[2]: "); put_int(ANLG[2]); write("    ");
write("ANLG[3]: "); put_int(ANLG[3]); write("        \n\r");
write("ANLG[4]: "); put_int(ANLG[4]); write("    ");
write("ANLG[5]: "); put_int(ANLG[5]); write("    ");
write("ANLG[6]: "); put_int(ANLG[6]); write("    ");
write("ANLG[7]: "); put_int(ANLG[7]); write("        \n\r");
write("ANLG[8]: "); put_int(ANLG[8]); write("    ");
write("ANLG[9]: "); put_int(ANLG[9]); write("    ");



38

write("ANLG[10]: "); put_int(ANLG[10]); write("   ");
write("ANLG[11]: "); put_int(ANLG[11]); write("        \n\r");
write("ANLG[12]: "); put_int(ANLG[12]); write("   ");
write("ANLG[13]: "); put_int(ANLG[13]); write("   ");
write("ANLG[14]: "); put_int(ANLG[14]); write("   ");
write("ANLG[15]: "); put_int(ANLG[15]); write("        \n\r");

write("\n\r Digital Inputs\n\r");
write("DI[0]  DI[1]  DI[2]  DI[3]  DI[4]  DI[5]  DI[6]  DI[7]\n\r   ");
for (i=0 ;i<=7 ;i++)
{

put_int(DI[i]);
write("      ");

}
write("\n\r\n\r");

write("Normal Digital Outputs\n\r");
write("DO[0]  DO[1]  DO[2]  DO[3]  DO[4]  DO[5]  DO[6]  DO[7]\n\r   ");
for (i=0 ;i<=7 ;i++)
{

put_int(DO[i]);
write("      ");

}
write("\n\r\n\r");

write("40kHz Digital Outputs\n\r");
write("D40k[0]  D40k[1]  D40k[2]  D40k[3]  D40k[4]  D40k[5]  D40k[6]  D40k[7]\n\r     ");
for (i=0 ;i<=7 ;i++)
{

put_int(D40k[i]);
write("        ");

}
write("\n\r");

write("Servo Status\n\r");
for (i=0 ; i<=4 ; i++)
{

write("Servo "); put_int(i); write(" : ");
put_int(spulse[i]);
put_char(' ');
put_int(spwr[i]);

write("   ");
put_int(servo_pulse[i]);
put_char(' ');
put_int(servo_power[i]);
write("\n\r");

}
}
/*
 *  Title:       serial2.c
 *  Programmer:  Reid Harrison recoded for ICC11 by Scott Jantz
 *  Date:        July 4,1996
 *  Updated:  February 1, 1999 by Preston Faiks
 * Version:     2
 *  Description:
 *       Serial Port I/O Routines for ICC11 on the 68HC11
 *       init_serial must be called in order to use any of the



39

 *       functions.  Enables ICC11 programs to use the serial
 *       port without buffalo
 *
 *       include in programs that need to use the serial port for I/O
 *       interface with baud=9600, 8 data bits, 1 stop bit, parity none, no flow control
 *       requires hc11.h to work
 */

/*************Functions*******************************/

/*
  init_serial

  Initializes the SCI port on the 68HC11 to operate at 9600 baud.  This
  function must be called at the beginning of your program if you wish
  to use any of the functions in this library.

  Example:
    init_serial();
*/
//#include <hc11.h>
//#include <mil.h>

void init_serial()
{
  CLEAR_BIT(SPCR,0x20);
  BAUD = 0xb0;  /* 0xbO is 9600 0x35 is 300 baud */
  SCCR2 = 0x0C; /* Enable Transmit and Recieve*/
}

/*
  get_char

  Waits for a character to be received by the serial port, then returns
  its ASCII value.

  Examples:
    x = get_char();
    if (get_char() == 'F') fd(0);
    get_char();
*/
char get_char()
{
  int test = 0;

  while (test == 0) {

test = SCSR & 0x20;
  }

  return(SCDR);
}

/*
  put_char

  Writes an ASCII character to the serial port.



40

  Examples:
    put_char(65);
    put_char('A');
*/
void put_char(char outchar)
{
  int test = 0;

  while (test == 0)
  {

test = SCSR & 0x80;
  }

  SCDR = outchar;
}

/*
  write

  Writes a string of text to the serial port.
  Any escape sequence supported by ICC11 will work.

  Sequence Value Char What it does

\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (linefeed)
\r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
\\ 0x5c \ Backslash
\' 0x27 ' Single quote (apostrophe)
\" 0x22 " Double quote
\? 0x3F ? Question mark

  Examples:
    write("Hello, world!\n\r");
    write("one\n\rtwo\n\rthree\n\r");
*/
void write(char strng[80])
{
  int index = 0;

  while(strng[index] != 0)
  {
    put_char(strng[index]);
    index++;
  }
}

/*
  put_int

  Writes an integer to the serial port.
*/
void put_int(int number)
{
  char digits[5] ;



41

  int extra;
  int i= 0 ;

  if (number < 0)
  {
    put_char('-');
    number *= -1;
  }

  if (number == 0)
  {
  put_char('0');
  }

  if (number != 0)
  {
    digits[0] = number/10000;
    extra = digits[0] * 10;

    digits[1] = (number/1000) - (extra);
    extra = (extra+digits[1]) * 10 ;

    digits[2] = (number/100) - (extra);
    extra = (extra+digits[2])*10;

    digits[3] = (number/10) - (extra);
    extra = (extra+digits[3]) * 10 ;

    digits[4] = number - extra;
  
  while(digits[i] == 0)
    i++;
  
  while(i <= 4)
  put_char(digits[i++] + 48);
  }
}

/*
  write_int

  Print an integer to the serial port prefixed by a space and followed
  by a newline.

  Examples:
    write_int(x);
    write_int(analog(7));
*/
void write_int(int number)
{
  put_char(' ');
  put_int(number);
  put_char(13);
  put_char(10);
}
#include "vectors.c"
//#include "serial2.c"
//#include "servo.c"

int poww(int , int);



42

int main(void)
{ int pulse[5],pwr[5];

int i,buffpulse;
unsigned char tempnum,temppwr,temppulse[4];
INTR_OFF();
init_serial();
init_servos();
INTR_ON();
for (i=0 ; i<=4 ;i++)
{

pulse[i] = 2000 ;
pwr[i] = 1;

}
while (1) {
write("Servo test and config program\n\r");
write("Current Values\n\r");
for (i=0 ; i<=4 ; i++)
{

write("Servo "); put_int(i); write(" : ");
put_int(pulse[i]);
put_char(' ');
put_int(pwr[i]);
write(" \n\n\r");

}
write("Type Motor number ");
tempnum = get_char();
put_char(tempnum);
tempnum = tempnum - 0x30;

write("\n\rPower on/off ? (1/0) ");
temppwr = get_char();
put_char(temppwr);
temppwr = temppwr - 0x30;

write("\n\rNew Pulse width ? ");
buffpulse = 0;
for (i = 3; i>=0 ; i--)
{

temppulse[i] = get_char();
put_char(temppulse[i]);
temppulse[i] = temppulse[i] - 0x30;
buffpulse = buffpulse + (temppulse[i] * poww(10,i));

}

write("\n\rPress Y to confirm: Num= "); put_int(tempnum);
write("  Power= "); put_int(temppwr);
write("  Pulse Length= "); put_int(buffpulse); write(" \n\r");
if (get_char() == 'y')
{

write("Values changed.\n\r\n\r\n\r");
pwr[tempnum] = temppwr;
pulse[tempnum] = buffpulse;
power(tempnum,pwr[tempnum]);
servo(tempnum,pulse[tempnum]);

}
}
  return 0;
}



43

int poww(int x, int y)
{

int n,ans;
ans = 1;
for (n=1 ; n<=y ; n++)
{

ans = ans * x ;
}
return ans;

}

/* Title        motor.c
 * Programmer   Keith L. Doty.
 * Date         June 19, 1996
 * Version      1
 * Description
 *      This module includes motor initialization, motor speed control
 *      and two PWM interrupt drivers motor0 and motor1.
 *      motor0 uses OC2 and motor1 uses OC3.
 *      This module can be used with the TALRIK robot
 *
 */

/**************** Includes **************************************/
//#include <hc11.h>
//#include <serial.h>
//#include <mil.h>

/**************** Constants *************************************/
#define PERIODM 65,500
#define PERIOD_1PC 655

#pragma interrupt_handler motor0 motor1
void motor0();
void motor1();

/********************* Data *************************************/
int duty_cycle[2];  /* Specifies the PWM duty cycle for two motors */

/************** Functions ***************************************/
void init_motors(void)
/* Function: This routine initializes the motors
 * Inputs:   None
 * Outputs:  None
 * Notes:    This routine MUST be called to enable motor operation!
 */

{

  INTR_OFF();

/* Set OC2 and OC3 to output low */
  SET_BIT(TCTL1,0xA0);
  CLEAR_BIT(TCTL1,0x50);

/* Set PWM duty cycle to 0 first */
   duty_cycle[0] = duty_cycle[1] =0;



44

/* Associate interrupt vectors with motor routines */
/*
  *(void(**)())0xFFE6 = motor0;
  *(void(**)())0xFFE4 = motor1;
*/

/* Enable motor interrupts on OC2 and OC3 */
  SET_BIT(TMSK1,0x60);

/* Specify PD4 and PD5 as output pins.
 * PD4 controls direction of Motor 1 and PD5 the direction of Motor 0.
 */

  SET_BIT(DDRD,0x30);
  INTR_ON();
}

void motor(int index, int per_cent_duty_cycle)
/* Function: Sets duty cycle and direction of motor specified by index
 * Inputs:   index in [0,1]
 *           -100% <= per_cent_duty_cycle <= 100%
 *           A negative % reverses the motor direction
 * Outputs:  duty_cycle[index]
 *           0 <= duty_cycle[index]<= PERIOD (Typically, PERIOD = 65,500)
 * Notes:    Checks for proper input bounds
 */
{
  if (per_cent_duty_cycle < 0)
     {

per_cent_duty_cycle = -per_cent_duty_cycle; /* Make positive */
     /* Set negative direction of motors */

if (index == 0) CLEAR_BIT(PORTD,0x20);
if (index == 1) CLEAR_BIT(PORTD,0x10);

     }
  else
     {
     /* Set positive direction of motors */

if (index == 0) SET_BIT(PORTD,0x20);
if (index == 1) SET_BIT(PORTD,0x10);

     }

/* At this point per_cent_duty_cycle must be a positive number less
 * than 100. If not make it so.
 */
  if (per_cent_duty_cycle > 100) per_cent_duty_cycle = 100;
  duty_cycle[index] = per_cent_duty_cycle*PERIOD_1PC;

}

void motor0 ()
/* Function: This interrupt routine controls the PWM to motor0 using OC2
 * Inputs:   duty_cycle[0] (global)
 * Outputs:  Side effects on TCTL1, TOC2, TFLG1.
 * Notes:    init_motors() assumed to have executed
 */

{



45

/* Keep the motor off if no duty cycle specified.*/

  if(duty_cycle[0] == 0)
   {
    CLEAR_BIT(TCTL1, 0x40);
   }
  else
    if(TCTL1 & 0x40)
     {
      TOC2 += duty_cycle[0];                  /* Keep up for width */
      CLEAR_BIT(TCTL1,0x40);                  /*  Set to turn off */
      /* Set XPORTB bit */
     }
    else
     {
       TOC2 += (PERIODM - duty_cycle[0]);
       SET_BIT(TCTL1,0x40);                 /* Set to raise signal */
       /* Clear XPORTB bit */
     }
  CLEAR_FLAG(TFLG1,0x40);                         /* Clear OC2F interrupt Flag */
}

void motor1()
/* Function: This interrupt routine controls the PWM to motor1 using OC3
 * Inputs:   duty_cycle[1] (global)
 * Outputs:  Side effects on TCTL1, TOC2, TFLG1.
 * Notes:    init_motors() assumed to have executed
 */

{
 /* Keep the motor off if no duty cycle specified.*/

  if(duty_cycle[1] == 0)
   {
    CLEAR_BIT(TCTL1, 0x10);
   }
  else
    if(TCTL1 & 0x10)
     {
      TOC3 += duty_cycle[1];                /* Keep up for width */
      CLEAR_BIT(TCTL1,0x10);                /*  Set to turn off */
     }
    else
     {
      TOC3 += (PERIODM - duty_cycle[1]);
      SET_BIT(TCTL1,0x10);                  /* Set to raise signal */
     }
  CLEAR_FLAG(TFLG1,0x20);                         /* Clear OC3F interrupt Flag */
}


