EEL 5666: Intelligent Machines Design Laboratory
Professor A. Antonio Arroyo

Tracker

Final Report by Todd Martin

Spring, 1999

IMDL
Final Report

Table of Contents

ABSITECL ... 3
INEFOAUCTION........eeeeece s 4
INtegrated SYSLEM ..o 6
MODIE PIatfOrM. ... 8
ACHUBLION......coeeeteete et 9
SENSONS ...ttt 10
L= =0 (1 SRR SRN 10
OUOMELES ...t 10
ANA0g COMPASS SENTOcoveverrerereerereererese et re e 11
BENAVIONS ...t e 12
Follow apreprogrammed path...........coceeeiivccececsececeecea, 12
AVOId OBSEACIES ... 13
Resumethepath ... 13
Experimental Layout and RESUILS.........c.cceeeriercireccceeeeeeeies 14
SENSOIS.....oiiiriet s 14
IR diStANCE VEIUES.........ceeieeseeeee e 16
CONCIUSION ...t 17
SENSONS....ceiiereeeee ettt 17
ODSENVALIONS.......oveacieieereeeiei et 18
AGVICE.....co ettt 19
APPENCIX A = VENUOIS ...ttt 20

IMDL
Final Report

(0001001072 515 < 01 o (RPN 20
Main PLafOrM......cocoeeei e 20
SONAN ... 20
(@107 SO 20
APPENTIX B - COE.......ocueeereeeeteeririe e 21

IMDL
Final Report

Abstract

Tracker is arobot car designed to travel on a preprogrammed path. |f an obstacle is blocking
the path, Tracker will maneuver around the obstacle and rejoin the origina path.

IMDL
Final Report

Introduction

Theorigina ideafor this project came from reading about the development of an Automated

Highway System (AHS). Whileared car traveling on an AHS will use radar, magnets, and
vison asits sensors, | determined that these were too complicated and expensive for the scope
of thisproject. Instead, | will use IR and sonar to track objects and a compass and odometer to

follow the road.

The project's objective isto travel through a preprogrammed path that smulates areal highway.
An autonomous vehicle must be able to react to obstacles, like ared driver would, and
maneuver around them. But, maneuvering around the obstacle is not enough, if the robot is not
ableto resumeits coursethenit is not useful for any practical functions. The purpose of aredl,
full Sze, automated vehicleisto carry passengers. Tracker will not carry anything to smulate

passengers, but the objectiveis still the same.

If al that was needed to accomplish thiswasto creste aroad and use IR to follow it, then this
project would be smple. However, inred life, nothingissmple. A car could follow aroad by
monitoring the white lane lines, but what happens when the car enters a construction zone
where multiple lines have been painted. Sometimes even humans have trouble determining
wherethe lanesgo. These problemsare still being solved by professionalswho are building full

size"robots."

IMDL
Final Report

Tracker isnot designed to address all of these problems. Instead, Tracker will be ableto read a
path from memory and follow it to reach adestination. If started from the same location

Tracker should follow the path identically each time.

Tracker will be ableto travel acourse evenif thereisno road to tell it whereto go.

Theonly IMDL project | have seen that uses some of the same principlesisthe Vaet Robaot,
Val. Va dlowed auser to walk it through a path and VVal could recreate the path. Va was not
able to avoid an obstacle and resume the path. Tracker uses different methods to solve asimilar
problem, because of the restrictions | placed on the platform. Tracker was designed to look like
areal car oncethetop was placed over it. Va used two potentiometer wheelsto monitor
distance, but this was not feasible with Tracker's platform. Instead a custom made odometer

and acompass were used to monitor distance traveled and degrees turned.

Thefollowing sections will detail the design of Tracker and list the resuilts.

IMDL
Final Report

Integrated System

Tracker uses various sensors to achieve its goas. Ideally sonar would have been able to cover

for IR if environmental conditions in the room saturated the sensors, but this has not yet been
implemented. The hardest part of the programming and one that | have not perfected is using
the odometer and compass together. My move _fwd() function takes parameters for distance,
direction, and steering angle, but | did not fully explore how these parameters should relate to
each other. Currently the function stops when either the distance or direction parameter is met.

It does not use one parameter to check that the other is consistent.

The following pictures show the completed robot. The large sonar sensor up front is not

actudly being used by the software program.

IMDL
Final Report

T

IMDL
Final Report

Mobile Platform

Tracker will use a Remote Control (RC) car kit of a Dodge Ram truck asitsbase. Thekitis
rear wheel drive. It was chosen because afront wheel steering system wasincluded. It turned
out that the rear axle provided an unanticipated bonus, because the axle made it easy for Tracker
totravel inasdtraight line. If individual motors were used to power the rear wheelsthen it would
have been very hard to synchronize them to make Tracker go in astraight line. Another good
feature of the kit wasitsfoam like whedls. They provided alarge amount of grip so whed!

dippage was not a problem.

The 68HC11 EVBU board is mounted on awooden platform behind the steering servo. This

wooden platform will be attached to the kit's plastic base by screws.

IR sensors were mounted in the fog lights of the cover. The sonar sensor was placed under the

hood atop a partialy hacked servo.

IMDL
Final Report

A fully hacked servo powered the rear axle, providing forward and reverse movement. Steering

was controlled by aservo. A third servo was placed in front of the steering servo to direct a

onar sensor, but it was not used in thefinal demo.

A faster motor could have been used, but afully hacked servo was chosen because it could be

bought from the lab.

IMDL
Final Report

INFRARED (IR)

IR sensors were placed in the front of Tracker, in the fog lights, and on the side for wall
following. Rear sensors were going to be implemented, but were left off dueto time

constraints.

ODOMETER

An IR emitter and detector combination

was used to measure distancetraveled in

order to assst with path following. The

A '
sensors were placed on either sde of alarge ! =]

gear that transfers power from the motor to
theaxle. Sotsinthe gear were used to block the IR so pulses could be counted. Becausethe IR
went right through the gear | had to plug the open areas with black elastic. Thisstopped the IR
long enough for the program to count the pulses. There were six pulsesfor each revolution of

the wheds.

10

IMDL
Final Report

ANALOG COMPASS SENSOR

The sensor on the left isadigital compass
with 45° of resolution. Theright sensor is

the 1655 analog compass.

The 1655 compass sensor from Dinsmore Instrument Company sends two analog signasto the
68HC11. Thesesignasaretwo sinusoidal waves with their phases offset 90 degrees. After
being converted to digita form the Signals are compared against each other to determine the
robots direction. Accuracy greater than one degreeis possibleif the output signas are amplified
or if theanalog to digital converter can restrict its samplesto a1.2 volt range. The current
implementation uses un-amplified outputs running directly into the 68HC11's analog to digital
converter that is sampling over afivevolt range. Thisresultsin aresolution of just under two

degrees.

In the future this sensor will be as easy to use asIR. Once the sensor is mounted onto a board
it'sleads must be connected to power, ground, and the analog to digita converter. Then the user
can copy and paste the | C code (functions dir_angle, average_angle(), and average_sensor())
that cdculates the absolute angle into their program. Overal implementation time could take a

little as haf an hour.

11

IMDL
Final Report

Behaviors

FOLLOW A PREPROGRAMMED PATH

Tracker'sfirst behavior was following a preprogrammed path. | tried to interactively program
the path instead of integrating it into the code, but | ran into problemswhich | eventualy
attributed to I C's continuous use of the seria port. | attempted to use a hypertermina like
program on a portable computer to steer Tracker through apath. The portable computer and the
68HC11 were connected through the seria port. After arandom period of time the seria port

would lock up.

Anidedl system of recording a path using Tracker's sensors would have been to sample the
compass heading, odometer distance, and amount the steering servo isturned, every second.
Depending on how long the robot is running this could take up alarge amount of memory.
Each value would be placed in its own array like the function sample(), on page 36, did. The
compass heading and steering servo data should be smooth and constant, but the compass data
could fluctuate. Evenif Tracker isgoing straight the data could read a couple of degrees
different for each sample and Tracker's steering would become unstable when trying to follow
the path. A smoothing agorithm could be implemented to make Tracker turn smoothly when

following the path. Then running the record_path() function backwards would recreate the

path.

12

IMDL
Final Report

For the final demo Tracker's path was programmed through software. Both the odometer and
compass were used as Tracker wastold to go forward for acertain distance and turn for a

specified number of degrees.

AVOID OBSTACLES

Front mounted IR sensors were used to perform basic obstacle avoidance.

RESUME THE PATH

The next goa wasto program Tracker to resume the original path, but this has not yet been
finished. To reduce the complexity of thisproblem | decided to make the path astraight line
and place arectangular object in the path. Using astraight path should make it easier to locate

the original path once Tracker veers off course.

This situation was broken up into 6 steps. An overview of these steps can be seen in the figure

above. For more detail see the function resume(), on page 35, in Appendix B.

13

IMDL
Final Report

Experimental Layout and Results

SENSORS

To test the accuracy of the 1655 Anaog Compass Sensor from Dinsmore Instrument Company
| sampled the outputs at 30 degree intervals. Graphing these outputs resulted in two offset sine
waves as indicated on the data sheet. The results on the left correspond to thefirst graph. The
sine wave from output #2 of thisfirst graph was not as smooth asthefirst output, but the area
between the crossing lineswasfairly linear, aswas anticipated. The results of both tests were

comparable. All testing was performed in the IMDL |ab.

Output #1 Output #2 Output #1 | Output #2
163 136 E 160 136 E
153 155 153 153
127 164 S 131 164 S
110 152 105 158
101 145 96 140 W
95 133 W 102 114

97 118 115 101
105 112 121 99
118 104 132 98 N
131 102 N 145 101
146 103 155 111
160 113 158 123

14

IMDL

Final Report g

Compass Output With 30 Degree
Intervals
180
S 160
.g’ § 140 x\ Output #1
= 8 120 Output #2
> <~
2~ 100 S
80 I I I I I I I
E S w N
Compass Direction
Compass Output With 30 Degree
Intervals
_ 180
8 , 160 ~
= 3 140 NN — Output #1
o ® 12 .
= g 108 N Output #2
o0}
80 I I I I I I I
E S W N
Compass Direction

15

IMDL
Final Report

IR distance values

Analog Value Distance to Object

85 no object
129 6"
109 1-0"

95 1-6"

16

IMDL
Final Report

-
-
3 H
¥

Conclusion
Not al of my origina goalswere accomplished, but | fed that my platform and sensors were
good enough to achieve those goals. | ran out of time developing and testing my navigation

algorithms.

SENSORS

The custom made odometer was very accurate. Consistently achieving errors of lessthan one
inch. Thiswas helped by the foam tireswhich had very little dippage. Increasing the number

of breaks on the gear would increase the odometer's resol ution below oneinch.

The compass gave cons stent results athough they varied depending on the magnetic field in
theroom. If | tried to turn Tracker 30 degreesit wouldn't ways turn exactly 30 degrees, but it
would aways turn the same amount if | started from the same location. I'm not sureiif thereis
any way to make the compass more resistant to magnetic fields generated by objectsin the
room. The compass degree of resolution can be increased by amplifying the output signals so

they have arange of fivevolts. Currently therangeis 1.2 volts.

| would have liked to utilize sonar to detect objects up to five feet avay. Possibly even trying to

determine the objects width, but time constraints prevented me from doing so.

Bump sensorsto aid with object avoidance would aso have been helpful.

17

IMDL
Final Report

OBSERVATIONS

| was ableto test the part of my code that records the path and it was recording data correctly.
However, the serial port would lock up before | had a chance to figure out what was wrong with
the function that followed the path. For each sample | recorded values into three separate
arrays. For somereason IC was limiting the size of the arraysto less than 25, so instead of
sampling data every second, | sampled based on how much Tracker turned. It ispossible that

|CC11 and assembly language would not have this same Size restriction.

The part of my project that was a success was utilizing the compass and odometer sensorsto
continuously guide Tracker to the same location. If | had Tracker go forward through a
preprogrammed number of turns and straightaways and then reversed the motor and traveled

backwards through the path, Tracker ended up in dmost the exact starting location.

| determined as the semester progressed that it would be very hard to write a program that could
allow arobot to find its way back onto apath. Inthe end | decided to smplify things and make
the origina path beadraight line. Thenif | placed arectangular object in Tracker'sway,
Tracker should have been able to negotiate its way around the obstacle and back onto the path.

| have not completed thisyet, but | feel that | am very closeto getting it to work. The behaviors

section of the report discussed this approach.

18

IMDL
Final Report

ADVICE

It seemsthat |1C interferes with a programs ability to receive data through the seria port. When

| finally determined that 1C was probably causing the seria port communication to be unreliable
it wastoo late to do anything about it. | would have liked to try porting the codeto ICC11, but |
did not havetime. If you are planning to use the serid port to receive data, write this portion of
your code early on and test it before progressing too far into the semester. Also, do not let

yourself get hung up on one problem for too long, as| did.

| recommend that future robot builders use foam tiresif dippage is aproblem and one motor to
power therobot. Thiswill alow the robot to travel in astraight line easily. If acircular
platform is needed for maneuverability then a single motor, might not make sense, but in

general it seemsto beagood idea

19

IMDL
Final Report

Appendix A - Vendors

COMPASS SENSOR

Dinsmore Instrument Company. http://www.dismoregroup.com/dico

MAIN PLATFORM

Dodge Ram Truck, 1/10 scae radio control kit by Parma International. Bought through Tower

Hobbies. http://www.towerhobbies.com

SONAR

SonaSwitch Mini-A sonar sensor from EDP company. http://www.edpcompany.com

OTHER

All other parts were purchased through IMDL.

20

IMDL
Final Report

Appendix B - Code

The following program is the work in progress portion of the resume path program. Some
functionslike avoid() have parts commented which would need to be uncommented to work
properly for certain Situations. Almost al of my variables are globa because earlier in the
semester |C returned errorswhen | used local variables.

/********************************‘k**

* Title: Control 6.c

*
: Programmer: Todd Martin

i Dat e: April, 1999

i Ver si on: 6

i Description: Develop algorithns for following a path. Witten in IC
*

***/

/*************************************** CDnSt ants **/

0; /* anal og port nunber for the cos curve*/
1; /* anal og port nunber for the sin curve*/
= 0; /* set to 1 for J4 and set to O for J5 */
= 40.0; /* nunber of degrees to go straight */
0.0

float RIGHT = . 0; /* 70 max anount wheels can turn right */

float LEFT = 20.0; /* 15 max anount wheels can turn left */

int | R THRESHOLD = 100; /* the value used in deternmining if an object has been detected */
int CDOM THRESHOLD = 120; /* the value used in determning if the wheel is turning */
int CDOVETER = 2; /* anal og port nunber for the wheel encoder ir sensor */
int IRFRLFT = 3; /* anal og port nunber for the front left ir sensor */

int R FR RGHT = 4; /* anal og port nunber for the front right ir sensor */
int IR BK LFT = 5; /* anal og port nunmber for the back left ir sensor */

int |R.BK RGHT = 6; /* anal og port nunber for the back right ir sensor */
int SONAR = 7; /* anal og port nunber for the sonar sensor */

float DEGL_CHG = 1.0; /* amount degl is changed in turn() */

/************************************ End of COnStantS **/

/*** G obal S **/

int angle; /* the angle fromO to 360 showi ng the direction */
int avg_angl e; /* an average of nultiple angle readings */

int new angl e;

int [ast_angle;

int total _dist; /* keep track of the wheel encoder counts */

i nt output1;

int output2;

int rangel;

int rangez;

int upper_line = 155; /* when outputl and output2 are equal high */

int [ower_line = 108; /* when outputl and output2 are equal |ow */

float angl e _resol ution;

float angle_res;

int forward,

int reverse;

int turn_right;

int turn_left;
i
i

nt record,

nt rst;

int straight;

fl oat degil; /* keeps track of the current setting for servo_degl() */
float j; /* used to turn in snall increments */

21

IMDL
Final Report

nt record_pid; /* pid for record_node() */
nt follow active; /* set to 1 when follow path() is running as a process */
nt odom /* keeps track of pulse levels for the odoneter */

i
i
i
int obj _fwd_left;
int obj _fwd_right;
int reverse_dist;
int straight_lvl;
i

nt detect; /* set to 1 when an obstacle is detected */
long tiner;
float servo_angl e; /* set to 1 when the wheels have turned the specified anount */

int ref_angle;

int turn_angl e;

int turn_dist;

int straight_dist;
float turn_direction;

int step;

int ref_dist;

int wall;

int angl e_chg;

int follow,

int follow pid,; /* pid for foll ow path() */

int dist[21]; /* allocate space for record path */
int dir[21]; /* allocate space for record path */
float deg[21]; /* allocate space for record path */
int path_index;

int nemtest; /* used in test_menory() */

[xR KKKk Kk ok ok kokkokkkkkkkxkxkxkkkkkkkxkxkxk Engd of (@ obal s XFXFF KKK KKK K KKK KKK KKK KKK KKK KKK KKKk Kk kK [

/** 'vhl n **/
voi d main()

initialize();

start_process(pol | _distance());

start_process(resune());

[XK Kk Kk kkkokkok ok kX k Xk Xk kkkkkkkkkkkkkkxkx End of Majn FrEFFIE IRk Rk Rk kkkkkkkkkkkkkkkkkkkkkkkkkkkk [

/************************************ Pr Ogr am FUnCtI ons ***************************************/

voi d average_sensor(int port, int *result)
/* 1 could try dropping the highest and | owest val ues then dividing by 8 */
int sum= 0;
int i;
for (i =0; i < 3; i++) sum+= anal og(port);

*result = sum/ 3;

}
voi d average_angl e(int *result) /* runs as a process in record_node(), but is called
ot herwi se */
{
int sum= 0;
int i;
for (i =0; i <2; i++)
dir_angle();
sum += angl e;
}
*result = sum/ 2;
}

22

IMDL
Final Report

voi d avoi d() /* reads data fromthe forward IR and sonar and says if an obstacle is detected
*/

obj _fwd_left = 0;
obj _fwd_right = 0O;

idl?t ((eg;alzogil R FR_LFT) > | R THRESHOLD) /* an obstacle has been detected to the left */
{ obj fwd_ left = 1; /* robot should turn right */
/* tell the sonar look right to warn of future obstacles */
;ff (anal og(I R_FR_RGHT) > | R_THRESHOLD) /* an obstacl e has been detected to the right */
obj _fwd_right = 1; /* robot should turn left */

/* tell the sonar look left to warn of future obstacles */

}
/* if ((obj_fwd_left == 1) & (obj_fwd_right == 1))
{ */
/* stop, or slow, the motor and confirmwi th sonar and judge the distance */
/* confirm(1); */
/* once confirmed stop and call back_up() */
/* nmot or (MOTOR_ JMPR, 0.0); */ /* stop before backing up */
/* detect = 1; */
/* set up atimer. if this happens mlliseconds after one sensor returns true then strai ghten */
/* if ((nseconds() - timer) < (long) 100)

straighten();
}
reverse = 1;
back_up();
*/

/* return this to else if, if | can generate a randomdirection to turn in the statenent above
*/

if (obj_fwd_left == 1)

{

detect = 1;

nmot or (MOTCR_JMPR, 100. 0) ;
/* servo_degl(R GHT); */

while (degl < R GHI)

{

turn(-10, R GHT); /* the negative angle tells it to turn right */
if (anal og(I R_ FR LFT) < | R_THRESHOLD)

br eak;
}
}
turn_direction = R GHT;
timer = nseconds();

}
else if (obj_fwd_right == 1)
{

detect = 1;

nmot or (MOTOR_JMPR, 100. 0) ;

/* servo_degl(LEFT); */
whil e (degl > LEFT)
{

turn(10, LEFT);
if (anal og(l R FR RGHN) < | R _THRESHOLD)
{

br eak;
}
}
turn_direction = LEFT;
timer = nseconds();

23

IMDL
Final Report

}

voi d back_up() /* reads data fromthe back IR and sonar and tells the notors an obstacle is
detected */
{

obj fwd_left = 0;

obj _fwd_right = 0;

nmot or (MOTCR_JMPR, - 100. 0) ;

while (reverse == 1)

if ((anal og(IR_FR LFT) < IR THRESHOLD) && (anal og(l R_FR RGHT) < | R THRESHOLD))
{

/* continue in reverse for 6 inches or until an object is detected */

di stance();

reverse_dist = total _dist + 6; /* this statenent backs up about 6 inches */
while ((total _dist < reverse_dist) & (reverse == 1))

nmot or (MOTOR_JMPR, -100. 0) ; /* keep reversing */
di stance();

}

reverse = 0;

}
/* if (analog(l R BK LFT) > | R THRESHOLD) an obstacl e has been detected to the left, so
turn right */
/* try to have the sonar look right to warn of future obstacles */
/* if (analog(l R BK RGHT) > | R THRESHOLD) an obstacl e has been detected to the right, so
turn left */
/* try to have the sonar look left to warn of future obstacles */
/* if both the above are detected, stop, or slow, the notor and confirmwith sonar */
/* confirm(0) */
/* once confirmed nove forward */
/* straighten();
not or (MOTCR_JMPR, 100. 0) ; */

}

}

voi d bunp() /* simul ates a bunp sensor */
/* if the motor is noving, but the shaft encoder says Tracker is not noving */
/* stop and nove in the opposite direction. */

}

void confirm(int direction) /* check to nmake sure obstacles are where ir detects them?*/
/* directionis 1 for forward and O for reverse */
/* average_angl e(&vg_angl e); */
/* based on val ue of avg_angle cal cul ate where to | ook for objects */

}

void dir_angl e()

{

aver age_sensor (COWPASS1, &out putl); /* cos curve */
aver age_sensor (COVPASS2, &out put 2); /* sin curve */

angl e_res = 1.915; /* this changes with upper_line and | ower_line */
if ((outputl >= upper_line) & (output2 >= upper_line))

{ angl e = 45;

else if ((outputl <= lower_line) & (output2 <= [ower_line))

angl e = 225;

24

IMDL
Final Report

/*

else if (output2 >= upper_|ine)

{
/* outputl neasures from45 to 135 degrees */
rangel = (upper_line - outputl);
angl e_resolution = ((float)rangel * angle_res);
angle = ((int)angle resolution + 45);

else if (outputl <= lower_line)

{
/* output2 neasures from 135 to 225 degrees */
range2 = (upper_line - output?2);
angl e_resolution = ((float)range2 * angle_res);
angle = ((int)angl e_resolution + 135);

else if (output2 <= |ower_line)

{
/* outputl neasures from 225 to 315 degrees */
rangel = (outputl - lower_line);
angl e_resolution = ((float)rangel * angle_res);
angle = ((int)angle_resolution + 225);

else if (outputl >= upper_line)

{
/* output2 neasures from 315 to 45 degrees */
range2 = (output2 - lower_line);
angl e_resolution = ((float)range2 * angle_res);
angle = ((int)angle_resolution + 315);

}

el se

{

angl e = angl e;

}
if (angle >= 360)

angle = angle - 360; /* keep the val ues of angle between 0 and 360 */
}
/* the wite functions are used to observe the outputs with hypertermnal */
wite("angle = ");

wite_int(angle);
wite("outputl = ");
wite_int(outputl);
wite("output2 = ");
wite_int(output2); */

}
voi d di stance() /* measure the distance travel ed */
{
/* there are 6 counts per wheel revolution */
if (anal og(CDOMETER) < CDOM THRESHOLD)
{
if (odom!= 1)
total _dist++; /* add to the count */
odom = 1;
[* wite("odom=");
wite_int(odom;
wite_int(total _dist); */
}
el se
odom = 0;
/* wite("odom=");

25

IMDL
Final Report

}

voi d fol I ow _path()

{

/*

/*

/*

}

wite_int(odon;
wite int(total _dist); */

/* divide by 6 to get the nunber of inches traveled */
/* if integers aren't accurate enough use float */

/* recreates the recorded path */
/* receive() and object avoi dance should still be running */
int last_index;
int followdist;
int followdir;
float follow degl;
wite("Entering followpath()\n\r"); */

I ast _i ndex = path_i ndex;
pat h_i ndex = 0;
rst =0;

while ((path_index < (last_index - 1)) & (follow == 1))
{

follow.dist = dist[path_index + 1] - dist[path_index];
followdir = dir[path_index + 1] - dir[path_i ndex];
foll ow degl = deg[path_index + 1] - deg[path_i ndex];
wite("followdist =");

wite_int(followdist); */

if ((followdir >-5) || (followdir < 5))

{

followdir = O;

wite("followdir =");
wite_int(followdir); */
nove_fwd(fol l ow dist, followdir, follow degl);

pat h_i ndex++;

pat h_i ndex++;

follow = 0;

not or (MOTOR_JMPR, 0. 0) ;
straighten();

/* stop when finished follow ng the path */

void initialize()

{

}

init_servos();

init_serial(); /* initialize the serial port */

nmot or (MOTOR_JMPR, 0. 0) ;
total _dist = 0;

odom = 0;

rst = 1;

straight_Ivl = 0;

foll ow active = 0;

aver age_angl e(&vg_angl e) ;

poke(0x7000, OxFF);
detect = 0;
step = 0;

void init_servos()

{

servo_on();
straighten();

/* stop nmotor */

/* clear the distance counter */

/* set it so distance() triggers on a rising edge */
/* tells arbitrate the board has just been reset */
/* this makes it so the first location is recorded */

/* returns the current angle */
/* scan the surroundings */
/* turn on the infared LED s */

/* straighten the steering servo */

26

IMDL

Final Report
/* controls how far the robot noves based on the wheel encoder */
/* a travel _dist of 36 is 51 inches, 14 is 1.5 ft */
/* this seemed to be repeatable with a 1 inch accuracy */
/* turns until the robot reaches the specified angle change */
voi d move_back(int travel _dist, int angle_chg, float angl e_degl)
{
int end_dist;
/* wite("Entering nove_back()\n\r"); */
di stance();
end_dist = total _dist + travel _dist;
/* monitor conpass to see when | reach the desired angle */
j = DEGL_CHG
/* calculate the current angle
aver age_angl e(&vg_angl e) ; /* returns avg_angle */
/* cal cul ate what the new angl e shoul d be */
new angl e = avg_angl e + angl e_chg;
/* keep the val ue between 0 and 359 */
if (new angle >= 360)
{
new_angl e = new_angl e - 360;
}
if (new_angle < 0)
{
new angl e = new angl e + 360;
}
/* make sure Tracker turns in the nost efficient direction */
if (angle_chg > 180)
{
angl e_chg = angl e_chg - 360;
}
if (angle_chg < -180)
{
angl e_chg = angl e_chg + 360;
}
if (new_angl e > avg_angl e)
if (angle_chg >= 0)
while ((avg_angl e < new angle) && (total _dist < end_dist))
[* avoi d();
if (detect == 0)
{
turn_back(angl e_chg, angl e_degl); /* turn */
not or (MOTCR_JMPR, -100. 0) ; /* nove robot backwards */
/*
el se {break;} */
di stance();
}
el se
while ((avg_angle > 0) && (total _dist < end_dist))
{
/* avoi d();
if (detect == 0)
{

27

IMDL

Final Report

/*

/*

/*

/*

/*

/*

/*

turn_back(angl e_chg, angl e_degl); [* turn */
not or (MOTOR_JMPR, -100.0); /* move robot backwards */

el se {break;} */
di stance();

}
while ((avg_angl e > new angle) && (total _dist < end_dist))
{

}

avoi d();
if (detect == 0)
{ =~/
turn_back(angl e_chg, angl e_degl); /* turn */
nmot or (MOTOR_JMPR, -100. 0) ; /* move robot backwards */

el se {break;} */
di stance();

else if (new angle < avg_angle)

if (angle_chg < 0)

while ((new angle < avg_angle) &% (total _dist < end_dist))
{
avoi d();
if (detect == 0)
{
turn_back(angl e_chg, angl e_degl); /* turn */
mot or (MOTOR_JMPR, -100. 0) ; /* move robot backwards */
el se {break;} */
di stance();
}
}
el se
{
while ((avg_angle < 360) && (total dist < end_dist))
{
avoi d();
if (detect == 0)
{ =~/
turn_back(angl e_chg, angl e_degl); /* turn */
nmot or (MOTOR_JMPR, - 100. 0) ; /* move robot backwards */
el se {break;} */
di stance();
}
while ((avg_angle < new angle) &% (total _dist < end_dist))
{
avoi d();
if (detect == 0)
{ =~/
turn_back(angl e_chg, angl e_degl); /* turn */
nmot or (MOTOR_JMPR, - 100. 0) ; /* move robot backwards */
el se {break;} */
di stance();
}
}
}
el se
{
servo_degl(degl); /* keep going in the same direction */

28

IMDL
Final Report

/*

/*
/*
/*
/*
Voi

/*

while (total _dist < end_dist)

{
avoi d();
if (detect == 0)
{ =~/
nmot or (MOTOR_JMPR, - 100. 0) ; /* move robot backwards */
el se {break;} */
di stance();
}
}
controls how far the robot noves based on the wheel encoder */

a travel _dist of 36 is 51 inches, 14 is 1.5 ft */

this seemed to be repeatable with a 1 inch accuracy */

turns until the robot reaches the specified angle change */

how can travel _dist and angl e_chg be conpared to nmake sure the data is valid? */
d move_fwd(int travel _dist, int angle_chg, float angle_degl)

int end_dist;

wite("Entering nove_fwd()\n\r"); */
di stance();
end_dist = total _dist + travel _dist;

/* call avoid(); to check for objects */
/* or have arbitrate determ ne whether to exit the function and call avoid() */
/* if (obj _fwd_ left or obj _fwd right = 1) record current distance */

/* avoid_dist = total _dist; to save the state when robot veers of the path */
/* check to see if any objects in the grid are too close */

/* monitor conpass to see when | reach the desired angle */
j = DEGL_CHG

/* calculate the current angle
aver age_angl e(&vg_angl e) ; /* returns avg_angle */

/* cal cul ate what the new angl e shoul d be */
new angl e = avg_angl e + angl e_chg;

/* keep the val ue between 0 and 359 */
if (new angle >= 360)
{
new _angl e = new_angl e - 360;
}
if (new_angle < 0)
{
new angl e = new angl e + 360;
}
/* make sure Tracker turns in the nost efficient direction */
if (angle_chg > 180)
{
angl e_chg = angl e_chg - 360;
}
if (angle_chg < -180)
{
angl e_chg = angl e_chg + 360;
}
if (new_angl e > avg_angl e)
{

if (angle_chg >= 0)

29

IMDL
Final Report

while ((avg_angl e < new angle) && (total _dist < end_dist))

/* avoi d();
if (detect == 0)
{ =~/
turn(angl e_chg, angle_degl); /* turn */
nmot or (MOTCR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
}
el se
{
while ((avg_angle > 0) & (total _dist < end_dist))
{
/* avoi d();
if (detect == 0)
{ =~/
turn(angl e_chg, angle_degl); [* turn */
nmot or (MOTOR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
while ((avg_angl e > new angle) && (total _dist < end_dist))
{
/* avoi d();
if (detect == 0)
{ =~/
turn(angl e_chg, angle_degl); /[* turn */
nmot or (MOTOR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
}
else if (new angle < avg_angle)
if (angle_chg < 0)
while ((new angle < avg_angle) && (total _dist < end_dist))
/* avoi d();
if (detect == 0)
{
turn(angl e_chg, angle_degl); /* turn */
nmot or (MOTCR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
el se
while ((avg_angle < 360) & (total dist < end_dist))
{
| * avoi d();
if (detect == 0)
{ =~/
turn(angl e_chg, angl e_degl); /[* turn */
nmot or (MOTCR_JMPR, 100. 0) ; /* move robot forward */

30

IMDL
Final Report

/*
el se {break;} */
di stance();
}
while ((avg_angle < new angle) & (total _dist < end_dist))
| * avoi d();
if (detect == 0)
{ =~/
turn(angl e_chg, angle_degl); [* turn */
not or (MOTOR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
}
}
el se
servo_degl(degl); /* keep going in the sane direction */
while (total _dist < end_dist)
{
/* avoi d();
if (detect == 0)
{
nmot or (MOTOR_JMPR, 100. 0) ; /* move robot forward */
/*
el se {break;} */
di stance();
}
}
}
voi d obstacl e_pat h() /* keeps track of distances and angl es travel ed when avoi di ng obstacl es
*/
/* should be simlar to record_path() */
/* this function or another one will then guide the robot back onto the original path */
}
voi d pol | _di stance()
while (1)
di stance();
/* wai t (100); */
}
}
voi d receive() /* receives characters fromthe serial port */
char dat a;

forward = 0;
reverse = 0;
turn_right = O;
turn_left = 0;
record = 0;
straight = 0;

while (1)

data = get_char();
if ((data =="'B') || (data == "'b")) /* apply the brakes */
{

31

IMDL

Final Report

mot or (MOTOR_JMPR, 0. 0) ;
/* set every other serial port variable, except record, to 0 */
forward = 0O;
reverse = 0;
turn_right = 0;
turn_left = 0;

straight = 0;
follow = 0;
}
else if (((data =="'F') || (data == "'f"')) && (record == 0))
{
/* wite("follow=1, rst = 0\n\r"); */
follow = 1;
rst = 0; /* make sure the path is not followed until the board is reset
*/
/* wite("Spawning follow path()\n\r"); */
followpid = start_process(follow path());
follow active = 1;
elseif ((data =="'R) || (data == "'r")) /* toggle record_node on and of f */
if (record == 1)
{
record = O; /* turn off record node */
ki I'l _process(record_pid);
/* wite("Killing record_mode()\n\r"); */
sanpl e(); /* sanple the last data point */
/* stop the robot when exiting record node */
forward = O;
reverse = 0;
turn_right = 0;
turn_left = 0;
straight = 0;
follow = 0;
nmot or (MOTOR_JMPR, 0. 0) ;
/* wite("Recorded data\n\r");
for (i =0; i < path_index; i++)
{
wite_ int(dist[i]);
wite int(dir[i]);
}or!
}
el se
{
record = 1; /* put in record node */
/* stop and straighten the robot when entering record node */
forward = 0;
reverse = 0;
turn_right = 0;
turn_left = 0;
straight = 1,
follow = 0;
nmot or (MOTOR_JMPR, 0. 0) ;
straighten();
record_pid = start_process(record_node());
}
}
/* elseif (data =="'&) */
else if ((data =="'1") || (data =="i"))
if (reverse == 1)

not or (MOTCR_JMPR, 0. 0) ;
reverse = 0;

32

IMDL
Final Report

follow = O;

}

el se
forward = 1; /* go forward */
reverse = 0; /* turn off reverse */
not or (MOTOR_JMPR, 100. 0) ;
follow = O;

}

}
/* else if (data =="'(") */

else if ((data =='K) || (data == 'k"))
{

if (forward == 1)

{
not or (MOTOR_JMPR, 0. 0) ; /* stop before reversing */
forward = 0;
follow = 0;
}
el se
{
reverse = 1; /* go in reverse */
forward = 0; /* turn off forward */
nmot or (MOTOR_JMPR, - 100. 0) ;
follow = 0;
}
[* else if (data =="'") */
elseif ((data =="'L") || (data =="'1"))
if (turn_left == 1)
{
turn_right = 0O;
turn_left = 0;
straight = 1;
servo_degl(STRAl GHT);
follow = 0;
}
el se
{
turn_right = 1; /* turn right */
turn_left = 0;
straight = 0;
servo_degl(R GHT);
follow = 0;
}
}
[* else if (data == "'%) */
else if ((data =="'J") || (data =="j"))
{
if (turn_right == 1)
{
turn_right = 0;
turn_left = 0;
straight = 1;
servo_degl(STRAl GHT);
follow = 0;
}
el se
{
turn_left = 1; /* turn left */
turn_right = 0O;
straight = 0;

servo_degl(LEFT);

33

IMDL

Final Report
follow = 0;
}
}
/* else if ((data =="'S) || (data == "'s"))
straight = 1;
turn_right = 0;

turn_left = 0;
straighten();
follow = 0;
ol
el se

/* continue as previously instructed */

/* forward = forward;
reverse = reverse;
turn_right = turn_right;
turn_left = turn_left;
straight = straight;
follow = foll ow,
record = record; */
}
if ((follow==10) & (follow active == 1))
{
/* wite("Killing follow path()\n\r"); */
ki I'l _process(follow pid);
follow active = 0;
}
/* if ((follow == 1) & (rst == 1)) */ /* wait for the board to be reset to begin */
/* {
write("Spawning follow path()\n\r");
followpid = start_process(follow path());
follow active = 1;
o
}
}
voi d record_node() /* control the robot through the serial port */
{
/* wite("Entering record_node()\n\r"); */

/* watch out for conflicts between user control and autonormous node */
/* add an led that lights up when in record node */

total _dist = O; /* clear the distance counter */

odom = 0; /* set it so distance() triggers on a rising edge */
rst = 0; /* a reset nmust occur before follow path() */
aver age_angl e(&vg_angl e) ; /* keeps the angle updated for record_path() */
di stance(); /* keeps the distance travel ed updated */

| ast _angl e = avg_angl e;

pat h_i ndex = 0;

while (1)
{
record_path(); /* keeps track of the path */
aver age_angl e(&vg_angl e) ; /* keeps the angle updated for record_path() */
di stance(); /* keeps the distance travel ed updated */
}
}
voi d record_pat h() /* keeps track of distances and angl es travel ed when being progranmred */
{ /* does not control the robots actual notion */

/* take a sanpl e when degl changes fromstraight */
if ((straight_Ivl == 1) && (straight == 0))
{

34

IMDL
Final Report

sanpl e();
straight _lvl = 0;

}
if ((straight_Ivl == 0) & (straight == 1))
{

sanpl e();
straight _Ivl = 1;

1

}
/* currently only record while going forward */
/* record any changes in avg_angle of greater than 9 degrees, this will renove snall

inperfections in steering. */
if ((avg_angle > (last_angle + 9)) || (avg_angle < (last_angle - 9)))
sanpl e();
}

voi d resure()

mot or (MOTOR_JMPR, 100. 0) ;
while (1)

if (step == 0)
{

wite("step = O\n\r");

avoi d();
if ((detect == 1))
{

step = 1;

ref _dist = total _dist;
aver age_angl e(&vg_angl e) ;
ref _angl e = avg_angl e;

}
else if (step == 1)

wite("step = 1\n\r");
while ((anal og(I R FR LFT) > IR THRESHOLD) || (anal og(| R FR RGHT) > | R THRESHOLD))

/* stay at this point until object is no |onger being detected */
}

step = 2;
else if (step == 2)

wite("step = 2\n\r");

while (wall == 0) /* front and rear sensors should wall follow so | know when
Tracker is parallel with the object */

if (anal og(5) > (116))
wal | = 1;

}
}
turn_dist = total _dist - ref_dist;
aver age_angl e(&vg_angl e) ;
turn_angl e = avg_angl e - ref_angl e;
while ((wall == 1))
{

straighten(); /* continue going straight until passed the object */
not or (MOTCR_JMPR, 100. 0) ;
if (anal og(5) < (116))

wal | = 0;

35

IMDL
Final Report

}

straight_dist = total _dist - turn_dist;
step = 3;

else if (step == 3)

{
wite("step = 3\n\r");
wite int(turn_dist);
wite_int(turn_angle);
if (turn_direction == R GHI)

turn_direction = LEFT;
else if (turn_direction == LEFT)

turn_direction = R GHT;
}
turn_dist = (2 * turn_dist);
wite int(turn_dist);
turn_angle = -(2 * turn_angl e);
wite_ int(turn_angle);
nove_fwd(turn_dist, turn_angle, turn_direction);
step = 4; /* go straight again */

else if (step == 4)
{
wite("step = 4\n\r");
straighten();
move_fwd(straight_dist, 0, STRAIGHI);
step = 5; /* turn back to the original angle */

else if (step == 5)
{
wite("step = 5\n\r");
aver age_angl e(&vg_angl e) ;
angl e_chg = ref_angle - avg_angl e;
if (turn_direction == R GHI)

turn_direction = LEFT;

else if (turn_direction == LEFT)
{
turn_direction = R GHT;

move_fwd(50, angle_chg, turn_direction);
straighten();
mot or (MOTOR_JMPR, 0. 0) ;

}
voi d sanpl e() /* add the current avg_angle and total _dist values to their arrays */

/* wite("Entering sanple()\n\r"); */
di st[path_index] = total _dist;
dir[path_index] = avg_angl e;

deg[pat h_i ndex] = degl; /* record the current servo_degl setting */

pat h_i ndex++;

| ast _angl e = avg_angl €;

}

voi d straighten()

36

IMDL
Final Report

/* stop turning by smoothly straightening the wheels */
/* inplement logic to turn smoothly like turn() has */
servo_degl(STRAl GHT);

degl = STRAI GHT;

void track() /* tracks objects with sonar and adds themto the grid until confirmis called */

}
void turn(int angle_chg, float angl e_degl) /* turns the robot and updates the angle */
{
/* logic that deternines turning snmoothness, speed, and direction */
if (angle_chg < 0) /* turn right */
{
if (degl < angl e_degl) /* keeps robot fromturning past R GHT */
{
degl = degl + j;
servo_degl(degl);
j += DEGL_CHG
}
}
el se [* turn left */
{
if (degl > angl e_degl) /* keeps robot fromturning past LEFT */
degl = degl - j;
servo_degl(degl);
j += DEGL_CHG
}
}
aver age_angl e(&vg_angl e) ; /* check the current angle */
}

voi d turn_back(int angle _chg, float angl e degl) /* turns the robot and updates the angle */
{ /* logic that determ nes turning snoothness, speed, and direction */
if (angle_chg > 0) /* turn right */
if (degl < angl e_degl) /* keeps robot fromturning past R GHT */

degl = degl + j;
servo_degl(degl);

j += DEGL_CHG
}
}
el se /[* turn left */
{
if (degl > angl e_degl) /* keeps robot fromturning past LEFT */
{
degl = degl - j;
servo_degl(degl);
j += DEGL_CHG
}
}
aver age_angl e(&vg_angl e) ; /* check the current angle */
}
void wait(int mlli_seconds)
{

37

IMDL
Final Report

long tinmer_a;

timer_a = nseconds() + (long) mlli_seconds;
while (timer_a > nmseconds())

defer();

/******************************* End Of Program FUnCtI ons *************************************/

/*********************************** TeStl ng FUnCtIOnS **/

voi d noni tor_angl e()
while (1)
{

aver age_angl e(&vg_angl e) ;
wite_int(avg_angle);

wai t (1000);

}

}

voi d pattern() /* G in a pattern using the conpass as a guide */
nove_fwd(9, 0, STRAI GHT);
move_fwd(50, 30, LEFT);
straighten();
wai t (1000);
nove_fwd(50, -60, R GHT);
straighten();
wai t (1000);
nmove_fwd(50, 30, LEFT);
straighten();
wai t (1000);
not or (MOTCR_JMPR, 0. 0) ;
wai t (3000);
nmot or (MOTOR_JMPR, - 100. 0) ;
wai t (1000);
nove_back(50, -30, LEFT);
straighten();
wai t (1000);
nove_back(50, 60, R GHT);
straighten();
wai t (1000);
move_back(50, -30, LEFT);
straighten();
nmove_back(9, 0, STRAIGHI);
nmot or (MOTOR_JMPR, 0. 0) ;

}

38

IMDL
Final Report

voi d speed_test() /* Tracker noves about 3.6 inches/second, varies with battery power */
{ /* this speed is not valid since | changed the gear ratio */
straighten();
nmot or (MOTOR_JMPR, 100. 0) ;

wai t (5000);
}
voi d test_odoneter ()
{
/* uncomrent serial outputs in distance() to verify that the odormeter is working */
nove_fwd(36, 0, 0.0); /* noves Tracker in a straight line for 50 to 51 inches */
}
voi d test_nenory() /* see if variable values are retained when a reset occurs */
{ /* if the variable is persistent it does not change on a reset */
wai t (2000);
wite_int(memtest);
if (memtest == 71)
servo_degl(R GHT);
}
el se
{
servo_degl(LEFT);
}
memtest = 71;
wite_int(memtest);
}
void test_serial ()
{
char tst;
while (1)

tst = get_char();
wite("echo: ");
put _char (tst);
wite("\n");

}

[RAEKFE KK KKK KKK KK Rk Kk Rk kkkkkkkxkxx* End of Testi ng FUNCLEi ONS * X *xxdkkdkkdkkdkkdk ke kkkkkk Xk kk Xk kkxkxk % [

39

