BY-TOR

INTELLIGENT MACHINE DESIGN LAB

SUMMER 2000
INSTRUCTORS: ANTONIO ARROYO

 ERIC SCHWARTZ

 TA’S: SCOTT JANTZ

 SCOTT KANOWITZ

8/9/00

CHRISTOPHER LEIGH
TABLE OF CONTENTS

Abstract..3

Executive Summary..4

Introduction...5

Integrated System..6

Flowchart...7

Mobile Platform...8

Actuation..8

Sensors...9

Behaviors...11

Experimental Layout and Results..13

Conclusions..15

Appendix..16

ABSTRACT

BY-TOR is a colored-light sensing laser-shooting robot. It roams around, avoiding obstacles, until it sees either red or blue light. If it sees blue light, it chases it and shoots at it if it gets within range. If it sees red light, it flees from it and shoots at it if it gets too close.

EXECUTIVE SUMMARY

BY-TOR is a fully autonomous mobile robot that chases and shoots at blue light and flees and shoots at red light. BY-TOR consists of a mobile platform based on a Mekatronix Talrik Junior Professional Robot (TJPro). It has two forward- looking and two backward-looking infrared emitters and detectors (IR’s) for forward and backward obstacle detection, respectively. It has three bump switches in the front and one in the back to detect collisions. BY-TOR also carries two forward-pointing colored-light sensors (CLS’s) to detect different light colors. A laser pointer and piezo speaker are mounted on BY-TOR to act as a gun. One IR is mounted on each side of the gun to enhance aiming. A servo mounted underneath the laser pointer actuates the trigger on the pointer. BY-TOR’s electronics include a memory-expanded Motorola 68HC11 microcontroller mounted on a Mekatronix MTJPro11 board, and a Mekatronix sensor expansion board and voltage divider circuit for the CLS’s.

INTRODUCTION

My main motivation for designing and building BY-TOR was to learn some of the basic skills of robot building. I also had the idea that I wanted something that would shoot. At first, I was going to do some kind of sentry robot, but that was too stationary. I was also going to use a gun that actually fired projectiles, but could not find one suitable, mainly because of the small size of BY-TOR’s platform. For this project, a different kind of sensor was required, so I chose to sense different colors of lights. All of this led me to the resulting behaviors of BY-TOR. This paper details the design, function, and purpose of each of the subsystems that make up BY-TOR. This includes the system as a whole, the mobile platform, actuators, sensors, electronics, and behaviors.

INTEGRATED SYSTEM

The system is controlled by a Motorola 68HC11 microcontroller that provides 32K of SRAM. and a 40 kHz modulated signal for the IR emitters. The following describes the system as a whole. A flowchart representation is found on the next page.

During operation, the 68HC11 monitors the CLS’s to determine if a blue or red light is present. If not, it executes a forward obstacle avoidance program. It signals the wheels to rotate forward at full speed and monitors the two front IR’s to ascertain whether an obstacle is ahead, and the bump switches to tell if a collision has occurred. If the IR’s detect an obstacle, the wheels are caused to turn away from the object. If a collision occurs, the robot backs up, turns in a random direction, and proceeds on its way.

If one or both CLS’s detect blue light and the forward-looking IR’s do not detect an obstacle too close, the controller responds differently depending on which CLS sees blue light; if an obstacle is too close, it is skirted. If only one CLS (left or right) sees it, the robot steers that direction. If both CLS’s see blue light, the controller checks the gun IR’s to find out if the blue light source is in range to be shot. If it is, the wheels are stopped, the trigger servo causes the gun to fire, and a pulse width modulated signal is sent to the speaker for a shooting sound effect. If not, the robot continues straight ahead.

If a CLS sees red light and the backward-looking IR’s do not detect an obstacle too close, similar actions take place as for blue light; if an obstacle is detected, the robot avoids it going backward. If one CLS sees red light, the robot steers the opposite direction,

SYSTEM FLOWCHART

[image: image1.wmf]0

10

20

30

40

50

60

70

80

90

% LIGHT

PASSED

RED

BLUE

GREEN

RED

BLUE

GREEN

FILTER COLOR

LIGHT

COLOR

FIGURE 1.

 LIGHT PASSED BY EACH FILTER

[image: image2.wmf]0

10

20

30

40

50

60

70

80

90

% LIGHT

PASSED

RED

BLUE

GREEN

RED

BLUE

GREEN

FILTER COLOR

LIGHT

COLOR

FIGURE 1.

 LIGHT PASSED BY EACH FILTER

moving backward. If both CLS’s see it, the controller checks the gun IR’s to determine if it is within shooting range. If it is, the gun shoots; if not, it keeps going.

 .

MOBILE PLATFORM

The platform consists of an enhanced Mekatronix TJPro robot. The enhancements include two backward-looking IR detectors and emitters on the back for backwards obstacle detection, two forward-looking CLS’s to detect colored light, a pen-shaped laser pointer, a servo to trigger the laser pointer gun and a piezo speaker. The CLS’s and related circuit boards, laser pointer, speaker, gun IR’s, and servo are mounted in or on an oval-shaped plastic housing (Tupperware) located on the top of the platform. I had to experiment with the housing before I got it right. At first I was going to mount the CLS’s circuitry, which includes a sensor expansion board and a voltage divider, under the platform, but there was not enough room. I then experimented with different housings on top of the platform before settling on the one I did.

ACTUATION

Wheels

Each wheel is driven by a Hitech HS-422 servo that has been hacked to act like a DC motor. Each of these servos has 43 oz.-in of torque. I wrote a smoothing algorithm to dampen the transition from one speed to another when the wheels change speeds or directions. The algorithm simply steps the wheel’s speed in increments so the wheel will not make abrupt or jerky movements. This also mitigates servo stress, and saves power.

Trigger

The servo that triggers the gun is the same type as for the wheels, only not hacked. The triggering mechanism consists of a sleeve wrapped around the laser pointer where the pointer’s button is, and is. situated between two other sleeves so it does not slide away from the button. The sleeve is loose enough so it does not depress the button without being pulled down. I attached a loop of wire around the sleeve on the pointer’s underside. I mounted the trigger servo, on its side, to the platform directly underneath the laser pointer’s button. I fixed the other end of the loop of wire to the trigger servo’s gear head. When the gear head rotates, the attached wire pulls down the sleeve and depresses the button. Most of the time during BY-TOR’s operation, the gear head is placed at a position (PW = 2800) that does not depress the button. When triggering is desired, the gear head rotates (PW = 3200) to pull down the sleeve.

SENSORS

The sensors BY-TOR uses are infrared light sensors, colored light sensors, and bump sensors.

Infrared Light Sensors

Obstacle Detection

The Sharp GP1U58Y IR sensors can detect objects in a 60 degree sweep centered on the normal when a 40 kHz modulated signal is transmitted along the normal. I hacked the sensors to allow for an approximation of the detected object’s relative distance from the sensor. I placed two of the sensors in the front and two in the back to detect obstacles while BY-TOR is moving forward and backward, respectively

Aiming

I also mounted IR sensors on either side of the laser pointer pointed forward. These are used to determine when the gun is aimed at a target and are shielded by the pointer on the inside and a black piece of poster board on the outside. When the readings of these two IR”s are equal (+- 1) and greater than a shoot threshold, the gun is aimed at the target and BY-TOR shoots it..

Bumper Sensors

BY-TOR has four bumper sensors, three in the front and one in the back, placed to detect when the robot bumps something.

Colored Light Sensors

Design

Each CLS consists of three basic photocells I got from Radio Shack: one red-filtered, one green-filtered, and one blue-filtered. The red and blue filters are from a pair of 3D glasses, and the green filter is from a transparent green folder. I experimented with cellophane filters first, but found that I needed to use many layers to get good results. I then remembered I had some 3D glasses with red and blue lenses and got good results. The green filter is a weak link, but it works well enough. I actually could have got by with only red and blue filters, but I was originally going to use green light to stop BY-TOR, but BY-TOR was not detecting the green light as well as I had hoped.

Function

Upon light exposure, the three photocells give a distinct combination of data values for each color of light. These combinations allow BY-TOR to know which color of light it sees. BY-TOR has two of these sensors, one mounted pointing forward on each side. I mounted a shield on the inside of each CLS array to block light coming from the other side. This allows BY-TOR to recognize the direction the light is coming from more easily and accurately.

Integration

The CLS’s are connected to the 68HC11 via an analog expansion board. The readings for each photocell range from 0 (almost no light, high resistance) to 255 (intense light, low resistance). These values are not linear so I convert them to resistance using:

(2550 / value) – 10. I need linear values because, to determine if a CLS sees a light color, I compare the detected red to blue ratios and blue to green ratios to known ratios. If the detected ratios match the known ratios produced by either red or blue light, that color is present.

BEHAVIORS

In this section, I detail each of BY-TOR’s behaviors. These include obstacle avoidance (forwards and backwards), collision extraction (forwards and backwards), blue light chasing, red light chasing, and gun shooting.

Obstacle Avoidance

BY-TOR exhibits obstacle avoidance during its entire operating duration, so it is highly important. For forward obstacle avoidance, I use a basic algorithm supplied by IMDL. It involves monitoring the forward-looking IR’s. If an IR detects an obstacle too close, BY-TOR turns away from the obstacle. I modified the algorithm to produce backward obstacle avoidance. The backward-looking IR’s are monitored instead of the forward-looking and the signals to the wheel servos are reversed.

Collision Detection

If BY-TOR collides with something that hits its bumper, BY-TOR backs up and turns a random direction. BY-TOR uses the front bumper switches as collision sensors when forward obstacle avoiding and the back bumper sensor for backward obstacle avoiding.

Blue Light Chasing

When BY-TOR detects blue light, it chases it. BY-TOR constantly monitors its CLS’s and turns to the right if only the right CLS detects blue light, to the left if only the left CLS does, and goes straight ahead if both do. If there are any obstacles in the way or collisions while it is chasing the blue light, forward obstacle avoidance or collision detection takes over until BY-TOR is clear of the obstacle.

Red Light Chasing

When BY-TOR detects red light, it tries to get away from it by retreating backward. BY-TOR constantly monitors its CLS’s and turns to the left if only the right CLS detects red light, to the right if only the left CLS does, and goes straight back if both do. If there are any obstacles in the way or collisions while it is chasing the red light, backward obstacle avoidance or collision detection takes over until BY-TOR is clear of the obstacle.

Gun Shooting

BY-TOR shoots at either the blue or red light if either gets within range. Shooting consists of turning on the laser pointer and producing a sound effect via the piezo speaker. BY-TOR monitors the gun IR’s while either light is on, and shoots if the light is in front of it and the gun IR’s give the same reading (+- 1). I programmed BY-TOR to stop and shoot at blue light before it gets too close to the blue light that it goes into obstacle avoidance mode and tries to turn away from the light. This means if the blue light is stationary, BY-TOR will stop in front of it and keep shooting. BY-TOR does not stop to shoot at the red light, because it’s objective is to try to get away from the light. Other than that, the shooting procedure is the same as for the blue light.

EXPERIMENTAL LAYOUT AND RESULTS

I performed several different tests using 40 W colored light bulbs to determine how consistent the sensor readings are for varying light intensities and ambient light levels. I quickly found that the lower the ambient light level compared to the colored light source, the better the results. To determine the range the colored light could be recognized at a low ambient light level, I varied the distance between the light and sensor and measured the response of each photocell to each different colored light. I found that for the ambient light level and brightness of colored light source used, the range that the combinations of values for each color remained consistent for, was approximately 100 inches. At distances approaching 125 inches, the values were more and more inconsistent. To extend the range, a brighter light source would be necessary. The data from this experiment is found in Figure 1 below..

CONCLUSIONS

I learned a lot from building taking this class and building this robot. I started knowing hardly anything about what it takes to build even a simple robot. I quickly learned that nothing comes easily. It was just as challenging and fun as I thought it would be, although I did not think it was fun all the time. I did not only learn about things on my robot, but was stimulated to learn more about many different areas in robotics.

I would have done some things differently if I started over. I could have obtained a better green filter for one. I would have finished building the platform much earlier than I ended up doing. I might even have built a bigger platform so I could use a real gun, although I am pleased with the results of the laser gun. I did not have to worry about reloading or jammed ammunition, and the triggering was a little easier, I think.

BY-TOR does not have a future in its present state, but I plan on either doing something different, and maybe more practical with the platform I already have or build something different.

APPENDIX

/**

 *

 * Title BYTOR.C

 * Programmer
CHRISTOPHER LEIGH

 * Date 2000

 * Version

 *

 * Description

*

 *
BY-TOR WILL CHASE BLUE LIGHT, SHOOTING AT IT IF IT GETS WITHIN RANGE.

 * RETREAT FROM RED LIGHT, SHOOTING AT IT IF IT GETS WITHIN RANGE.

 * WHILE CHASING OR FLEEING, IT WILL AVOID OBSTACLES.

 *

 **/

/*************************** Includes ********************************/

#include <tjpbase.h>

#include <stdio.h>

#include <hc11.h>

#include <math.h>

/************************ End of Includes ****************************/

/*************************** Constants ********************************/

/* SENSOR EXP BOARD */

#define RRED *(unsigned char *)(0x6000) = 0x12

#define RGREEN *(unsigned char *)(0x6000) = 0x10

#define RBLUE *(unsigned char *)(0x6000) = 0x11

#define LGUNIR *(unsigned char *)(0x6000) = 0x08

#define AM1 *(unsigned char *)(0x6000) = 0x09

#define RGUNIR *(unsigned char *)(0x6000) = 0x0A

#define LBLUE *(unsigned char *)(0x6000) = 0x0B

#define AM4 *(unsigned char *)(0x6000) = 0x0C

#define AM5 *(unsigned char *)(0x6000) = 0x0D

#define LRED *(unsigned char *)(0x6000) = 0x0E

#define LGREEN *(unsigned char *)(0x6000) = 0x0F

#define RFIR analog(2)

#define LFIR analog(3)

#define RRIR analog(4)

#define LRIR analog(6)

#define EXP analog(7)

/*COLOR BASES*/

#define LRBBASERLO
5

#define LRBBASERHI
10

#define LRBBASEBLO
20

#define LRBBASEBHI
30

#define LBGBASERLO
5

#define LBGBASERHI
10

#define LBGBASEBLO
5

#define LBGBASEBHI
12

#define RRBBASERLO
0

#define RRBBASERHI
6

#define RRBBASEBLO
8

#define RRBBASEBHI
20

#define RBGBASERLO
4

#define RBGBASERHI
6

#define RBGBASEBLO
3

#define RBGBASEBHI
7

/*MISCELLANEOUS*/

#define AVOID_THRESHOLD 107

#define NONE 0

#define RED

 1

#define BLUE
 2

#define CFACTOR 16

#define SHOOTHI

 103

#define SHOOTLO

 97

/************************ End of Constants ****************************/

/*************************** Prototypes *********************************/

void forward_avoid(void);

void reverse_avoid(void);

void turn(void);

int lcolorchk(void);

int rcolorchk(void);

void redmode(void);

void bluemode(void);

void shoot(void);

void smooth(void);

/**************************DECLARATIONS***********************************/

int irdr, irdl, speedr, speedl;

int LCOLOR, RCOLOR;

int LRBRATIO, LBGRATIO, RRBRATIO, RBGRATIO;

int LEFTR, LEFTB, LEFTG;

int RIGHTR, RIGHTB, RIGHTG;

int LASTL = 0, LASTR = 0;

int LGUN, RGUN;

/************************ End of Prototypes *****************************/

void main(void)

/****************************** Main ***********************************/

{

 init_analog();

 init_motortjp();

 init_clocktjp();

 init_servotjp();

 IRE_ON; /* turn on IR emitters */

 /*ROAM IN SEARCH OF BLUE LIGHT. WHEN BLUE LIGHT IS FOUND, CHASE

 AFTER IT AND SHOOT IT IF WITHIN RANGE, AVOIDING OBSTACLES ALONG

 THE WAY. IF RED LIGHT IS SEEN, RETREAT FROM IT AND SHOOT IT

 IF IT GETS WITHIN RANGE, AVOIDING OBSTACLES ALONG THE WAY.

 */

 while (1)

 {

 LCOLOR = lcolorchk();

 RCOLOR = rcolorchk();

 if (LCOLOR == RED || RCOLOR == RED)

 redmode();

 else if (LCOLOR == BLUE || RCOLOR == BLUE)

 bluemode();

 else

 {

 LCOLOR = NONE;

 forward_avoid();

 }

 }

}

/**************************** End of Main ******************************/

/*SUBROUTINE redmode()**

*FLEES FROM THE RED LIGHT SOURCE BY BACKING UP AND OBSTACLE DETECTING

 FROM THE REAR WITH LRIR AND RRIR. ALSO, SHOOTS AT RED LIGHT OBJECT

 IF IT GETS TOO CLOSE.

*/

void redmode(void)

{

/*READ LRIR AND RRIR TO SEE IF THE PATH IS CLEAR OF EVERYTHING EXCEPT

 RED LIGHT. SHOOT AT RED LIGHT IF THERE, OTHERWISE FLEE RED LIGHT.

*/

 if (LRIR < AVOID_THRESHOLD && RRIR < AVOID_THRESHOLD)

 {

 if (LCOLOR == RCOLOR)

 {

 RGUNIR;

 RGUN = EXP;

 LGUNIR;

 LGUN = EXP;

 if (RGUN >= SHOOTLO && RGUN <= SHOOTHI

 && RGUN <= (LGUN + 1) && RGUN >= (LGUN - 1))

 {

 shoot();

 speedl = -MAX_SPEED;

 speedr = -MAX_SPEED;

 }

 }

 if (RCOLOR == 0 && LEFTB < RIGHTB)

 speedr = MAX_SPEED;

 else speedr = -MAX_SPEED;

 if (LCOLOR == 0 && LEFTB > RIGHTB)

 speedl = MAX_SPEED;

 else speedl = -MAX_SPEED;

 }

 else reverse_avoid();

 smooth();

}

/***/

/*SUBROUTINE bluemode()**

**CHASES THE BLUE LIGHT SOURCE WHILE OBSTACLE AVOIDING. ALSO, SHOOTS AT RED LIGHT OBJECT

 IF IT GETS CLOSE ENOUGH.

*/

void bluemode(void)

{

/*READ LFIR AND RFIR TO SEE IF THE PATH IS CLEAR OF EVERYTHING EXCEPT

 BLUE LIGHT. SHOOT AT BLUE LIGHT IF THERE, OTHERWISE GO TO BLUE LIGHT.

*/

 if (LFIR < AVOID_THRESHOLD && RFIR < AVOID_THRESHOLD)

 {

 if (LCOLOR == RCOLOR)

 {

 RGUNIR;

 RGUN = EXP;

 LGUNIR;

 LGUN = EXP;

 if (RGUN >= SHOOTLO && RGUN <= SHOOTHI

 && RGUN <= (LGUN + 1) && RGUN >= (LGUN - 1))

 {

 speedl = 0;

 speedr = 0;

 smooth();

 shoot();

 }

 }

 if (RCOLOR == 0 && LEFTB < RIGHTB)

 speedl = -MAX_SPEED;

 else speedl = MAX_SPEED;

 if (LCOLOR == 0 && LEFTB > RIGHTB)

 speedr = -MAX_SPEED;

 else speedr = MAX_SPEED;

 }

 else forward_avoid();

 smooth();

}

/***/

/*SUBROUTINE shoot**

*SHOOTS LASER GUN AND PRODUCES SOUND EFFECT.

*/

void shoot(void)

{

 servo(2, 3200);

 wait(25);

 servo(1, 1);

 wait(50);

 servo(1, 20000);

 wait(200);

 servo(1, 10000);

 wait(250);

 servo(2, 2800);

 servo(1, 0);

}

/***

/*SUBROUTINE forward_avoid**

*AVOIDS OBSTACLE WHEN MOVING FORWARD.

*/

void forward_avoid(void)

{

 /*

 The following block will read the IR detectors, and decide whether TJ

 needs to turn to avoid any obstacles

 */

 irdr = RFIR;

 irdl = LFIR;

 if (irdl > AVOID_THRESHOLD)

 speedr = -MAX_SPEED;

 else

 speedr = MAX_SPEED;

 if (irdr > AVOID_THRESHOLD)

 speedl = -MAX_SPEED;

 else

 speedl = MAX_SPEED;

 smooth();

 /* This "if" statement checks the bumper. If the bumper is pressed, */

 /* Tj will back up, and turn. */

 if(FRONT_BUMP)

 {

 speedl = -MAX_SPEED;

 speedr = -MAX_SPEED;

 smooth();

 wait(600);

 turn();

 }

 wait(35);

}

/**/

/*SUBROUTINE reverse_avoid**

*AVOIDS OBSTACLE WHEN MOVING BACKWARD.

*/

void reverse_avoid(void)

{

 /*

 The following block will read the IR detectors, and decide whether TJ

 needs to turn to avoid any obstacles

 */

 irdr = RRIR;

 irdl = LRIR;

 if (irdl > AVOID_THRESHOLD)

 speedl = MAX_SPEED;

 else

 speedl = -MAX_SPEED;

 if (irdr > AVOID_THRESHOLD)

 speedr = MAX_SPEED;

 else

 speedr = -MAX_SPEED;

 smooth();

 /* This "if" statement checks the bumper. If the bumper is pressed, */

 /* Tj will back up, and turn. */

 if(BACK_BUMP)

 {

 speedl = MAX_SPEED;

 speedr = MAX_SPEED;

 smooth();

 wait(600);

 turn();

 }

 wait(35);

}

/**/

void turn(void)

/**

 * Function: Will turn in a random direction for a "random" amount of *

 * time, dictated by the fast changine lower bits in

*

 *
 mseconds().

 *

 * Returns: None *

 * *

 * Inputs *

 * Parameters: None *

 * Globals: None *

 * Registers: TCNT *

 * Outputs *

 * Parameters: None *

 * Globals: None *

 * Registers: None *

 * Functions called: motorp(), wait()

*

 * Notes: *

 **/

{

 int i;

 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)

 /*turn left*/

 {

 speedr = MAX_SPEED;

 speedl = -MAX_SPEED;

 }

 else

 /*turn right*/

 {

 speedr = -MAX_SPEED;

 speedl = MAX_SPEED;

 }

 i=(rand % 1024);

 if(i>250) wait(i); else wait(250);

}

/***********************End Function turn ****************************/

/*SUBROUTINE lcolorchk**

 READS THE CLS'S 4 TIMES, TAKES THE MAJORITY, AND RETURNS COLOR (1, 2, 3)

*/

int lcolorchk(void)

{

int LSAMPCNT = 0, LREDCNT = 0, LBLUECNT = 0;

/*READ CLS*/

while (LSAMPCNT < 4)

{

 LRED;

 LEFTR = 100 * ((2550 / EXP) - 10);

 LBLUE;

 LEFTB = 10 * ((2550 / EXP) - 10);

 LGREEN;

 LEFTG = (2550 / EXP) - 10;

 ++LSAMPCNT;

/*COMPARE LEFT RATIOS TO BASE RATIOS*/

 LRBRATIO = (LEFTR / LEFTB);

 LBGRATIO = (LEFTB / LEFTG);

 if (LRBBASERLO <= LRBRATIO && LRBBASERHI >= LRBRATIO

 && LBGBASERLO <= LBGRATIO && LBGBASERHI >= LBGRATIO

 && LEFTR < 1500)

 ++LREDCNT;

 else if (LRBBASEBLO <= LRBRATIO && LRBBASEBHI >= LRBRATIO

 && LBGBASEBLO <= LBGRATIO && LBGBASEBHI >= LBGRATIO

 && LEFTR < 2500)

 LBLUECNT++;

}

/*SEE IF 3 OF 4 SAMPLES MATCHED A COLOR*/

 if (LREDCNT > 2)

 return RED;

 else if (LBLUECNT > 2)

 return BLUE;

 else return 0;

}

/*SUBROUTINE rcolorchk**

 READS THE CLS'S 4 TIMES, TAKES THE MAJORITY, AND RETURNS COLOR (1, 2, 3)

*/

int rcolorchk(void)

{

int RSAMPCNT = 0, RREDCNT = 0, RBLUECNT = 0;

/*READ CLS*/

while (RSAMPCNT < 4)

{

 RRED;

 RIGHTR = 100 * ((2550 / EXP) - 10);

 RBLUE;

 RIGHTB = 10 * ((2550 / EXP) - 10);

 RGREEN;

 RIGHTG = (2550 / EXP) - 10;

 ++RSAMPCNT;

/*COMPARE RIGHT RATIOS TO BASE RATIOS*/

 RRBRATIO = RIGHTR / RIGHTB;

 RBGRATIO = RIGHTB / RIGHTG;

 if (RRBBASERLO <= RRBRATIO && RRBBASERHI >= RRBRATIO

 && RBGBASERLO <= RBGRATIO && RBGBASERHI >= RBGRATIO

 && RIGHTG < 35)

 RREDCNT++;

 else if (RRBBASEBLO <= RRBRATIO && RRBBASEBHI >= RRBRATIO

 && RBGBASEBLO <= RBGRATIO && RBGBASEBHI >= RBGRATIO

 && RIGHTG < 25)

 RBLUECNT++;

}

/*SEE IF 3 OF 4 SAMPLES MATCHED A COLOR*/

 if (RREDCNT > 2)

 return RED;

 else if (RBLUECNT > 2)

 return BLUE;

 else return 0;

}

/***/

/*SUBROUTINE smooth**

*SMOOTH OUT LOCOMOTION BY STEPPING DOWN BY 10 TO THE DESIRED SPEED

*/

void smooth(void)

{

int L = 0, R = 0, LX = 0, RX = 0;

 LX = fabs((speedl - LASTL) / 10);

 RX = fabs((speedr - LASTR) / 10);

 if (speedl > LASTL)

 {

 while (L < LX)

 {

 speedl = (LASTL + 10);

 motorp(LEFT_MOTOR, speedl);

 ++L;

 }

 }

 else if (speedl < LASTL)

 {

 while (L < LX)

 {

 speedl = (LASTL - 10);

 motorp(LEFT_MOTOR, speedl);

 ++L;

 }

 }

 if (speedr > LASTR)

 {

 while (R < RX)

 {

 speedr = (LASTR + 10);

 motorp(RIGHT_MOTOR, speedr);

 ++R;

 }

 }

 else if (speedr < LASTR)

 {

 while (R < RX)

 {

 speedr = (LASTR - 10);

 motorp(RIGHT_MOTOR, speedr);

 ++R;

 }

 }

 LASTL = speedl;

 LASTR = speedr;

}

/***/

 .

� EMBED Excel.Chart.8 \s ���

FORWARD AVOID

BLUE, RED, OR NO LIGHT?

OBSTACLE?

OBSTACLE?

START

BACKWARD AVOID

LEFT, RIGHT, BOTH?

LEFT, RIGHT, BOTH?

TURN RIGHT BACKWARD

TURN LEFT BACKWARD

TURN LEFT FORWARD

TURN RIGHT FORWARD

AIMED?

GO FORWARD

STOP

SHOOT

AIMED?

SHOOT

GO BACKWARD

NONE

RED

BLUE

YES

NO

YES

NO

LEFT

RIGHT

BOTH

NO

NO

LEFT

YES

YES

RIGHT

BOTH

PAGE
2

_1025214517.xls
Chart4

		RED		43		32

		BLUE		56		48

		GREEN		22		28

RED

BLUE

GREEN

FILTER COLOR

% LIGHT PASSED

LIGHT
COLOR

FIGURE 1. LIGHT PASSED BY EACH FILTER

85

33

10

Sheet1

		85		43		32

		33		56		48

		10		22		28

		RED

		BLUE

		GREEN

Sheet2

		

Sheet2

		RED		43		32

		BLUE		56		48

		GREEN		22		28

RED

BLUE

GREEN

FILTER COLOR

% LIGHT PASSED

LIGHT COLOR

85

33

10

Sheet3

		

