Diego O. Terzano
University of Florida
EEL 5666

SS# 593-55-6986
Department of Electrical and Computer Engineering
Summer 2000

Table of Contents

2Abstract

3Executive Summary

4Introduction

5Integrated System

6Mobile Platform

7Actuation

10Sensors – Overview

11Bump Switches

11IR Sensors:

11Photoresistors

12Inclinometer

15Shaft Encoders

16Speed

17Sonar

21RF Module

23Code / Behaviors

26Conclusion

28Documentation

29Appendix A: Analog Multiplexer Circuit

30Appendix B: DOTBOT’s AutoCAD drawing

32Appendix C: Portescap Data Sheets

36Appendix D: ICC11 Demo-day Source Code

49Appendix E: Visual Basic 6.0(SP4) RF Comm. Software

Table of Figures:

Figure 1: Bumper Illustration
6
8Figure 2: Schematic Diagram of Motor Drivers

10Figure 3: Voltage Sensor

12Figure 4: CDS cells circuit

13Figure 5: Inclinometer Circuit

15Figure 6: Inclinometer Readings

18Figure 8: Sonar Transmitter Schematic

18Figure 9: Sonar Receiver Schematic

18Figure 10: Sonar Arrangement

9
20Figure 11: Sonar Readings

22Figure 12: LC-Series connection schematics

26Figure 13: Visual Basic Main Communications console

Abstract

DOTBOT is a mobile, autonomous agent controlled by a Motorola 68HC11E9 microcontroller. This robot fits in the category of “micromouses”. This autonomous agents have the ability to navigate “intelligently” inside a maze in order to find the exit point. In addition, this robot has RF communication capabilities to transmit sensory data to a host computer in order to map its movements and objects it encounters in its path and provide graphic representation of sensor status and position. DOTBOT’s wide sensor array is composed by IR proximity sensors, bump switches, Cds cells, a 2-axis tilt/inclinometer sensor, sonar and shaft encoders in order to perceive the surroundings in a meaningful manner in order to accomplish its predefined objectives.

Executive Summary

The robot’s name is DOTBOT coming from the initials of the designer’s name. DOTBOT is a mapping robot with the ability of navigating mazes which conveniently makes into the category of ‘micromouses’. This is a mobile, autonomous agent equipped with a wide sensor array and RF communication capabilities to reports its sensory status to a host computer in which an interpreter developed using Visual Basic 6.0 displays all the critical information of the sensors and maps the location of the robot, identifying objects and other obstacles in its path.

DOTBOT’s uses the power and versatility of Motorola’s 68HC11E9 microcontroller combined with Mekatronix MTJPro board to perform sensory interpretation and implement decision making behaviors. To sense the surrounding and be able to navigate in an environment, the robot has a number of sensors that makes interaction between the mobile agent and the surroundings possible. DOTBOT’s sensory array includes IR proximity detection, light level detection, sonar ranging, two-axis inclinometer, micro-switches for bump detection and magnetic shaft encoders for precise positioning.

DOTBOT’s main program was developed using ICC11 form Imagecraft which takes the flexibility and high-level ease of the C programming language to small 8-bit micro-controllers like the 68HC11 series with low overhead and seamlessly customization.

Introduction

In order to successfully negotiate a maze there are certain behaviors that a robot must possess. First, the robot must be able to avoid obstacles such as walls and other obstructions in its path, it has to make decisions at junctions, it has to remember some previous decisions in order to avoid redundant routes and it should be able to move precisely and relatively fast whenever possible.

DOTBOT incorporates all of the aforementioned behaviors and accomplishes such behaviors using a broad sensor array to retrieve data from the surroundings. For obstacle avoidance, he robot incorporates 5 IR proximity sensors for short range object detection, sonar for long range detection and mapping and finally bump switches as a last resource to prevent any equipment damage. In order move accurately and precisely, magnetic shaft encoder are used to provide precise turning and feedback to the microcontroller of its speed in order to make adjustments if necessary. A tilt/inclinometer sensor was implemented to work in conjunction with the RF modules to reset the path in case the robot is manually placed in a different location or in the unlikely event that the robot losses balance. If either situation occurs, the path is reset and the initial conditions Finally, a photo resistor is used to recognize the exit of the maze where a bright light will be located.

Integrated System

This robot uses the powerful and versatile 8-bit 68HC11E9 microcontroller from Motorola mounted on an MTJPro11 board from Mekatronix. This configuration provides the necessary characteristics for this project and an ample set of features which can also be upgraded if necessary via an external bus made available by an 8-pin header

The following is the feature set of the MTJPro – 68HC11 combination:

	· 32 kbytes of memory (SRAM)

· Total of 8 analog input channels with 3-pin (signal, power and ground) headers.

· Mode switch header, power switch header, reset switch header, battery power header, power-on LED header, battery charge header.

· Serial Communications Interface with 6-pin header (can connect to an MB2325).

	Input/Output Capabilities

	· 4 digital switch inputs with 2-pin headers (uses one of the analog channels).

· 5 servo controller outputs with 3-pin (signal, power and ground) headers.

· 3 digital inputs/input capture inputs.

· 8 bits of digital output capable of driving a total of 75ma continuous current. A single output can drive as much as 35ma of continuous current.

· 8 by 2 pin header array in series with the 8 digital outputs and 8 pull-up resistors.

· 4 memory-mapped digital input and 3 memory-mapped digital output enables with 7-pin header controlled by the R/W line and E-clock of the MC68HC11 processor.

· Stable, crystal-driven, 40Khz clock to modulate IR and sonar.

Furthermore, all of those features are comprised in a 2.5 by 2.5 inches board that reduces overhead in the platform and allows for a cleaner design and more room for upgrades and additional features.

Mobile Platform

The mobile platform is a custom design. It was designed using AutoCAD 2000 and cut on the T-Tech machine in the IMDL lab. The main considerations on the design were robustness and mobility. The top platform is a round shape large enough to accommodate the essential controls, antennas, servo and the IR emitters. Its overall dimensions are 23.7x24x22.5cm, conforming with the micromouse rules established for competition. The design is simple, robust and aesthetically pleasing.

[image: image12.png]"
ovecon

oW

w2

!
s
o
-
ooz

vee_iz

o
ol
JE—
Resto
E‘ a
i
L oo
L veemowr
a0
27
puse
-
wresanesy
E‘ @
~ %k

=

Ve etor
0.
o o
s
Puee
con com
&
etor- Votors
e e
s
Puse
cal i
&
vee_iz B
®
a0
o
Fuse
o Ve etor

Fi

[image: image13.jpg]

The bumpers are made from aluminum mounted on bronze L-braces and supported by 2 springs each. The curvature is produced by tension produced by 18-gauge cables attached to the brace and the sides of the bumper. On impact, the bumpers actuate microswitches mounted on the body with levers that extend to the bumper. This setup proved to be reliable during operation, although, at low speeds and hitting soft surfaces the operations becomes erratic and unpredictable. Figure 1 illustrate the mechanics and arrangement of the bumper design.

The support platform was painted black along with the sides and the top platform was given a shiny gold plated look accompanied by blue decorative touches. In the inside, 2 tiers hold the motors and electronics in place. The bottom tier supports the DC motors and bumper microswitches while the top tier accommodates the motor drivers, MTJPro and other electronic components. Space is extremely limited and access to the electronics is almost impossible without taking the top platform off. Design limitations were imposed by the micromouse size regulations, but maybe making a third tier or keep expanding up would have make the electronics more accessible since the is no limitation on height on micromouse contests. An AutoCAD plotted draft is provided in Appendix B.

Actuation

Traversing time is an important consideration in micromouse robots. Speed, acceleration and movement accuracy are important factors to consider when designing and actuation method. DOTBOT employs a twin DC ironless gearhead motor system to control movement and direction The design departs from the commonly used method of hacked servos. Originally, one of the decisive factors on this design choice was the thought of linear transition in speed which can be translated into predictability and added control. However, preliminary testing revealed that this paradigm was erroneous. The behavior resembles a logarithmic curve just as the hacked servos show (more information on the sensors section)

Another consideration was that DC gearhead motors provide more flexibility in terms of winding types and gearing that eventually translates into differences in speed and torque. Therefore, at the design stage, the perception of speed gains and added control out-weighted the simplicity of using hacked servos for actuation. As the project progressed some of the original notions were erroneous but in the end, the DC Ironless motors with built-in magnetic encoder chosen turned out to be a very good design choice.

The wheel arrangement used is a standard differential drive with two ball casters creating a diamond pattern. This arrangement provides stability and excellent turning radius. The rear ball caster is spring supported to accommodate the robot’s weigh and to prevent loss of traction in cases where undulations in the terrain may break the contact between the drive wheels and the ground.

[image: image14.jpg]-li*

The original design of the motor drivers used in DOTBOT are from Eric Anderson, a former IMDL student. Some of the features of this motor driver design includes: optoisolatotion, diode protection from voltage spikes, slow-blow fuse protection and high current DPDT relay (5A). This implementation differs slightly from the original design. For convenience, a quad-channel photodarlington output optoisolator from ISOCOM (PS2502-4) is used to drive up to 2 DC motors, independently channeling the pulse width modulated signal and the direction bit. To provide sensory feedback, it is recommended to use a bicolor LED with a 330 Ohm, ½ watt resistor across the motor to monitor the direction of the current across the relay. It also makes a good tool for debugging purposes.

Motor driver Schematics:

Figure 2: Schematic Diagram of Motor Drivers

Parts List:

	Parts Type
	Designator
	Part Description
	Quantity

	1K Resistor
	R1,2,3,4
	Resistor
	4

	330 Ohm Resistor
	
	Resistor
	2

	CON1
	J3,4
	Jumper
	1

	Diode
	D1,2
	1N4004
	2

	Fuse
	F1
	5A Slow Blow
	1

	Fuse Holder
	F1
	Fuse Holder
	1

	Header 2
	JP1,2,4
	2 Position
	1

	Header 3
	JP3
	3 Pin header
	1

	Optoisolator
	U1
	PS2502-4
	1 (for 2 motors)

	MOSFET N
	Q1
	IRF610
	1

	MOSFET N
	Q2
	MTP50N06V
	1

	Relay-DPDT
	R1
	5A DPDT
	1

	Bicolor LED
	
	Red/Green LED
	1

The jumper can be shorted to used a single power supply for the coil of the relay and the motors. The coil on the relay used in this motor driver (Radio Shack #275-249) is rated between 8-12Vdc, therefore, if the motors used are rated between that voltage, some real estate in the robot can be saved by sharing the battery for this operation.

Note: To conserve battery power, the motor should be wired in such a way that the forward direction corresponds to the normally closed position of the relay.

The 2 DC Ironless motors are from ApiMotion, formerly known as Portescap. These are high quality motors with built-in shaft encoders. The motor model is MDC-222-1060 and the gearhead model is S-24. The motors are rated at 12Vdc, have a no-load speed of 5900 rpm and a stall torque of 1.21 oz-in which is considerably increased to approximately 77 oz-in. of torque by using a gear head with ratio 64:1. Technical data sheets of the motor, gear-head and encoder is provided in Appendix C.

Power to these motor will be delivered by an 8-cell Ni-Cd pack rated 9.6Vdc at 900mAh.

Sensors – Overview

DOTBOT uses a variety of sensors to sense its surroundings. There are a total of 18 sensors including bumpers, IR’s, CDS cells , inclinometer, sonar, shaft encoders and a voltage level sensor. In order to accommodate the 11 sensors that make use of analog ports, an analog multiplexer board was made to expand the analog ports on the MTJPRo to a total of 15. The circuit is included in Appendix A

The bumper array consists of 4 micro-switches arranged on the front and back of the robot. Five IR’s are used as short range proximity sensors. These sensors are hacked for analog output and are manufactured by SHARP, model GPU58Y. Two are located on the front, one on each side for wall detection and one on the back. Photoresistors are also employed to observe changes in illumination level. Two CDS cells are located on the front of the robot pointing upwards 30 – 40 degrees. In addition, a voltage level indicator was added to denote the battery depletion during the robot’s operation. The following circuit illustrates the simple voltage divider used

[image: image1.png]R3

Vce

R1

330

R4

R2
150

150

C1

0.1u

1k

Signal Out

Figure 3: Voltage Sensor

This simple sensor proved to be very valuable during testing and operation. During testing, information stored in arrays was transferred safely before the batteries were drained and the information lost.

Bump Switches

Bump switches are the last resort to avoid damage to the robot. Four switches guard each side of the robot using contact switches with different resistances connected to the analog port PE0, making use of the resistors present in the MTJPro board, specifically designed for this purpose.

IR Sensors:

The IR sensors are SHARP GPU58Y IR sensors modulated at 40khz. The sensors are hacked for analog distance measurement to be used as a short range proximity detectors. Five IR sensors are mounted in the platform to provide a wide field of detection (front, side and back). Two IR’s on the front pointing outwards provide front view, one on each side provide wall following capabilities and one centered on the back provides obstacle detection when the robot is backing up.

Photoresistors

Two Cds cells mounted on the front pointing upward at 30 degrees provide illumination level detection to the robot. The main purpose of the photoresistors is to recognize success when a bright light awaits the robot at the end of the labyrinth. In addition, with the mapping capabilities of the robot and RF communications, future uses may include setting comfortable illumination levels for rooms were the robot is navigating or simply record the values for user deliberation. A voltage divider is used to measure the voltage across the photo cells.

The following diagram illustrates this simple principle:

[image: image2.png]<
Q
a

VA
kY

Signal

Photo Cells

‘M/

Vee x Photo cell
Photo Cell + R

Figure 4: CDS cells circuit

After some experimentation with resistor values, it was determined that R=47k(provide a wide range of values and acceptable sensibility to different levels of illumination and even more accuracy when dealing with subtle changes in normal ambient levels of light.

The remaining sensors will be explained in more detail with supporting information such as schematics, graphs and data tables.

[image: image15.jpg]

Inclinometer

The tilt sensor from Specton Sensors provides information on 2-axis with a range of +/- 60°. Its purpose is to work in conjunction with the RF module to keep a valid data feed between the host computer and the robot. If the robot is lifted from the ground or accidentally losses balance due to changes in terrain or slope, the current map will be reset until the robot recovers stability and traction. The alcohol based electrolyte in this sensor is very sensitive to the current and voltage applied. To insure proper operation the pins should be energized with an AC waveform of about +/- 5 VC and 1.5mA. To generate such waveform a signal conditioner was used. The CMOS SA40015 can generate up to four AC square waveforms at different frequencies. With different frequencies the output can be easily distinguished to measure changes in the incline angle in the x and y direction, energizing the different pins appropriately (convention used: ‘x’ is aligned with motor shaft and ‘y’ is perpendicular to the direction of forward motion). In order to use an analog port to interpret the output, another circuit is needed to offset the output signal to nominal values which the port can read (0-5v). The output from the SA40015 is +/- 1.5 VDC for each axis. That signal is then put through an op-amp configured as an input adder to generate the desired output. The range is then offset to an effective range of approximately 1.5 and 4.5 VDC. See the following circuit schematics:

[image: image3.png]Inclinometer Circuit

-
IO—OO—O—

= A
R4

45y

1

POT > 274k =

R =)

50k

s0k < POT

R ‘—‘ 1%

1 X out +-1.5v

¥ out +-1.5v

118k

C [krveino

GainAdj_25¢
GND_b

SPE020-A000

RT < 475k

5 %nnk

Vee
3.0VDC Valtage Offset Circuit

DC=5
V3 R12

l 0e=3 1.5k
V2

RI1

From SA10015 —
¢ 1.5

1

RI3

Vee

vic

RIS

Notes
C1..C4: Tantalum Type 198D, 10UF 12v
Short JP1 for Single Axis Operation

To Analog Port

Figure 5: Inclinometer Circuit

The inclinometer is also temperature compensated using a silicon temperature sensor between pins 20 and 23 (KTY81-110). The accurate operating temperature range is between –20 °C and +70 °C.

The readings were taken independently on each axis using 10 degree increments. The spectrum for each axis is similar and behave in a linear fashion. The empirical range for the x-axis is 139 units, a resolution of 1.15 units per degree. The y-axis range is 143 units, 1.19 units per degree. The data is shown below.

Readings table at 10 degree increments:

	Inclinometer
	Readings

	Angle
	X – Axis
	Y - Axis

	-60 Max Range
	74
	68

	-50
	82
	76

	-40
	93
	87

	-30
	101
	95

	-20
	119
	107

	-10
	132
	123

	0 - Level
	145
	136

	10
	158
	149

	20
	165
	161

	30
	173
	172

	40
	189
	185

	50
	201
	198

	+60 Max Range
	213
	211

Plotted Data:

[image: image4.wmf]Inclinometer readings

y = 11.797x + 59.346

y = 12.225x + 50.423

0

50

100

150

200

250

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Angle

Readings

X- Axis

Y-Axis

Linear (X- Axis)

Linear (Y-Axis)

Figure 6: Inclinometer Readings

Shaft Encoders

The purpose of the shaft encoders is to receive feedback on the rotation speed of the wheels to implement an accurate velocity control on the robot. Ultimately, the objective is to calculate the distance traveled based on the encoder readings at fix time intervals. The setup of closed loop control will prove that it is not necessary to use stepper motors to achieve accurate positioning and movement. Using conventional DC motors provides greater flexibility, easier setup and reduced power consumption compared to stepper motors.

The shaft encoders used are from ApiMotion, formerly known as Portescap. The F16 model is a simple to interface, low cost solution for measuring shaft rotation. The F16 is a magnetic encoder with a frequency resolution of 16 pulses per revolution. However, since a 64:1 gear-head is attached to the shaft, the resolution is increased by that factor to 1024 pulses per revolution. Each pulse is generated by a rising edge on a square waveform generated by the encoder. To interface the encoder to the 68HC11E9, ports PA0 and PA7 were used. PA7 can be configured as a 8-bit counter hardware pulse accumulator (PACTL) which facilitates the programming effort. PA0 is an input capture and interrupt TIC3 was configured on rising edges to count the right wheel pulses. In addition, since the high resolution on the encoder exceeds the range of the 8-bit counter several times per revolution, an overflow interrupt was configured on the pulse acc. (PAOVI). The ICC11 library developed is attached in Appendix D

The following readings illustrate the behavior of the encoder at different speeds and directions:

Shaft Encoder Readings:

	Speed
	Pulses Readings every 4100 msec.

	
	Left Wheel (PA7)
	Right Wheel(PA0)

	-90
	5211
	5239

	-80
	5151
	5170

	-70
	5079
	5053

	-60
	4989
	4995

	-50
	4864
	4859

	-40
	4692
	4706

	-30
	4444
	4465

	-20
	4045
	4062

	-10
	3295
	3300

	0
	0
	0

	10
	2549
	2549

	20
	3786
	3825

	30
	4268
	4326

	40
	4552
	4613

	50
	4747
	4793

	60
	4884
	4925

	70
	4981
	5023

	80
	5058
	5098

	90
	5120
	5159

	100
	5170
	5209

Plotted Data:

[image: image5.wmf]Shaft Encoder Count

0

1000

2000

3000

4000

5000

6000

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

Speed

Pulses

Left Wheel

Right Wheel

Figure 7: Shaft Encoder Readings

The readings demonstrate the aforementioned statement that using DC motors instead of hacked servo motors does not deliver a linear transition is speed as originally expected. Fortunately, both wheels appear to be performing evenly, the reading shows almost negligible difference among the two wheels making a bias offset almost unnecessary to produce straight motion. The magnetic shaft encoders perform with extraordinary accuracy and beyond expectations.

Sonar

The sonar is used as a ranging module to estimate distances beyond the limited range of the hacked IR’s. The schematics for the sonar receiver and transmitter were taken from the IMDL website and are shown below. The schematic for the transmitter was redrawn because the original transformer used in the circuit was replaced by a series of hex inverters (7404) in parallel. In addition, a 10k(resistor was added to pull down the signal on the crystal driven 40khz frequency generated by the MTJPro board used to drive the sonar.

[image: image6.png]e

At

oo T

uta

a4
s

a4
s

s

a4

an

a4
s,

a4

a4
s,

404

Transducer

Figure 8: Sonar Transmitter Schematic

Sonar Receiver Schematic:

[image: image7.png]+57
o +57

Input Capture

10K
10K-Ohm Pot é% +
4
- |
1 MAX266
15K NC—ZLPa TNy
B) Pa LPhj
HC—PA 0UTa BPh
5 /HP /WPa N/HP JAPh)
1.5 NC—pA THa FIZS
< fihia F3{2GRODID
Fla 31
veo-Eham 05C OUTI2GROTID
neZELE oot D)
veotie V-
ERD“NDEFS FORSFROUND
GROMDIEFa Fa
LK 0a UUTJ:?«N
E-Clock (2Mhz) ’—E LEh 0a I}Ull

+57

vee

GROUND

40Khz Transducer

Figure 9: Sonar Receiver Schematic

The receiver is connected to the input capture (IC2), port PA1. The transmitter is connected to the IR emitters latch, address 0x7000 and it is activated for 15 msec intervals. Furthermore, the echo receive line connected to PA1 is configured as input capture on rising edges, therefore, as soon a the echo line goes high, a flag is recorded Theoretically, the number of e-clock pulses from the ping time to the echo received represents the time of flight of the sound wave. This is the digital approach used to drive the sonar in DOTBOT’s. Other methods were tried, including experimenting with analog readings but the reliability and accuracy of the data does not begin to compare with the digital method. Although the range is somewhat inferior, the effective accuracy and sensibility at distance fewer than 3 feet proved vastly superior.

Problems with the sonar:

Some preliminary data recorded resulted useless since the range of transmitted wave appears to be wide enough to make the receiver flag go high as soon as the ping initiated. This resulted in under appreciated distances which corrupted the validity of the experiments. The solution was to insulate the sonar emitter in a way that the sound wave does not propagate in such a wide spectrum and positioning the receiver far enough so that no misreading can occur. This arrangement is shown in figure 9 and produced exceptional results. The only adverse side-effect was that the sonar maximum reach was reduced by as much as 40%. Fortunately, this trade-off does not affect the functionality of the sonar, the current accurate range is from 3in. to 8ft. which proved perfectly satisfactory in testing and small to relatively large areas.

	Distance
	SONAR

	
	Counter Reading

	3in.
	42

	6in.
	69

	1ft.
	109

	1.5ft
	141

	2ft.
	183

	4ft.
	353

	6ft.
	422

Sonar readings, plotted data:

[image: image8.wmf]Sonar Readings

y = 17.263x + 36.568

R

2

 = 0.978

0

50

100

150

200

250

300

350

400

450

500

0.25

1

1.75

2.5

3.25

4

4.75

5.5

Counter

Distance (ft.)

Sonar

Linear (Sonar)

Figure 11: Sonar Readings

RF Module

DOTBOT is equipped with RF modules from Linx Technologies and it is capable of full-duplex communications up to 5000bps. (2400 bauds was used). The transmitter and receiver used are from the LC series of compact, low cost single chip wireless solution. The simplicity of use, low cost and reliable performance makes them ideal for robotics projects. The Tx/Rx require no external components and are easy to interface with any microcontroller with a serial communications interface. The power consumption is low (7mA at continuous carrier and 1.5uA at stand-by) and they possess CMOS/TTL level input and output for data. The modules operate with direct interface logic level I/O and the form of modulation used is a standard OOK (on-off keying), also known as CPCA (Carrier-Present Carrier-Absent). The LC series of transmitters/receivers are unidirectional, therefore, the full duplex capability is achieved using different frequencies. The robot uses a frequency of 418Mhz to transmit and 315Mhz to receive signals from the host computer. Conversely, the host computer transmit at 315 Mhz and receives at 418Mhz. To convert the logic level I/O from the modules to UART compatible levels, the MB2325 bi-directional serial communications voltage converter from Mekatronix was used.

The following schematics show the simplicity of interfacing these self-contained modules:

[image: image9.png].

1

[rrn
2 Ne

o _6no

ez 7-42110)

L nes|
RF Mo
ono.s|

ROELCR

4 ne

5 Daan

ne)

525

ne

1_onp U oo |

R Mode

2 Dman e 7
TaFLCR

aoND GNDs

4 A/OND Fou 5

At

o

Figure 12: LC-Series connection schematics

On one end, the modules are connected to Motorola’s serial communications interface (SCI) and on the other, to Mekatronix’s MB2325 voltage converter board to the RS232 port on the host computer.

During testing some problem were identified regarding the transmission range. Without any attenuation pads as required by the FCC, the range was low and nowhere near the specified range of the modules. To improve the situation, a power supply filter using a 10(resistor in series with the supply followed by a 47(F tantalum capacitor from Vcc to ground was used to clean any noise coming from the power supply. In addition, RG-174 (50() coax cable was used as transmission line for the RF signal and a better ground plane was provided for the transmitters. These modification seemed to help considerably the transmission of radio waves into free space and transmission errors were greatly reduced. Nevertheless, the 300 feet range that the modules claim is a goal which is far away from being achieved.

Code / Behaviors

The code for DOTBOT was developed using ICC11 v5.0 and Visual Basic 6.0(SP4) was used to interpret the RF information sent by the robot. The demo-day ICC11 source can be found in Appendix D and the Visual Basic code in Appendix E.

The Robot first enter a RF test subroutine in which a data stream is sent to verify the communications status. Data is then transmitted to the robot to continue with the program. After th RF test completes successfully, a self calibration routine is invoked to test its sensors in its current position. An average on 3 reading will be the valid measure of the calibration procedure for each sensor.

The following code implementation is used on obstacle avoidance when an object is detected.

turn(0, (TURNFACTOR+(IRfrontrt-IROBSTACLE)*35),'r');

The turn radius is determined by the distance to the obstacle. The closer the object the sharper the turn. ‘Turn’ is a subroutine which accepts 3 values: the first is the turning angle and 0 means to disregard the angle so that an encoder value can be passed, -1 represents a random turn, the second value is the shaft encoder value to advance and the third value represents which wheel will rotate until the encoder value is reached. ‘TURNFACTOR’ is a constant with a standard turning encoder value, it serves as a baseline for turning radius.

Most of the code is modular so subroutines can be reused later with minimal effort. The shaft encoders interrupt routine was compiled as a separate library. The library calls are ‘left_vel()’ and ‘right_vel()’ to read the current encoder values. Every time the function is called, the values are reset to zero. For future IMDL students, the library can be used and once the hardware is completed, it will only be a matter of minutes to have the shaft encoders working. The library uses PA0 for the right wheel and PA7 for the left wheel. Because the hardware pulse accumulator is only 8-bits, overflows can become a problem, however, the library handles overflows with the PAOVI interrupt so interfacing high resolution encoders is not a problem. The function returns an unsigned integer from 0 to 65535.

Wall following is implemented randomly at the beginning of the program. It uses the two sides IR and the calibrate data to stay on course where calibration began. Afterwards, it looks for openings and the correct condition to perform precise turns aided by the shaft encoders. The opening is determined by changes in IR reading with respect to the average of the last 3 reading. The subroutines leantowall() and lookdoors() work together to implement this behavior.

Some other behaviors implemented are the shutdown behavior which starts when the inclination angle changes radically in which the robot will shut itself off and waits for a bumper signal to continue normal operation. Another behavior lets the robot realize it is out of clutter environment like mazes and starts a random obstacle avoidance behavior announcing its decision by a 360 degree turn. Other feedback signals is provided by a piezzo buzzer connected to PA3 configured as output compare (OC5).

The following figures illustrates the main screen developed in Visual Basic which displays all relevant information from the robot. The top left window is where the path drafting takes places and the bottom portion is where all sensory information is displayed along with calibration reading. On the right side of the screen it is the voltage meter which displays DOTBOT’s main power supply level, powering all electronics, sonar servo and sensors. There is a separate power supply for the motors and relay coils which does not have a voltage sensor and therefore not present in the reading. The top right section displays the raw information received by the host computer and also provides feedback on Tx/Rx status.

Visual Basic captured screen:

[image: image10.png]- Sensor Readings

Infra-Rred Proximity Detection

Front Left Front Right
101

101
Right

DS Calls
llurnination Level

Inclinometer - Dual

s Readings

- Calibration Values—

o

L=

Reset

s [OO]

[=[ofx]

Serial Port Data

On-Sereen Sensars

¥ IR Sensors

ot Left Front Right

RS ¥ Bumpers
Callsion w7 |92 oe
@ Sanar

Detector FrantLet Front Fight

106 92 ¥ CDS Cells

Lt Righ F Inclinometer

T s W Shaft Encaders

Sanar T [136
Position P

Sonar START
DENED LS 31 [63 - 1
Left__Pight T 7 Lot R e—

Er—— Tcimometer

[ShatEncoder Readings g gy 132 [i27

fAS) Leftwhesl [F F Rightwheel (1099 e T

Figure 13: Visual Basic Main Communications console

Conclusion

DOTBOT’s was an outstanding learning experience and a wonderful introduction into the field of Robotics. The experiences learned with this project will without doubt be extremely valuable on any subsequent robotics endeavors.

DOTBOT’s possesses a wide range and broad quantity of sensors which create a lot of potential and flexibility in terms of capabilities but increases the complexity of integration and cohesion in its applications. If I were to redo the project I would probably opt for fewer kinds of sensors and try to get the most out of each implementation. One of the first thing you hear in this course is “try to achieve simplicity” which are wise words that we do not always take into account. Simple is better, especially when one has no background in the field; sometimes experience can teach reinforce the concept of simplicity.

Nevertheless, DOTBOT’s sensor array works flawlessly and the radio frequency modules from Linx Technologies proved to be a fabulous addition to the project. The code is not as mature as I would like it to be but any successful coding effort takes time, patience and testing, three factor which scarce during the scope of this class. Overall, DOTBOT’s accomplished its predefined objectives and the platform and sensor array work beyond expectations. Some of the sensors are underutilized but they can certainly become critical once the coding is completed. In addition, they give breathing room for expansion if more behaviors are to be incorporated.

One advise for future IMDLers’, start early and be prepared to dedicate time and effort to an exciting and intellectually rewarding project, otherwise, this course may not be suitable for you.

Documentation

Jones, Joseph L., et al. Mobile Robots - Inspiration to Implementation, Second Ed.

A. K. Peters, Natick, MA. 1999 .

Martin, Fred. The 6.270 Robots Builders Guide.

MIT Media Lab, Cambridge, MA. 1992.

Van Sickle, Ted. Programming Microcontrollers in C.

Technology Publishing, Eagle Rock, VA. 1994

Useful Resources:

Intelligent Machines Design Lab Webpage: http://www.mil.ufl.edu/imdl/
Mekatronix Webpage: http://www.mekatronix.com
ApiMotion DC motors: http://www.apimotion.com
Spectron Sensors: http://www.spectronsensors.com
Suppliers and Distributors:

· Radio Shack

· Jameco

· Newark Electronics

· All Electronics Corporation

Appendix A: Analog Multiplexer Circuit

[image: image11.png]P4HCA051

=
3 1] sasloq o 1
I —
S — A
L — i
| — 1
: sasloq &
saslog ox
-y 4 peloq M &
L 6 2
I 1
0]
o
aice
Yaguess ooy~ i
i 1
1)
Per :) Era Digtal o
Peo
Pos N B Dl oot 1
Pes a3 I Digil gt 2
o 19 ot
Pey & Digtal Dt
Pe2 r A Digial Dt 4
Pel q Digtal Dt 5
Po
n

v

Appendix B: DOTBOT’s AutoCAD drawing

Appendix C: Portescap Data Sheets

Appendix D: ICC11 Demo-day Source Code

/**

* DOTBOT Main Program Code - Compiler: ICC11 v5 for Motorola 68HC11E9 *

* Programmer: Diego O Terzano
Email:doter@email.com

 *

* Date: August 3, 2000

 *

 * Version 1.2

 *

* Features: Maze Navigation, RF Communication, Sonar Routines
 *

*

Shaft Encoders, Self calibration, etc.
 *

 ***/

/*************************** Includes ********************************/

#include <dotbase.h>

/***/

/**************************** Defines ********************************/

#define TRUE 1

#define FALSE 0

#define RF_USE TRUE

#define SONARSERVO 0

#define RSERVO 680

#define CSERVO 2610

#define LSERVO 4420

#define RTURN 1280

#define LTURN 1280

#define BIAS 3

#define SFACTOR 70

#define FFACTOR 100

#define TURNFACTOR 750 /* Encoder Value: Reference */

#define IROBSTACLE 124

#define SNOBSTACLE 75

#define DOORBIAS 5

#define CURVES 100

#define ENCODERTH 4096

#define FRONTBUMP (BUMPER> 135)

#define BACKBUMP (BUMPER> 15)&&(BUMPER< 65)

#define IR_FRONTLF analog(7)

#define IR_FRONTRT
analog(4)

#define IR_LEFT

analog(5)

#define IR_RIGHT
analog(3)

#define IR_BACK

analog(2)

#define MUX_PORT analog(6)

#define MUX *(unsigned char *)(0x6000)

#define INFRARED *(unsigned char *)(0x7000)

/*************** RF Definitions ******************/

#define GO_ON 0x26 /* & char to continue */

#define TEST 0x30 /* 0 to Test RF */

#define BEEP 0x31 /* 1 for Beep codes */

#define RFOK 0x32 /* 2 for OK - PASS TEST */

/***/

/************************** Prototypes *******************************/

void initialize(void);

void calibrate(void);

void init_sonar(void);

void init_buzzer(void);

void init_RF(void);

void TestRF(void);

void SendRF(void);

void obsavoid(void);

void sensordata(void);

void bumpcollision(void);

void motordrive(void);

void leantowall(void);

void lookdoors(void);

void avoidobstacles(void);

void gofast(void);

void pare(void);

void buzz(unsigned int);

void back(unsigned int);

void gofw(unsigned int , unsigned int);

void turn(int , unsigned int , char);

int sonardist(void);

/***/

/*************************** Globals *********************************/

int IRfrontlf;

int IRfrontrt;

int IRleft;

int IRright;

int IRback;

int CDSleft;

int CDSright;

int Tiltx;

int Tilty;

int TH_IRfrontlf;

int TH_IRfrontrt;

int TH_IRleft;

int TH_IRright;

int TH_CDSleft;

int TH_CDSright;

int TH_Tiltx;

int TH_Tilty;

int TH_Lsonar;

int TH_Rsonar;

int IRwall;

int IRaway;

int IRwallTH;

int IRawayTH;

int ServP;

int VoltSensor;

int lspeed;

int rspeed;

int Lfactor;

int Rfactor;

int leftspeed;

int rightspeed;

int SonarDistance;

int wallf;

int obstacle;

int oncourse;

int doorp;

int arrayp;

int ireadl[3];

int ireadr[3];

unsigned int Pcycles;

unsigned int Lenc;

unsigned int Renc;

int MuxChan[8] = { 0x14,0x34,0x54,0x74,0x94,0xB4,0xD0,0xF4 };

// char clear[]= "\x1b\x5B\x32\x4A\x04"; /* clear screen */

// char place[]= "\x1b[1;1H";
 /* Home cursor */

/***/

/***************************** Main **********************************/

void main(void)

{

 unsigned rand;

 initialize();

 rand=TCNT;

// wallf=(rand & 0x0001) ? 1: 0; /* Select Random Wall Behavior: 1 (left) */

wallf=0;

 START; /* Hit bumper to start RF Test */

 buzz(100);

 TestRF();

 START; /* Hit bumper to start Calibration */

 buzz(100);

 calibrate();

 buzz(100);

 START; /* Hit bumper to start the program */

 wait(500);

 gofast();

 while(1)

 {

 ++Pcycles;

 sensordata();

 bumpcollision();

 leantowall();

 lookdoors();

 avoidobstacles();

 motordrive();

 if (Pcycles>4800) Pcycles=0;

 }

}

void sensordata(void)

{

 IRfrontlf = IR_FRONTLF;

 IRfrontrt = IR_FRONTRT;

 IRleft = IR_LEFT;

 IRright = IR_RIGHT;

 IRback = IR_BACK;

 MUX = MuxChan[2];

 Tiltx = MUX_PORT;

 MUX = MuxChan[4];

 Tilty = MUX_PORT;

 MUX = MuxChan[7];

 CDSleft = MUX_PORT;

 MUX = MuxChan[0];

 CDSright = MUX_PORT;

 MUX = MuxChan[1];

 VoltSensor = MUX_PORT;

 if(((Tiltx>(TH_Tiltx+20))||(Tiltx<(TH_Tiltx-20)))||((Tilty>(TH_Tilty+20))||(Tilty<(TH_Tilty-20))))

 { pare(); START; gofast(); }

 /* Sonar Routine, mainly for mapping, Send Position and Sonar data on random interval */

 if(Pcycles> 3500)

{ int rand, iloop; rand=TCNT; ServP=(rand & 0x0001) ? RSERVO: LSERVO;

SERVOS_ON;

 for(iloop=CSERVO; iloop< ServP; iloop+=10)

 { servo(SONARSERVO, iloop); wait(5); }

SonarDistance = sonardist();

write("xxSS:"); put_int(SonarDistance); put_char(44);

write("SV:"); put_int(ServP); put_char(44);

servo(SONARSERVO, CSERVO); wait(80);

SERVOS_OFF; }

}

void bumpcollision(void)

{

 int Bumpval;

 Bumpval = BUMPER;

 /* Bumper Values: Back Both=57, BR=42, BL=21, Front Both=148, FR=124, FL=75 */

 if FRONTBUMP { back(320); turn(180,0, 'n'); }

 else if((BUMPER> 70)&&(BUMPER< 80)) { back(360); turn(0, TURNFACTOR+450, 'l'); }

 else if((BUMPER> 120)&&(BUMPER< 130)) { back(430); turn(0, TURNFACTOR+290, 'r'); }

 else if(BACKBUMP) { lspeed=TOP_SPEED; rspeed=TOP_SPEED; }

 if FRONTBUMP { back(350); turn(180,0, 'n'); }

 if((BUMPER> 70)&&(Bumpval< 10)) { back(500); turn(-1,0,'n'); }

 /* Send Bumper Value on Collision to SCI */

 if(Bumpval> 10) { write("xxBP:"); put_int(Bumpval); put_char(44); put_char(59); }

}

void back(unsigned int tback)

{

 unsigned int vl, vr;

 pare();

 Lenc+=left_vel(); Renc+=right_vel();

 motordot(LMOTOR, -TOP_SPEED);

 motordot(RMOTOR, -TOP_SPEED);

 wait(tback);

 vl=left_vel(); vr=right_vel();

 /* Send Reverse info to SCI */

 write("xxLD:"); put_int(-TOP_SPEED); put_char(44);

 write("RD:"); put_int(-TOP_SPEED); put_char(44);

 write("SL:"); put_int(vl); put_char(44);

 write("SR:"); put_int(vr); put_char(44);

 put_char(59); put_char(59); /* Send End Transmission Character (;) */

}

void leantowall(void)

{

 int factor1, factor2, iloop, avgirl=0, avgirr=0;

 doorp=FALSE;

 for(iloop=0; iloop<3; ++iloop) { avgirl+=ireadl[iloop]; avgirr+=ireadr[iloop]; }

 avgirl=(avgirl/3); avgirr=(avgirr/3);
/* First run, data from Calibration */

 if((IRright<(avgirr-DOORBIAS))&&(IRleft<(avgirl-DOORBIAS))) { doorp=2; buzz(30); }

 else if(IRright<(avgirr-DOORBIAS)) { doorp=1; buzz(30); }

 else if(IRleft< (avgirl-DOORBIAS)) { doorp=-1; buzz(30); }

 else if((IRright<(avgirr-DOORBIAS))&&(IRleft>120)) { doorp=FALSE; gofw(400,400); pare(); turn(90, 0,'n'); gofw(660,660); }

 else if((IRleft<(avgirl-DOORBIAS))&&(IRright>120)) { doorp=FALSE; gofw(400,400); pare(); turn(-90, 0,'n'); gofw(660,660); }

 if((avgirr<110)&&(avgirl<110)&&(IRfrontrt<105)&&(IRfrontlf<110)&&(IRback<100)) obsavoid();

 /* Put new reading in array to update average when no door is present */

 if(!doorp)

 { if(arrayp>2) arrayp=0;

 ireadl[arrayp]=IRleft; ireadr[arrayp]=IRright; ++arrayp;}

}

void lookdoors(void)

{

 unsigned rand;

 int iloop;

 rand=TCNT;

 SonarDistance=-1;

 if((IRaway<IRawayTH-DOORBIAS)&&(oncourse)) /* If a door is found on opposite side, send sensor data */

if(wallf==1) { write("xxRR:"); put_int(IRaway); put_char(44); put_char(59); }

else { write("xxLL:"); put_int(IRaway); put_char(44); put_char(59); }

 if(doorp)

 {

 if(wallf==1)

 {
buzz(20);

 if((doorp==-1)||(doorp==2)) { gofw(800,800); pare(); turn(-90, 0,'n'); gofw(800,800); }

else if((doorp==1)&&(IRfrontlf>120)) { gofw(800,800); pare(); turn(90, 0,'n'); gofw(800,800); }

 }

else

 { buzz(20);

if((doorp==1)||(doorp==2)) { gofw(800,800); pare(); turn(90, 0,'n'); gofw(660,660); }

else if((doorp==-1)&&(IRfrontrt>120)) { gofw(800,800); pare(); turn(-90, 0,'n'); gofw(660,660); }

 }

 }

}

void turn(int angle, unsigned int encoder, char wheel)

{

/* (+) Angles clockwise dir, -1 Random Turn, 0 to accept Encoder Input: l(left),r(right),n(NULL value) */

 unsigned rand;

 unsigned int vl, vr, lse=0, rse=0;

 rand = TCNT;

 if(angle==-1) angle=(rand & 0x0001) ? 90 : -90;

 switch(angle)

 {

 case 0:

if (wheel=='l') { lse=encoder; lspeed=TOP_SPEED; rspeed=((TOP_SPEED)*10/100); }

else { rse=encoder; lspeed=((TOP_SPEED)*10/100); rspeed=TOP_SPEED; }

break;

 case 90:

lse=RTURN;

lspeed = TOP_SPEED;

rspeed = STOP;

break;

 case -90:

rse=LTURN;

lspeed = STOP;

rspeed = TOP_SPEED;

break;

 case 180:

pare();

lse=RTURN; rse=LTURN;

if(rand & 0x0001) { lspeed = TOP_SPEED; rspeed = -TOP_SPEED; }

else { lspeed = -TOP_SPEED; rspeed = TOP_SPEED; }

break;

 }

 /* Use shaft Encoders for precise turns */

 Lenc+=left_vel(); Renc+=right_vel();

 motordot(LMOTOR, lspeed);

 motordot(RMOTOR, rspeed);

 for(vl=0, vr=0; ((vl<lse)||(vr<rse)); vl+=left_vel(), vr+=right_vel()) wait(25);

 motordot(LMOTOR, TOP_SPEED);

 motordot(RMOTOR, TOP_SPEED);

 /* Send When change heading to SCI */

 write("xxLD:"); put_int(lspeed); put_char(44);

 write("RD:"); put_int(rspeed); put_char(44);

 write("SL:"); put_int(vl); put_char(44);

 write("SR:"); put_int(vr); put_char(44);

 put_char(59); put_char(59); /* Send End Transmission Character (;) */

 sensordata();

 /* Resume Normal Movement */

 Lfactor=FFACTOR; Rfactor=FFACTOR;

 lspeed=TOP_SPEED; rspeed=TOP_SPEED;

}

void avoidobstacles(void) /* Obstacle definition, clokwise: on order of importance */

{

 obstacle=0x00;

 if((IRright>IROBSTACLE)&&(IRright>TH_IRright+BIAS)) obstacle|=0x02;

 if((IRleft>IROBSTACLE)&&(IRleft>TH_IRleft+BIAS)) obstacle|=0x04;

 if(IRback>IROBSTACLE) obstacle|=0x01;

 if(IRfrontlf>IROBSTACLE) obstacle|=0x10;

 if(IRfrontrt>IROBSTACLE) obstacle|=0x08;

 if((IRfrontlf>IROBSTACLE)&&(IRfrontrt>IROBSTACLE)&&(IRright>IROBSTACLE-2*BIAS)&&(IRleft>IROBSTACLE-2*BIAS)) obstacle=0xFF;

 if(obstacle)

{

buzz(20);

Lfactor=FFACTOR;

Rfactor=FFACTOR;

if(obstacle>=0x1E) { back(200); turn(180,0,'n'); } /* Obstacle in Front and sides */

else if(obstacle==0x18) turn(-1,0,'n'); /* Object in front only, turn random */

else if((obstacle> 0x01)&&(obstacle< 0x04)) turn(0, (TURNFACTOR+(IRright-IROBSTACLE)*25),'r'); /* turn(0, (TURNFACTOR+(IRright-IROBSTACLE)*12),'r');
 Obs. on Right */

else if((obstacle> 0x02)&&(obstacle< 0x08)) turn(0, (TURNFACTOR+(IRleft-IROBSTACLE)*25),'l'); /* turn(0, (TURNFACTOR+(IRleft-IROBSTACLE)*12),'l'); Obs. on Left */

else if((obstacle>= 0x08)&&(obstacle< 0x10)) turn(0, (TURNFACTOR+(IRfrontrt-IROBSTACLE)*35),'r');/* { turn(0, (TURNFACTOR+(IRfrontrt-IROBSTACLE)*5),'r'); }
 Obs. on Front Right */

else if((obstacle>= 0x10)&&(obstacle< 0x18)) turn(0, (TURNFACTOR+(IRfrontlf-IROBSTACLE)*35),'l');/* { turn(0, (TURNFACTOR+(IRfrontlf-IROBSTACLE)*5),'l'); } Obs. on Front Left */

else if(obstacle==0x01) { lspeed=TOP_SPEED; rspeed=TOP_SPEED; }

}

}

void gofast(void)

{

 motordot(LMOTOR, TOP_SPEED);

 motordot(RMOTOR, TOP_SPEED);

}

void motordrive(void)

{

 int lsp,rsp;

 rsp=(Rfactor*rspeed/100); lsp=(Lfactor*lspeed/100);

 if(lsp!=leftspeed) motordot(LMOTOR, lsp);

 if(rsp!=rightspeed) motordot(RMOTOR, rsp);

 leftspeed=lsp;

 rightspeed=rsp;

 lspeed=TOP_SPEED; rspeed=TOP_SPEED; Lfactor=FFACTOR; Rfactor=FFACTOR;

 Lenc+=left_vel(); Renc+=right_vel();

 if((Lenc> ENCODERTH)||(Renc> ENCODERTH)) SendRF(); /* Send Data if encoder interval is met */

}

void gofw(unsigned int sencleft, unsigned int sencright) /* Advance specific # of Encoder Pulses */

{

unsigned int vl1, vr1;

 /* Use shaft Encoders for precise Control */

 Lenc+=left_vel(); Renc+=right_vel();

 motordot(LMOTOR, TOP_SPEED);

 motordot(RMOTOR, TOP_SPEED);

 for(vl1=0, vr1=0; ((vl1<sencleft)||(vr1<sencright)); vl1+=left_vel(), vr1+=right_vel()) wait(25);

 Lenc+=vl1; Renc+=vr1;

}

void pare(void) /* Stop ROBOT in order to change direction */

{

 motordot(LMOTOR, STOP);

 motordot(RMOTOR, STOP);

 wait(150);

}

int sonardist(void)

{

 int counter = 0;

 int stimer = 0;

 CLEAR_FLAG(TFLG1, 0x02); /* Clear Echo receive flag of IC2 (PA1) */

 INFRARED = 0xFF; /* Send Ping, Sonar transducer connected to 0x80 on IRE latch*/

 while(counter < 800) /* 800 pulses is equivalent to 15 msec. of ping, approx. */

 {

 /* Sufficient for ranges less than 6 feet.

 */

 ++counter;

 if((TFLG1 & 0x02) != 0)

 {

 stimer = counter;

 break;

 }

 else

 stimer = -1;

 }

 INFRARED = 0x1F;

 /* Stop Ping */

 return stimer;

 /* Return number of counted pulses, sound wave time of flight */

}

void init_buzzer(void)

{

 SET_BIT(PACTL, 0x08);
/* Configure PA3 for output */

}

void init_RF(void)

/* Set appropriate baud rate for RF communication */

{

 CLEAR_BIT(SPCR, 0x20);

 BAUD = 0x32;

/* 0x33 is 1200, 0x32 is 2400 (*) , 0x31 is 4800 baud */

 SCCR2 = 0x0C;

}

void init_sonar(void)

{

 SET_BIT(TCTL2, 0x04);
/* Set input capture IC2 on rising edges */

 CLEAR_BIT(TCTL2, 0x08);
/* to the corresponding line PA1 (IC2) */

}

void buzz(unsigned int tmsec)

{

 SET_BIT(PORTA, 0x08); /* Set PA3 for output */

 wait(tmsec); /* Buzz time */

 CLEAR_BIT(PORTA, 0x08); /* Stop buzzer */

}

void initialize(void)

{

 init_analog();

 init_clocktjp();

 init_motordot();

 init_shaftenc();

 init_servotjp();

 init_sonar();

 init_buzzer();

 if (RF_USE)

 init_RF();

else

 init_serial();

 INFRARED = 0x1F; /* Turn the 5 IR emiters ON */

 SERVOS_ON;

}

void calibrate(void)

{

 int i, aloop;

 for(i=1; i<4; i++)

 {

 TH_IRfrontlf = ((TH_IRfrontlf*(i-1)) + IR_FRONTLF)/i;

 TH_IRfrontrt = ((TH_IRfrontrt*(i-1)) + IR_FRONTRT)/i;

 TH_IRleft = ((TH_IRleft*(i-1)) + IR_LEFT)/i;

 TH_IRright = ((TH_IRright*(i-1)) + IR_RIGHT)/i;

 MUX = MuxChan[2];

 TH_Tiltx = ((TH_Tiltx*(i-1)) + MUX_PORT)/i;

 MUX = MuxChan[4];

 TH_Tilty = ((TH_Tilty*(i-1)) + MUX_PORT)/i;

 MUX = MuxChan[7];

 TH_CDSleft = ((TH_CDSleft*(i-1)) + MUX_PORT)/i;

 MUX = MuxChan[0];

 TH_CDSright = ((TH_CDSright*(i-1)) + MUX_PORT)/i;

 MUX = MuxChan[1];

 VoltSensor = ((VoltSensor*(i-1)) + MUX_PORT)/i;

 wait(100);

 }

 for(aloop=CSERVO; aloop< LSERVO; aloop+=10) /*Go Left direction*/

 servo(SONARSERVO, aloop);

 wait(1000);

 TH_Lsonar = sonardist();

 wait (500);

 for(aloop=LSERVO; aloop> RSERVO; aloop-=10) /*Go Right direction*/

servo(SONARSERVO, aloop);

 wait(1500);

 TH_Rsonar = sonardist();

 servo(SONARSERVO, CSERVO);

 buzz(100);

 wait(500);

 /* Send Calibration Data to serial port */

 write("xxFL:"); put_int(TH_IRfrontlf); put_char(44);

 write("FR:"); put_int(TH_IRfrontrt); put_char(44);

 write("LL:"); put_int(TH_IRleft); put_char(44);

 write("RR:"); put_int(TH_IRright); put_char(44);

 write("TX:"); put_int(TH_Tiltx); put_char(44);

 write("TY:"); put_int(TH_Tilty); put_char(44);

 write("CL:"); put_int(TH_CDSleft); put_char(44);

 write("CR:"); put_int(TH_CDSright); put_char(44);

 write("SS:"); put_int(TH_Lsonar); put_char(44);

 write("SV:"); put_int(TH_Rsonar); put_char(44);

 write("VS:"); put_int(VoltSensor); put_char(44);

 put_char(99); put_char(64); /* Send code for calibration det. (c@) */

 if(TH_IRleft<95 && wallf==1) TH_IRleft=100;

 if(TH_IRright<95 && wallf!=1) TH_IRright=100;

 if(TH_IRleft>126) TH_IRleft=TH_IRleft-BIAS;

 if(TH_IRright>126) TH_IRright=TH_IRright-BIAS;

 if(TH_Lsonar<SNOBSTACLE) TH_Lsonar=SNOBSTACLE;

 if(TH_Rsonar<SNOBSTACLE) TH_Rsonar=SNOBSTACLE;

 for(aloop=0; aloop<3; ++aloop)

 { ireadl[aloop]=TH_IRleft; ireadr[aloop]=TH_IRright; }

 Lfactor=FFACTOR; Rfactor=FFACTOR;

 lspeed=TOP_SPEED; rspeed=TOP_SPEED;

 oncourse=TRUE;

 SERVOS_OFF;

}

void TestRF(void)

{

 int rx=0;

 wait(350);

 while ((rx != GO_ON)||(BUMPER<15))

 {

 rx = getchar();

 switch (rx)

 {

 case TEST:

write("xxBegin Transmission:");

write("This is DOTBOT communicating. This is a test_ of DOTBOT's communication capabilities._");

write("Receiving data at 418Mhz, 2400 baud. **");

break;

 case BEEP:

 write(" xxBEEP...!!");

 buzz(300);

break;

 case RFOK:

write("xxTest completed successfully._ RF is READY for FULL DUPLEX operation._");

write("<End Transmission>>");

break;

 }

 }

 buzz(30);

}

void SendRF(void)

{

 /* Send Sensors Data to SCI */

 write("xxFL:"); put_int(IRfrontlf); put_char(44);

 write("FR:"); put_int(IRfrontrt); put_char(44);

 write("LL:"); put_int(IRleft); put_char(44);

 write("RR:"); put_int(IRright); put_char(44);

 write("BB:"); put_int(IRback); put_char(44);

 write("TX:"); put_int(Tiltx); put_char(44);

 write("TY:"); put_int(Tilty); put_char(44);

 write("CL:"); put_int(CDSleft); put_char(44);

 write("CR:"); put_int(CDSright); put_char(44);

 write("VS:"); put_int(VoltSensor); put_char(44);

 write("SL:"); put_int(Lenc); put_char(44);

 write("SR:"); put_int(Renc); put_char(44);

 write("LD:"); put_int(leftspeed); put_char(44);

 write("RD:"); put_int(rightspeed); put_char(44);

 put_char(59); put_char(59); /* Send End Transmission Character (;) */

 Lenc=0; Renc=0;

/* Initialize interval, reset encoder variables */

}

void obsavoid(void)

{

 turn(180,0,'n'); buzz(150); turn(180,0,'n'); buzz(150);

 gofast();

 while(1)

 {

 sensordata();

 bumpcollision();

 avoidobstacles();

 motordrive();

 }

}

Dotbase.h Include file

/**

 * Title dotbase.h
 *

 * Programmer Diego O Terzano *

 * Date July 26, 2000

 * Version 1.1 with servo drivers
 *

 *
 *

 * Description:

 *

 * Collects include files and general constants into one file. *

 **/

/*************************** Includes ********************************/

#include <analog.h>

#include <clocktjp.h>

#include <motordot.h>

#include <sencdot.h>

#include <servotjp.h>

#include <serialtp.h>

#include <isrdot.h> /* IMPORTANT! Modify when a new isr is used */

#include <vectors.h>

/************************ End of Includes ****************************/

/**************************** Constants ******************************/

#define LMOTOR
0

#define RMOTOR
1

#define TOP_SPEED 96

#define STOP 0

#define BUMPER analog(0)

#define START
while(BUMPER< 70)

/* Enable OC4 interrupt and all servo operations */

#define SERVOS_ON SET_BIT(TMSK1, 0x10)

/*Disable OC4 interrupt: Stops all servo holding torques, useful for energy savings*/

#define SERVOS_OFF CLEAR_BIT(TMSK1, 0x10)

/************************ End of Constants ****************************/

Shaft Encoders Library: sencdot.c

/**

* DOTBOT Shaft Encoder Code

* Programmer: Diego Terzano Email: doter@email.com

* Date: July 15, 2000

* Version 1.1 (Revised PA overflows, Remove float casts)

* Resources: PA7, PA0 (IC3)

***/

/**************************** Includes **********************************/

#include <hc11.h>

#include <mil.h>

/**/

/**************************** Constants *********************************/

#define leftshaftenc_hand PAV_isr

#define rightshaftenc_hand TIC3_isr

/**/

/*************************** Prototypes *********************************/

#pragma interrupt_handler PAV_isr /* Left wheel shaft encoder handler */

#pragma interrupt_handler TIC3_isr /* Right wheel shaft encoder handler */

void init_shaftenc(void);

void rightshaftenc_hand(void);

void leftshaftenc_hand(void);

unsigned int left_vel(void);

unsigned int right_vel(void);

/**/

/***************************** Globals **********************************/

unsigned int right_clicks; /* Count variable for right wheel */

unsigned int left_clicks; /* Count variable for left wheel */

/**/

void init_shaftenc(void)

{

 INTR_OFF();

 /*install interrupt handler on IC3 */

 *((void (**)())0xffea) = rightshaftenc_hand;

 PACTL = 0x50; /* Enable Pulse acc as input on rising edges (01010000) */

 PACNT = 0; /* Start with 0 velocity */

 SET_BIT(TMSK2, 0x20); /* Enable PAOVI Interrupt */

 CLEAR_BIT(TCTL2, 0x02); /* Set IC3 interrupts on rising edges */

 SET_BIT(TCTL2, 0x01); /* Set IC3 interrupts on rising edges */

 SET_BIT(TMSK1, 0x01); /* Enable IC3 Interrupt */

 INTR_ON(); /* Enable Interrupts in General */

}

unsigned int left_vel() /* Left velocity from PA7, pulse accumulator */

{

 unsigned int velocity;

 velocity = left_clicks + PACNT;

 left_clicks = 0; /* Reset variable from interrupt handler */

 PACNT = 0; /* Reset register for the next call */

 return(velocity);

}

unsigned int right_vel() /* Right velocity form PA0 using interrupts */

{

 unsigned int velocity;

 velocity = right_clicks;

 right_clicks = 0; /* Reset variable from interrupt handler for the next call */

 return(velocity);

}

void rightshaftenc_hand(void)

{

 ++right_clicks; /* Increment variable when interrupt occurs */

 CLEAR_FLAG(TFLG1, 0x01); /* Clear IC3I flag */

}

void leftshaftenc_hand(void)

{

 left_clicks += 256; /* Increment 8-bits of the PA on every overflow interrupt */

 PACNT = 0; /* Set the 8-bit counter to 0 */

 CLEAR_FLAG(TFLG2, 0x20); /* Clear PAOVF flag */

}

Shaft Encoders Library: sencdot.h

#ifndef _SENCDOT_H

#define _SENCDOT_H

/**

* DOTBOT Shaft Encoder Code Library

* Programmer: Diego Terzano

* Date: July 15, 2000

* Version 1.1 (added PAV_isr)

* Resources: PA7, PA0 (IC3)

***/

/**************************** Includes **********************************/

#include <hc11.h>

#include <mil.h>

/**/

/*************************** Prototypes *********************************/

#pragma interrupt_handler PAV_isr /* Left wheel shaft encoder handler */

#pragma interrupt_handler TIC3_isr /* Right wheel shaft encoder handler */

void init_shaftenc(void);

void rightshaftenc_hand(void);

void leftshaftenc_hand(void);

unsigned int left_vel(void);

unsigned int right_vel(void);

/**/

#endif

Appendix E: Visual Basic 6.0(SP4) RF Comm. Software

“frmwelcome.frm”

Welcome Screen

Option Explicit

Private Sub Form_Load()

Dim i As Integer

lblTitle = "DOTBOT's RF Communication Program"

lblintro = "This program lets you communicate with the robot. " & vbCr _

 & vbCr & "DOTBOT is capable of full duplex communication at 315Mhz and 418.02Mhz"

lblSpeed = "RF Communication data rate: 2400 bauds/s"

For i = 1 To 2

 cmbCOM.AddItem Choose(i, "COM1", "COM2")

Next

If PortNum = 1 And PortErr Then

 cmbCOM.ListIndex = 1

 PortErr = False

 Else

 cmbCOM.ListIndex = 0

 PortErr = False

End If

End Sub

Private Sub cmdCont_Click()

PortNum = (cmbCOM.ListIndex + 1)

Unload Me

frmMain.Show

End Sub

Private Sub Form_Unload(Cancel As Integer)

Unload Me

End Sub

“frmtest.frm”

RF Testing Form

Option Explicit

Private Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Dim RecvTest As String

Dim SoundText As Boolean

Dim Once As Boolean

Private Sub cmdCont_Click()

MSComm1.Output = Chr(38) 'Send & to continue (0x26)

MSComm1.InBufferCount = 0

Unload Me

frmMain.SetFocus

End Sub

Private Sub cmdMtest_Click()

MSComm1.Output = Chr(48) ' Send (0) to start Testing

End Sub

Private Sub Form_Load()

With MSComm1

 .CommPort = PortNum 'Sets Port Number

 .Settings = "2400,n,8,1" 'Sets 2400 Baud, No Parity, 8bits, and 1 stop bit

 .InputLen = 1 'Sets How many characters to fetch on Recieve

 .DTREnable = False 'Disables DTR Protocol

 .RTSEnable = False 'Disables RTS Protocol

 .InBufferSize = 512

 .OutBufferSize = 8

 .RThreshold = 1 'Specifies How many bytes must be recieved before firing OnCOMM()

 .SThreshold = 1 'Specifies How many bytes must be transmited before firing OnCoMM()

 .InBufferCount = 0 ' Empty the input buffer

End With

If Not MSComm1.PortOpen Then MSComm1.PortOpen = True

SoundText = True

Once = False

MSComm1.Output = Chr(48) ' Send (0) to start Testing

End Sub

Private Sub Form_Unload(Cancel As Integer)

If (MSComm1.PortOpen) Then MSComm1.PortOpen = False

End Sub

Private Sub MSComm1_OnComm()

On Error GoTo Err1

Select Case MSComm1.CommEvent

Case comEvReceive

 RecvTest = RecvTest & MSComm1.Input

 If (Right$(RecvTest, 1) = Chr(42)) And Not Once Then ' Expect (*) to continue

 Once = True

 DoEvents

 SoundTextsub

 BeepRoutine

 End If

 If (Right$(RecvTest, 1) = Chr(33)) And Not Once Then ' Expect (!) to continue

 Once = True

 DoEvents

 SoundTextsub

 RFOK

 End If

 If (Right$(RecvTest, 1) = Chr(62)) And Not Once Then ' Expect (>) to continue

 Once = True

 DoEvents

 SoundTextsub

 End If

End Select

Exit Sub

Err1:

MsgBox "A Connection error has been detected. Please check your I/O and try again.", vbCritical, "DOTBOT's Error Code 13"

End Sub

Sub BeepRoutine()

Once = False

MSComm1.Output = Chr(49) ' Send (1) for Beep codes

End Sub

Sub RFOK()

Once = False

SoundText = True

lblTest.Caption = lblTest.Caption & vbCrLf

MSComm1.Output = Chr(50) ' Send (2) for OK

End Sub

Private Sub SoundTextsub() 'Generate a sound for each character displayed

Dim i As Integer, strRecv As String * 1

Call FilterRx(RecvTest) 'Filter Data

For i = 1 To Len(RecvTest)

 strRecv = Mid$(RecvTest, i, 1)

 lblTest.Caption = lblTest.Caption & strRecv

 If ((strRecv = Chr(58)) Or (strRecv = Chr(95))) Then lblTest.Caption = lblTest.Caption & vbCrLf ' (Char : and _ used for CrLf)

 If SoundText Then

 If (i Mod 2) = 0 Then PlaySound "c:\dotbot\type.wav", 0&, &H1

 WaitTime (60)

 End If

Next

If Not SoundText Then WaitTime (1500)

MSComm1.InBufferCount = 0 ' Empty the input buffer

RecvTest = Empty ' Clear buffer for next transmission

SoundText = False

lblTest.Caption = lblTest.Caption & vbCrLf

End Sub

“frmMain.frm”

Main Console Form

Option Explicit

Private Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Dim BatteryLevel(1 To 3) As Integer

Dim RecvComm As String

Dim BatteryAvg As Integer

Dim cycleArr As Integer

Dim LastPx As Long, LastPy As Long

Dim Lencoder As Long, Rencoder As Long

Dim AngAdjust As Integer

Dim Once As Boolean

Dim StartX As Long, StartY As Long ' Map Starting Position

Const FullCharge As Integer = 164 ' Using a 6-Pack (7.2v), Cells: 1.2v Ni-Cd 1000mAh

Const DefaultInterval As Integer = 300 ' Defualt Update interval for On-screen updates

Const EncoderTH As Long = 4096 ' Encoder Threshold for scale purposes

Const Turn90L As Long = 1280 ' Shaft Encoder Reading for 90 degree turn Left

Const Turn90R As Long = 1280 ' Shaft Encoder Reading for 90 degree turn Right

Private Sub chkBumper_Click()

If chkBumper Then

 shbFL.Visible = True

 shbFR.Visible = True

 shbBL.Visible = True

 shbBR.Visible = True

 lblBumpval.Enabled = True

 lblBumpval.Font.Strikethrough = False

 Else

 shbFL.Visible = False

 shbFR.Visible = False

 shbBL.Visible = False

 shbBR.Visible = False

 lblBumpval.Enabled = False

 lblBumpval.Font.Strikethrough = True

End If

End Sub

Private Sub chkCDS_Click()

If chkCDS Then

 lblCDSLr.Enabled = True

 lblCDSRr.Enabled = True

 lblCDSLr.Font.Strikethrough = False

 lblCDSRr.Font.Strikethrough = False

Else

 lblCDSLr.Enabled = False

 lblCDSRr.Enabled = False

 lblCDSLr.Font.Strikethrough = True

 lblCDSRr.Font.Strikethrough = True

End If

End Sub

Private Sub chkInc_Click()

If chkInc Then

 lblTXr.Enabled = True

 lblTYr.Enabled = True

 lblTXr.Font.Strikethrough = False

 lblTYr.Font.Strikethrough = False

Else

 lblTXr.Enabled = False

 lblTYr.Enabled = False

 lblTXr.Font.Strikethrough = True

 lblTYr.Font.Strikethrough = True

End If

End Sub

Private Sub chkIR_Click()

If chkIR Then

 lblFL.Enabled = True

 lblFR.Enabled = True

 lblLL.Enabled = True

 lblRR.Enabled = True

 lblBck.Enabled = True

 lblFL.Font.Strikethrough = False

 lblFR.Font.Strikethrough = False

 lblLL.Font.Strikethrough = False

 lblRR.Font.Strikethrough = False

 lblBck.Font.Strikethrough = False

Else

 lblFL.Enabled = False

 lblFR.Enabled = False

 lblLL.Enabled = False

 lblRR.Enabled = False

 lblBck.Enabled = False

 lblFL.Font.Strikethrough = True

 lblFR.Font.Strikethrough = True

 lblLL.Font.Strikethrough = True

 lblRR.Font.Strikethrough = True

 lblBck.Font.Strikethrough = True

End If

End Sub

Private Sub chkSenc_Click()

If chkSenc Then

 lblLWr.Enabled = True

 lblRWr.Enabled = True

 lblDir.Enabled = True

 lblLWr.Font.Strikethrough = False

 lblRWr.Font.Strikethrough = False

 lblDir.Font.Strikethrough = False

Else

 lblLWr.Enabled = False

 lblRWr.Enabled = False

 lblDir.Enabled = False

 lblLWr.Font.Strikethrough = True

 lblRWr.Font.Strikethrough = True

 lblDir.Font.Strikethrough = True

End If

End Sub

Private Sub chkSonar_Click()

Dim i As Integer

If chkSonar Then

 lblSS.Enabled = True

 lblSS.Font.Strikethrough = False

 For i = 0 To 1

 shSSfr(i).Visible = True

 shSSLL(i).Visible = True

 shSSRR(i).Visible = True

 Next

Else

 lblSS.Enabled = False

 lblSS.Font.Strikethrough = True

 For i = 0 To 1

 shSSfr(i).Visible = False

 shSSLL(i).Visible = False

 shSSRR(i).Visible = False

 Next

End If

End Sub

Private Sub cmdAll_Click()

If cmdAll.Caption = "ON" Then

 chkIR.Value = 1

 chkBumper.Value = 1

 chkSonar.Value = 1

 chkSenc.Value = 1

 chkCDS.Value = 1

 chkInc.Value = 1

 cmdAll.Caption = "OFF"

Else

 chkIR.Value = 0

 chkBumper.Value = 0

 chkSonar.Value = 0

 chkSenc.Value = 0

 chkCDS.Value = 0

 chkInc.Value = 0

 cmdAll.Caption = "ON"

End If

End Sub

Private Sub cmdFailSafe_Click()

MSCommRF.Output = Chr(38) 'Send & to calibrate in case test fails (0x26)

End Sub

Private Sub cmdQuit_Click()

Dim ans As Integer

ans = MsgBox("Are you sure you want to Quit?", vbQuestion + vbYesNo, "Quit?")

If ans = vbNo Then Exit Sub

If (MSCommRF.PortOpen) Then MSCommRF.PortOpen = False

Set frmMain = Nothing

Unload Me

End Sub

Private Sub cmdReset_Click()

picMap.Cls

StartX = picMap.ScaleWidth / 2

StartY = picMap.ScaleHeight - 300

picDOT.Move StartX, StartY

LastPx = StartX: LastPy = StartY

picMap.CurrentX = StartX

picMap.CurrentY = StartY

LastPx = 0: LastPy = 0

End Sub

Private Sub cmdReturn_Click()

Unload Me

frmWelcome.Show

End Sub

Private Sub cmdStart_Click()

If (MSCommRF.PortOpen) Then MSCommRF.PortOpen = False

frmTest.Show

End Sub

Private Sub cmdUpdInt_Click()

On Error GoTo ErrInt

Dim ans As String

ans = InputBox("Please enter the update interval (in msec) to refresh the on screen sensor data (Default = " & DefaultInterval & "msec.)", "Update Interval", DefaultInterval)

Select Case ans

 Case Val(ans)

 Timer1.Interval = Val(ans)

 lblInterval = Timer1.Interval & " msec"

 Case "on", "ON", "On"

 Call TimerON

 Case "off", "OFF", "Off"

 Call TimerOFF

 Case ""

 Case Else

 MsgBox "Not a valid entry, no change has been made", vbInformation, "Information"

End Select

Exit Sub

ErrInt:

MsgBox "Subscript out of range (<= 65535), no change has been made to the update interval", vbCritical, "ERROR"

End Sub

Private Sub Form_Activate()

On Error GoTo Comm_Err

If Not MSCommRF.PortOpen Then MSCommRF.PortOpen = True 'Opens Port

Comm_Err:

End Sub

Public Sub Form_Load()

On Error GoTo Comm_Err

With MSCommRF

 .CommPort = PortNum 'Sets Port Number

 .Settings = "2400,n,8,1" 'Sets 2400 Baud, No Parity, 8bits, and 1 stop bit

 .InputLen = 1 'Sets How many characters to fetch on Recieve

 .DTREnable = False 'Disables DTR Protocol

 .RTSEnable = False 'Disables RTS Protocol

 .InBufferSize = 512

 .OutBufferSize = 8

 .RThreshold = 1 'Specifies How many bytes must be recieved before firing OnCOMM()

 .SThreshold = 1 'Specifies How many bytes must be transmited before firing OnCoMM()

 .InBufferCount = 0 ' Empty the input buffer

End With

If Not MSCommRF.PortOpen Then MSCommRF.PortOpen = True

lblPortOpen.Caption = "< COM Port " & PortNum & " is OPEN >"

If MSCommRF.PortOpen Then

 lblPortOpen.Visible = True

 lblPortClose.Visible = False

Else

 lblPortOpen.Visible = True

 lblPortClose.Visible = False

End If

FillSensortlArray

Once = False

cycleArr = 0

Timer1.Interval = DefaultInterval

Call TimerOFF 'Start with Timer Off, after calibration it becomes enabled.

' Setup Map: Starting conditions

picMap.Cls

StartX = picMap.ScaleWidth / 2

StartY = picMap.ScaleHeight - 300

picDOT.Move StartX, StartY

LastPx = StartX: LastPy = StartY

picMap.CurrentX = StartX

picMap.CurrentY = StartY

SHtxON.Move (picTx.ScaleWidth / 2) - (SHtxON.Width / 2), (picTx.ScaleHeight / 2) - (SHtxON.Width / 2)

SHtxON.FillColor = vbRed

SHrxON.Move (picRx.ScaleWidth / 2) - (SHrxON.Width / 2), (picRx.ScaleHeight / 2) - (SHrxON.Width / 2)

SHrxON.FillColor = vbRed

Exit Sub

Comm_Err:

MsgBox "COM port " & PortNum & " seems to be unavailable. Please return to the welcome screen and select another port", vbCritical, "COM Port Error!"

If (MSCommRF.PortOpen) Then MSCommRF.PortOpen = False

lblPortOpen.Visible = False

lblPortClose.Caption = "< COM " & PortNum & " ERROR >"

lblPortClose.Visible = True

PortErr = True

End Sub

Private Sub Form_Deactivate()

If (MSCommRF.PortOpen) Then MSCommRF.PortOpen = False

End Sub

Private Sub Form_Unload(Cancel As Integer)

PlaySound "c:\dotbot\exit.wav", 0&, &H2000

If (MSCommRF.PortOpen) Then MSCommRF.PortOpen = False

Unload Me

End Sub

Private Sub MSCommRF_OnComm()

On Error GoTo Err1

Select Case MSCommRF.CommEvent

Case comEvReceive

 SHrxON.FillColor = vbGreen

 SHtxON.Refresh

 RecvComm = RecvComm & MSCommRF.Input

 lblDataIN.Caption = RecvComm

 'DoEvents

 ' Filter and Decode on every (;) received

 If ((Right$(RecvComm, 1) = Chr(59) And (Len(RecvComm) > 3)) And Not Once) Then

 Once = True

 DoEvents

 RecvData = RecvComm: RecvComm = Empty

 Call DecodeValues

 End If

 If Right$(RecvComm, 2) = "c@" Then Call Calibration

End Select

Exit Sub

Err1:

MsgBox "A Connection error has been detected. Please check your I/O and try again.", vbCritical, "DOTBOT's Error Code 13"

End Sub

Sub DecodeValues()

On Error GoTo ErrDecode

Dim i As Integer, cnt1 As Integer, StEnd As Integer, StCode As String

Dim strArray() As String, Match As Boolean

cnt1 = 0

Call FilterRx(RecvData) ' Filter data stream

'Further filtering, Remove ; from the stream

If Asc(Right$(RecvData, 1)) = 59 Then RecvData = Left$(RecvData, Len(RecvData) - 1)

Once = False

Do

StEnd = InStr(1, RecvData, Chr(44)) ' Get position of the comma to separate group (code:value)

StCode = Left$(RecvData, StEnd - 1) ' Separate groups of data from the received stream

strArray = mySplit(StCode, Chr(58)) ' Split (code:value) into an array. Array: (0)Code,(1)Value

Match = False

RecvData = Right$(RecvData, Len(RecvData) - StEnd) ' Remove string in the new array for next call

cnt1 = cnt1 + 1 ' Counter for failsafe exit loop

 For i = 1 To UBound(SensorTl)

 If strArray(0) = SensorTl(i) Then

 Select Case i

 Case 1 To UBound(SensorVal)

 If (Val(strArray(1)) > 255 Or Val(strArray(1)) < -1) Then

 strArray(1) = -1

 ErrCnt = ErrCnt + 1

 End If

 SensorVal(i) = Val(strArray(1))

 Case (UBound(SensorVal) + 1) To UBound(SensorTl)

 If (Val(strArray(1)) > 65535 Or Val(strArray(1)) < -100) Then

 strArray(1) = 0

 ErrCnt = ErrCnt + 1

 End If

 ShaftEnc(i - UBound(SensorVal)) = Val(strArray(1))

 End Select

 Match = True

 Exit For

 End If

 Next

'If there were no recognized sensor codes, the increment transmission errors

If Not Match Then ErrCnt = ErrCnt + 1

Loop Until (Len(RecvData) < 3 Or cnt1 > UBound(SensorTl))

MSCommRF.InBufferCount = 0 ' Empty the input buffer

RecvData = Empty ' Clear buffer for next transmission

Exit Sub

ErrDecode:

ErrCnt = ErrCnt + 1

RecvData = Empty ' Clear buffer for next transmission

lblDataIN.Caption = ""

End Sub

Sub Calibration()

Dim i As Integer, Heading As Integer

RecvData = RecvComm: RecvComm = Empty

RecvData = Left$(RecvData, Len(RecvData) - 2)

Call DecodeValues

lblIRFL.Caption = SensorVal(1)

lblIRFR.Caption = SensorVal(2)

lblIRLL.Caption = SensorVal(3)

lblIRRR.Caption = SensorVal(4)

lblTxc.Caption = SensorVal(6)

lblTyc.Caption = SensorVal(7)

lblCDSL.Caption = SensorVal(8)

lblCDSR.Caption = SensorVal(9)

lblsnL.Caption = SensorVal(10)

lblsnR.Caption = SensorVal(11)

For i = 1 To UBound(BatteryLevel)

 BatteryLevel(i) = SensorVal(12)

Next

 BatteryAvg = SensorVal(12)

 Call BatteryGaugeBar

Call TimerON ' Turn Timer ON and begin displaying sensor data

End Sub

Private Sub Timer1_Timer()

Dim i As Integer, sgnchange As Integer

Dim Distx As Long, Disty As Long, Distance As Long

Dim Sin1 As Double, Cos1 As Double

Dim ChangeDir As Boolean

 cycleArr = cycleArr + 1

 lblErrors.Caption = ErrCnt

 SHrxON.FillColor = vbRed

 SHrxON.BorderColor = vbBlack

 SHtxON.Refresh

 'Sensor Data

 lblFL.Caption = SensorVal(1)

 lblFR.Caption = SensorVal(2)

 lblLL.Caption = SensorVal(3)

 lblRR.Caption = SensorVal(4)

 lblBck.Caption = SensorVal(5)

 lblTXr.Caption = SensorVal(6)

 lblTYr.Caption = SensorVal(7)

 lblCDSLr.Caption = SensorVal(8)

 lblCDSRr.Caption = SensorVal(9)

 lblSS.Caption = SensorVal(10)

 lblBumpval.Caption = SensorVal(13)

 Select Case SensorVal(11) ' Sonar Servo Position

 Case 2 'Front

 For i = 0 To 1

 shSSfr(i).Visible = True

 shSSLL(i).Visible = False

 shSSRR(i).Visible = False

 Next

 Case 1 'left

 For i = 0 To 1

 shSSfr(i).Visible = False

 shSSLL(i).Visible = True

 shSSRR(i).Visible = False

 Next

 Case 3 'Right

 For i = 0 To 1

 shSSfr(i).Visible = False

 shSSLL(i).Visible = False

 shSSRR(i).Visible = True

 Next

 End Select

 Select Case SensorVal(13) 'Bumper Collision Detector

 Case 0 To 10 ' No Bump

 shbFL.FillColor = &HFFFFFF

 shbFR.FillColor = &HFFFFFF

 shbBL.FillColor = &HFFFFFF

 shbBR.FillColor = &HFFFFFF

 Case 146 To 152 'Both Front

 shbFL.FillColor = &HFF&

 shbFR.FillColor = &HFF&

 shbBL.FillColor = &HFFFFFF

 shbBR.FillColor = &HFFFFFF

 Case 122 To 128 'Front Right

 shbFL.FillColor = &HFFFFFF

 shbFR.FillColor = &HFF&

 shbBL.FillColor = &HFFFFFF

 shbBR.FillColor = &HFFFFFF

 Case 73 To 79 'Front Left

 shbFL.FillColor = &HFF&

 shbFR.FillColor = &HFFFFFF

 shbBL.FillColor = &HFFFFFF

 shbBR.FillColor = &HFFFFFF

 Case 55 To 60 'Both Back

 shbFL.FillColor = &HFFFFFF

 shbFR.FillColor = &HFFFFFF

 shbBL.FillColor = &HFF&

 shbBR.FillColor = &HFF&

 Case 18 To 23 'Back Left

 shbFL.FillColor = &HFFFFFF

 shbFR.FillColor = &HFFFFFF

 shbBL.FillColor = &HFF&

 shbBR.FillColor = &HFFFFFF

 Case 40 To 44 'Back Right

 shbFL.FillColor = &HFFFFFF

 shbFR.FillColor = &HFFFFFF

 shbBL.FillColor = &HFFFFFF

 shbBR.FillColor = &HFF&

 End Select

 'Shaft Encoders Data

 lblLWr.Caption = ShaftEnc(1)

 lblRWr.Caption = ShaftEnc(2)

 If ShaftEnc(3) > 0 Then

 lblDir.Caption = "F "

 ElseIf ShaftEnc(3) <= 0 Then

 lblDir.Caption = "R "

 Else: lblDir.Caption = "O "

 End If

 If ShaftEnc(4) > 0 Then

 lblDir.Caption = lblDir.Caption & "F"

 ElseIf ShaftEnc(3) < 0 Then

 lblDir.Caption = lblDir.Caption & "R"

 Else: lblDir.Caption = lblDir.Caption & "O"

 End If

 'picMap.Line -(200, 500)

' Battery Gauge-Bar Routine

 BatteryLevel(cycleArr) = SensorVal(12)

 For i = 1 To UBound(BatteryLevel)

 BatteryAvg = ((BatteryAvg * (i - 1)) + BatteryLevel(i)) / i

 Next

 Call BatteryGaugeBar

 If cycleArr = UBound(BatteryLevel) Then cycleArr = 0

' Map DOTBOT's movements

 If (((AlmostEqual(ShaftEnc(1), Lencoder) = False Or AlmostEqual(ShaftEnc(2), Rencoder) = False) And (ShaftEnc(1) < 800 Or ShaftEnc(2) < 800))) Or (Sgn(ShaftEnc(3)) <> Sgn(ShaftEnc(4))) Then ChangeDir = True

 If Sgn(ShaftEnc(3)) <> Sgn(ShaftEnc(4)) Then

 sgnchange = -1

 Else

 sgnchange = 1

 End If

' Heading Angle: (\) Int Division, 4 times faster than (/)

 If ChangeDir Then

 Heading = AngAdjust + ((ShaftEnc(1) * 90 \ Turn90L) - (ShaftEnc(2) * 90 \ Turn90R) * sgnchange)

 Sin1 = Sin(Heading)

 Cos1 = Cos(Heading)

 AngAdjust = Cuadrant(Sin1, Cos1)

 End If

 If ShaftEnc(1) > 800 And ShaftEnc(2) > 800 Then

 Distance = ((ShaftEnc(1) + ShaftEnc(2)) \ 2) * (((picMap.ScaleHeight + picMap.ScaleWidth) / 2) * 0.01 / EncoderTH)

 Else

 Distance = 0

 End If

 If (Sgn(ShaftEnc(3)) = -1 And Sgn(ShaftEnc(4)) = -1) Then Distance = -Distance

 Distx = Distance * Sin(Heading)

 Disty = -Distance * Cos(Heading)

 picDOT.Move (LastPx + Distx), (LastPy + Disty)

 LastPx = LastPx + Distx: LastPy = LastPy + Disty

 Lencoder = ShaftEnc(1): Rencoder = ShaftEnc(2)

End Sub

Sub TimerON()

Timer1.Enabled = True

lblInterval = Timer1.Interval & " msec"

shIntOFF.Visible = False

shIntON.Visible = True

End Sub

Sub TimerOFF()

Timer1.Enabled = False

lblInterval = Timer1.Interval & " msec"

shIntOFF.Visible = True

shIntON.Visible = False

End Sub

Sub BatteryGaugeBar()

 GaugeBarBattery.ColorDark = vbGreen

 If BatteryAvg <= (FullCharge * 0.85) Then GaugeBarBattery.ColorDark = vbYellow

 If BatteryAvg <= (FullCharge * 0.7) Then GaugeBarBattery.ColorDark = vbRed

 BatteryAvg = (BatteryAvg * 100 / FullCharge)

 GaugeBarBattery.SetProgress (BatteryAvg)

End Sub

“mdlMain.bas”

Main Module Code

Option Explicit

Declare Function GetTickCount Lib "kernel32" () As Long

Public PortNum As Byte

Public PortErr As Boolean

Public SensorVal() As Integer

Public SensorTl() As String * 2

Public RecvData As String

Public ShaftEnc(1 To 4) As Long

Public ErrCnt As Integer

Public Heading As Integer

Public Calibrate As Boolean

Const Nsensors As Byte = 17 ' Total Number of Sensors

Sub Main()

 Dim oFormW As frmWelcome

 Set oFormW = New frmWelcome

 oFormW.Show vbModal

 Set oFormW = Nothing

End Sub

Sub FillSensortlArray() ' Sensor Codes

ReDim SensorTl(1 To Nsensors)

ReDim SensorVal(1 To (Nsensors - UBound(ShaftEnc)))

SensorTl(1) = "FL" 'Front Left IR

SensorTl(2) = "FR" 'Front Right IR

SensorTl(3) = "LL" 'Left IR

SensorTl(4) = "RR" 'Right IR

SensorTl(5) = "BB" 'Back IR

SensorTl(6) = "TX" 'Tilt x

SensorTl(7) = "TY" 'Tilt y

SensorTl(8) = "CL" 'CDS Left

SensorTl(9) = "CR" 'CDS Right

SensorTl(10) = "SS" 'Sonar Reading (Left Sonar in Calibration)

SensorTl(11) = "SV" 'Servo Position (Right Sonar in Calibration)

SensorTl(12) = "VS" 'Voltage Sensor

SensorTl(13) = "BP" 'Bumper Value

SensorTl(14) = "SL" 'Shaft Encoder Left

SensorTl(15) = "SR" 'Shaft Encoder Right

SensorTl(16) = "LD" 'Left Wheel direction

SensorTl(17) = "RD" 'Right Wheel direction

End Sub

Public Sub WaitTime(ByVal pt As Long)

 Dim t As Long

 t = GetTickCount + pt

 Do

 DoEvents

 Loop Until t < GetTickCount

End Sub

Public Sub FilterRx(RxData As String)

Dim i As Long, strData As String * 1

For i = 1 To Len(RxData)

 strData = Mid$(RxData, i, 1)

 'if the string is xx then filter, cut the first characters (garbage)

 If ((strData = Mid$(RxData, i + 1, 1)) And (Asc(strData) = 120)) Then

 RxData = Right$(RxData, Len(RxData) - i - 1)

 Exit Sub

 End If

Next

End Sub

Function mySplit(strToSplt As String, strSplitOn As String) As String()

 Dim ip1 As Long, ip2 As Long

 Dim strArray() As String

 Dim iCount As Long

 ip1 = 1: ip2 = 1

 Do

 ip2 = InStr(ip1, strToSplt, strSplitOn)

 If ip2 = 0 Then

 ip2 = Len(strToSplt) + 1

 End If

 If iCount Mod 100 = 0 Then

 ReDim Preserve strArray(iCount + 100) As String

 End If

 strArray(iCount) = Mid$(strToSplt, ip1, ip2 - ip1)

 ip1 = ip2 + Len(strSplitOn)

 iCount = iCount + 1

 Loop Until ip2 >= Len(strToSplt)

 ReDim Preserve strArray(iCount - 1)

 mySplit = strArray

End Function

Function myInStrRev(strStringToSearch As String, strFind As String, _

 Optional iStart As Long) As Long

 Dim ip1 As Long, ip2 As Long

 Dim iLenStringToSearch As Long

 'get the length of the string

 iLenStringToSearch = Len(strStringToSearch)

 'if the start is 0 then set the start to the length

 'og the string

 If iStart = 0 Then

 iStart = iLenStringToSearch

 End If

 ip1 = 1

 Do

 ip2 = InStr(ip1, strStringToSearch, strFind)

 If (ip2 > 0) And (ip2 < iStart) Then

 'if ip2 is not zero and it is less than the

 'place to start searching then set the function

 'to return that position

 myInStrRev = ip2

 ElseIf ip2 = 0 Then

 ip2 = iLenStringToSearch

 End If

 ip1 = ip2 + 1

 Loop Until ip1 >= iStart

End Function

Function AlmostEqual(x, y) As Boolean

 AlmostEqual = (Abs(x - y) <= 400)

End Function

Function Cuadrant(x1 As Double, x2 As Double) As Integer

 If Sgn(x1) = 1 And Sgn(x2) >= 0 Then Cuadrant = Heading

 If Sgn(x1) = -1 And Sgn(x2) >= 0 Then Cuadrant = -Heading

End Function

Figure 1: Bumper Illustration

Figure 10: Sonar Arrangement

PAGE
2

_1025317179.xls
Chart1

		-90		-90

		-80		-80

		-70		-70

		-60		-60

		-50		-50

		-40		-40

		-30		-30

		-20		-20

		-10		-10

		0		0

		10		10

		20		20

		30		30

		40		40

		50		50

		60		60

		70		70

		80		80

		90		90

		100		100

Left Wheel

Right Wheel

Speed

Pulses

Shaft Encoder Count

5211

5239

5151

5170

5079

5053

4989

4995

4864

4859

4692

4706

4444

4465

4045

4062

3295

3300

0

0

2549

2549

3786

3825

4268

4326

4552

4613

4747

4793

4884

4925

4981

5023

5058

5098

5120

5159

5170

5209

Tilt

		Inclinometer		Readings

		Angle		X - Axis		Y - Axis

		-60 Max Range		74		68		-60

		-50		82		76		-50

		-40		93		87		-40

		-30		101		95		-30

		-20		119		107		-20

		-10		132		123		-10

		0 - Level		145		136		0

		10		158		149		10

		20		165		161		20

		30		173		172		30

		40		189		185		40

		50		201		198		50

		+60 Max Range		213		211		60

Tilt

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

X- Axis

Y-Axis

Angle

Readings

Inclinometer readings

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sonar

		

Shaft Enc

		

		Speed		Pulses Readings every 4100 msec.

				Left Wheel		Right Wheel

		-90		5211		5239

		-80		5151		5170

		-70		5079		5053

		-60		4989		4995

		-50		4864		4859

		-40		4692		4706

		-30		4444		4465

		-20		4045		4062

		-10		3295		3300

		0		0		0

		10		2549		2549

		20		3786		3825

		30		4268		4326

		40		4552		4613

		50		4747		4793

		60		4884		4925

		70		4981		5023

		80		5058		5098

		90		5120		5159

		100		5170		5209

Shaft Enc

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Left Wheel

Right Wheel

Speed

Pulses

Shaft Encoder Count

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

_1027266305.xls
Chart1

		0.25

		0.5

		0.75

		1

		1.25

		1.5

		1.75

		2

		2.25

		2.5

		2.75

		3

		3.25

		3.5

		3.75

		4

		4.25

		4.5

		4.75

		5

		5.25

		5.5

		5.75

		6

Sonar

Counter

Distance (ft.)

Sonar Readings

42

59

109

141

183

353

422

Tilt

		Inclinometer		Readings

		Angle		X - Axis		Y - Axis

		-60 Max Range		74		68		-60

		-50		82		76		-50

		-40		93		87		-40

		-30		101		95		-30

		-20		119		107		-20

		-10		132		123		-10

		0 - Level		145		136		0

		10		158		149		10

		20		165		161		20

		30		173		172		30

		40		189		185		40

		50		201		198		50

		+60 Max Range		213		211		60

Tilt

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

X- Axis

Y-Axis

Angle

Readings

Inclinometer readings

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sonar

		Distance		SONAR

				Counter Reading

		3in.		42		0.25		0.25		42

		6in.		69		0.5		0.5		59

		1ft.		109		1		0.75

		1.5ft		141		1.5		1		109

		2ft.		183		2		1.25

		4ft.		353		5		1.5		141

		6ft.		422		7		1.75

								2		183

								2.25

								2.5

								2.75

								3

								3.25

								3.5

								3.75

								4		353

								4.25

								4.5

								4.75

								5

								5.25

								5.5

								5.75

								6		422

Sonar

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

hhh

Sonar

Counter

Distance (ft.)

Sonar Readings

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Shaft Enc

		

		Speed		Pulses Readings every 4100 msec.

				Left Wheel		Right Wheel

		-90		5211		5239

		-80		5151		5170

		-70		5079		5053

		-60		4989		4995

		-50		4864		4859

		-40		4692		4706

		-30		4444		4465

		-20		4045		4062

		-10		3295		3300

		0		0		0

		10		2549		2549

		20		3786		3825

		30		4268		4326

		40		4552		4613

		50		4747		4793

		60		4884		4925

		70		4981		5023

		80		5058		5098

		90		5120		5159

		100		5170		5209

Shaft Enc

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Left Wheel

Right Wheel

Speed

Pulses

Shaft Encoder Count

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

_1025317042.xls
Chart3

		-60		-60

		-50		-50

		-40		-40

		-30		-30

		-20		-20

		-10		-10

		0		0

		10		10

		20		20

		30		30

		40		40

		50		50

		60		60

X- Axis

Y-Axis

Angle

Readings

Inclinometer readings

74

68

82

76

93

87

101

95

119

107

132

123

145

136

158

149

165

161

173

172

189

185

201

198

213

211

Tilt

		Inclinometer		Readings

		Angle		X - Axis		Y - Axis

		-60 Max Range		74		68		-60

		-50		82		76		-50

		-40		93		87		-40

		-30		101		95		-30

		-20		119		107		-20

		-10		132		123		-10

		0 - Level		145		136		0

		10		158		149		10

		20		165		161		20

		30		173		172		30

		40		189		185		40

		50		201		198		50

		+60 Max Range		213		211		60

Tilt

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

X- Axis

Y-Axis

Angle

Readings

Inclinometer readings

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sonar

		

Shaft Enc

		

