
ROVER I
Mapping and Navigation Robot

Jose Nunez

IMDL 5666

8/8/00

2

Table of Contents

Abstract...1
Executive Summary..2
Introduction...3
Integrated System..4
Mobile Platform..4
Actuation...6
Sensors...7
 Object Detection...7
 Object Sizing and constructing the digital perimeter...........7
 Navigation – Orientation and Location................................8
Radio-Frequency Communication...10
Behaviors...11
 Navigating...11
 Object Circumnavigation..12
 R.F. Communication...12
Experimental Layout and Results..13
Conclusion...18
Documentation...19
Appendices...20
 Robot Control program...20
 Visual Basic Computer Program..33

3

III. Abstract
A mapping and navigation robot was constructed with the purpose of exploring a

small area while searching for objects to map. Robot position and object location data is
transmitted via a radio-frequency channel to a computer (programmed in Visual Basic).
Infrared shaft encoders were used for positional tracking and infrared sensors were used
for object detection and characterization. It was found that maintaining straight paths
while navigating proved very difficult and future work would include the integration of a
superior position tracking technique.

4

IV. Executive Summary

Mapping and navigation has an important role in robotics, allowing
environmental information to be gathered in places which pose serious risks to humans.
The purpose of this project is the construction of a robot which will navigate a small flat
area while searching for objects. The robot circumnavigates objects, creating a perimeter
around them in order to gauge their approximate size. Radio-frequency communication
is used to transmit the robot's position and object information to a computer.

The robot (called Rover I) consists of three main systems: actuation (allowing
robot to maneuver), sensory (so it can perceive its environment as well as track its
position), and communication (to transmit data to a computer). The actuation is
accomplished via modified servos while the sensory system consists of infrared
proximity detectors. A half-duplex 315 MHz radio-frequency channel serves as the
communications system.

The robot was designed in AutoCad as a modified version of the Talrik Junior
robot platform (copyright Mekatronix). It was constructed out of 3/16" balsa wood
using a circuit board milling machine.

Actuation consists of two modified servos (positional feedback circuitry
removed). Direction and speed control is achieved via a motor driver chip using pulse
width modulation

Sharp can infrared sensors are used in conjunction with infrared emitting L.E.D.'s
for detecting objects as well as in sensing objects for circumnavigation. Two infrared
L.E.D.'s were seated in black tubes in order to increase resolution and decrease intensity,
allowing for a more accurate and efficient circumnavigation procedure. Shaft encoding
was used for position tracking using smaller less sensitive I.R. emitters and detectors.

The robot roams a 10' x 10' area of a floor using a plow technique (criss-crossing
the area) while transmitting its progress to a computer. When objects are found the robot
circumnavigates them creating a perimeter which roughly outlines the size of the objects.
After this has been accomplished the robot continues its roaming behavior, searching for
more objects.

Experiments were performed in order to determine the efficacy of the infrared
sharp cans in determining distance (for circumnavigation procedure). A linear region
was found between roughly 2 – 8" distance from the sensor. The I.R. L.E.D.'s were
inserted into collimating tubes in order to improve short distance perception and spatial
resolution. Object angle tests were done to determine the limitations and accuracy of the
sensor readings.

 Following a straight line was more difficult than initially speculated. Future
work must include a superior positional tracking system which is dependent on an
external landmark or signal (e.g. a compass or several homing beacons). The original
goal of obtaining a two dimensional slice of objects found was not met due to time
constraints and so must be left as part of future work as well.

5

V. Introduction

Mapping and navigation has several important applications in robotics. Because
robots are unmanned, they can be used to go where environmental conditions present
significant health risks to humans: deep seas mine fields, and other planets (e.g. Mars) .
Autonomous robots also offer the advantage of maintaining functionality in the case of
loss of direct control, such as when wireless communications fail.

The focus of this project is the construction of an autonomous robot (named
Rover I) which will navigate a small area on a flat surface while searching for objects
while tracking and transmitting its own position as well as the location of objects it
encounters to a computer via radio-frequency communication.

The first section gives an overall description of the robot's sensing, actuation, and
communications systems. The next two cover the platform design and actuation details.
Sensor specifics are then discussed followed by the robot's behavior algorithms. The last
section describes the experiments performed in order to gain knowledge of how the
sensors operate and their limitations.

6

VI. Integrated System

In general, the overall structure of a robot consists of three fundamental sub-
systems: processing/control, sensors, and actuation. In addition, Rover I also contains a
communication sub-system. The sensors will consist of infrared proximity sensors and
infrared shaft encoders using a slotted wheel. The actuation will be performed with
modified servos, the communication with a radio frequency module,. and the processing
with an expanded micro-controller. Details of these components will be given in later
sections. The data and control diagram is presented below:

 Figure 1 - Data and Control Diagram of Integrated system

Object detection and size determination will be accomplished via the I.R. sensors.
Location (both robot and objects) information is conveyed to the micro-controller via the
shaft encoded wheels. The R.F. module will serve as the communication link to a P.C.

VII. Mobile Platform

Balsa wood (provided by the IMDL lab) serves as the material for all of the
platform components. The design is a modified version of the Talrik Junior platform (see
Mekatronix website). Changes include a larger top circular plate in order to fit the
Motorolla EVBU board (with ME11 memory/port expansion), and wider under-carriage
components to increase stability when turning (see the following page for Autocad
diagram). Both the Talrik Junior and the ME11 expansion board are copyrighted designs
of Mekatronix™.

Processing /
Control

Sensors Communication Actuation

InfraRed Shaft
Encoded
I.R.

Radio
Frequency
Module

Modified
servos

7

 Figure 2 - Autocad design of modified TJ platform

8

VIII. Actuation

Actuation is the simplest of the sub-systems within the Rover robot. The goal is
to provide the robot with directional mobility, allowing it to move forward, backward,
and to turn This is accomplished via two modified Tower Hobbies® servos model STD
TS-53 connected to wheels. They will be attached to the under-carriage of the platform
in the same orientation as found in the Talrik Junior design (see Mobile Platform
section).

A servo essentially consists of an electric motor, some gears to convert the high
speed/low torque of the motor to low speed/ high torque, and some positional feedback
circuitry . The servo is powered by a 5-Volt D.C. input and is controlled via a third wire
carrying pulse width modulation information.

The servos were modified by removing physical limiters which restrict full 360
degree motion followed by complete removal of the positional feedback circuitry so that
all that remained were the motor and the gears. The servos were then connected to a
dual motor controller chip (SN754410) which control the direction and speed of the
servo motors with a pulse width modulation scheme. This consists of sending either
positive (forward direction) or negative (reverse direction) 5 volt pulse widths of
differing durations to the motors. These pulse widths comprise a percentage of a total
driving period (duty cycle). Speed control is possible because the motors spin only while
the pulse is being sent but, because of inertia, keep spinning while no pulse is present.
Thus the motors will spin slower with shorter pulses because they are being powered only
a fraction of the total driving period and, conversely, the longer the pulse width the faster
the motors will spin up to a maximum which corresponds to a constant +/- 5 volt signal.
The reasons for going through the trouble of modifying the servos are simple. Servos are
well-built reliable motor mechanisms with built-in gear heads which shortens
construction time. Secondly, servos provide more than adequate torque for the size of the
Rover I robot (42 oz./in for this model).

9

IX. Sensors

The objective of the sensors is to provide Rover I with object detection and sizing
abilities as well as orientation / location information. Object characterization will be
performed by having Rover I circumnavigate objects from a short distance (3-4 inches) in
a square pattern in order to construct a digital perimeter around the object and thereby
setting bounds for the size of the object. The presence of the object is accomplished via
I.R. sensors.

I. Object Detection

The presence of an object
sensed via two Sharp can (model
GPIU58Y) I.R. sensors mounted on
the front of the robot (see figure 2).
Infrared energy is emitted from
three I.R. LED’s located above and
in between the sensors. Object
detection has been tested via a
simple obstacle avoidance program.

Figure 3 – I.R. setup for object
detection

II. Object sizing and constructing the
digital perimeter

In order to accomplish the
construction of a digital perimeter
successfully, Rover I must continually
sense the presence of the objects as it
circumnavigates them while
simultaneously measuring the distance it
has traveled. Detecting the presence of
the object involves a slight modification
of the initial object detection system.

Sharp cans (model GPIU58Y)
were attached on the side of the robot
along with I.R. emitters seated inside
collimating tubes. Collimators were

Figure 4 - Sensing the presence of an object for
circumnavigation

10

necessary for two reasons: the I.R. emitters were too powerful and caused the sensors to register
a highest reading when an object was closer than 6-7 inches, and the emitters spread I.R. energy
at a broad angle, so that an object caused high sensor readings even though the sensor was passed
it by a considerable distance. The collimating tube solved both of these problems (see
experimental layout and results section).

III. Navigation - Sensing Robot Orientation and Location

Accurate object location and object data can only be obtained if the robot’s
navigational system is precise and consistent. To this end, a simple but effective shaft
encoding system was developed so that the robot can keep track of where it is and where
it is going.

The shaft encoding system essentially consists of an Infrared Emitter and Detector
pair (Radio Shack cat no. 276-142) and a slotted wheel. The IR detector operates much
like the sharp cans except it is much smaller and less sensitive than the latter. It serves
simply to generate a small voltage when it detects an IR source close by, exhibiting
practically no range at all.

A slot wheel (see figure 5) is fitted to each wheel with a pair of the
aforementioned IR emitter and detector surrounding each slot wheel (figure 9). As the
wheel turns IR transmission to the detector is blocked and let through via the slots and
spokes of the slot wheel. In this manner the wheels’ motion may be detected and
measured. The slot wheels contain 16 spokes and 16 slots for a total of 32 transitions.
With the 2.75” diameter Dubro wheels used for Rover, this gives a traveling resolution of
.27”. In addition this system is capable of determining if one wheel is spinning faster
than the other, thus giving
feedback for steering
correction.

Figure 6 – Slot wheel with Dubro wheel and IR pair

With a 5V supply, the IR detectors were found to output 1.8V when I.R. is
detected from the emitter at a distance of approximately 3/10 inch. In order to generate a
clean TTL voltage signal, the detector output was put through a comparator wired as in

11

figure 7. The comparator outputted a stable 5 V peak square wave when the emitter was
turned on and off at frequencies approaching 200Hz.

Figure 7 – Circuit schematic for IR slot wheel system

12

X. Radio-frequency communication

The communications system was constructed using two ABACOM transceivers
(model # AM-RTD-315) operating at 315 MHz. Both the receiver and transmitters use
the same frequency, so communication was half-duplex (although the computer was
never programmed to transmit data). Echo-cancellation hardware was implemented so
that the receivers did not pick up the information which was being transmitted (refer to
figure 8 below).

Figure 8 – Transceiver hardware with echo cancellation
NOTE – Circuit same for P.C. serial connection except TXD and RXD signals
 connected to line driver/receiver circuitry identical to that found on
 TJ PRO utilizing MC145407 chip.

13

XI. Behaviors

The objectives of Rover I are to navigate a small pre-defined area (about 10' X
10') while searching for objects. Once objects are found Rover I circumnavigates them,
constructing a perimeter around the objects all the while transmitting its position and
object location information to a P.C. via R.F. communication.

I. Navigating

At the start of the navigation sequence, Rover I is located at a start position which is
represented on the P.C. as shown in figure 8. The robot then begins to traverse the area

using a plow method
(see figure 9) turning
only in right angles
and using the shaft
encoders to track
traveled distance.
Straight paths are
maintained via a
software algorithm
which compares the
shaft encoder counts
of the wheels. If one
wheel is spinning a
little fast, then the
software compensates
by slowing it down
and speeding up the
other wheel for a short
time. Trial and error

was used to determine
the best timing and
motor speeds for
direction compensation.

Rover I transmits a direction data packet for every three inches it travels
corresponding to 12 transitions of its shaft encoders. The direction transmitted
corresponds to one of the four directions possible (positive x, negative x, positive y, and
negative y).

As it navigates, the forward I.R. sensors and emitters are actively scanned to
detect objects. If one of the forward sensors registers a reading above a certain threshold,
the object circumnavigation algorithm takes control of the robot.

Figure 8 - Navigation area with coordinate axes (as
seen on P.C.)

14

II. Object Circumnavigation

Once an object is detected, Rover I immediately turns either left (if left forward sensor
triggered detection) or right (if right forward sensor triggered detection). The robot then
uses its side sensors with collimated emitters to sense the presence of the object while
traveling around the object. The robot turns left or right to complete a corner of the
perimeter when it no longer sees the object with its side sensors (actually a second or two
after the object is no longer seen to allow the robot to clear the edge of the object). While
it is doing this, Rover I also keeps track of the length of the sides of the perimeter in

order so that knows when to stop the
circumnavigation procedure once it
has completed four left or right turns
(completing the square perimeter).

Once the circumnavigation has
been completed, the robot resumes the
plow pattern but in the opposite
direction when it initially detected the
object (refer to figure 9).

III. R.F. Communication

The protocol used for radio-frequency communication is relatively simple. The robot
begins by transmitting 4 "U" characters (55 in Hexadecimal or 85 in decimal) so that the
P.C. is aware that valid data is about to arrive (this serves as a simple software noise
filtering algorithm). The fifth character is one of 6 possibilities, four of which are
direction indicators as described in the navigation sub-section. The last two indicate to
the P.C. that either an object has been found or that the circumnavigation procedure has
ended and normal navigation has begun.

Figure 9 - Navigation plow pattern and
object circumnavigation algorithm.

15

XII. Experimental Layout and Results

Experiments were performed using a Sharp can I.R. sensor in conjunction with an
I.R. LED fitted with a black collimating tube. A black collimator is necessary because it
was observed that a white tube was a poor collimator. This is probably due to the I.R.
waves reflecting off the inner surface of the white tube near the exit hole. A black
surface absorbs I.R. and thus prohibits this from occurring.

Initially experiments were to be performed to test the optimal I.R. intensity emitted by the
LED. Different intensities can be obtained by reducing or increasing the current through the
LED using different sized resistors in series with the LED (larger resistance means less current
and thus lower IR intensity). However, it was observed that the length of the collimating tube
decreased I.R. intensity as seen in the sensor readings for an object at a fixed distance. Due to
this, a fixed resistance of 470 ohms was used and the length of the tube was used to control both
resolution and I.R. intensity.

Experimental Setup – Object Distance versus Sensor Readings

The I.R. emitting LED was placed in a collimating tube and taped to the top of the I.R. sensor.
The sensor was attached to the top of a small box approximately 1.75 inches above the ground.
Paper was placed out in front of the emitter/sensor combination with distance marked out in half-
inch increments. The object used was a 6” x 6” square white piece of paper taped to a piece of
cardboard which held the paper orthogonal to the ground plane and the I.R. sensor/emitter combo
(see figure 10).

Figure 10 – Experimental setup for distance measurements

16

The I.R. sensor and I.R. LED were then
connected to a Motorolla 6811 EVBU board
and readings were taken using a simple
program. It was found that the I.R. Sensor
gave a minimum reading of 85 and a
maximum of 129. Sensor readings were
recorded at 1 inch and ½ inch object distance
increments, from 14 inches to 1 inch.

 Figure 11 – Sensor Readings vs. Object Distance for different collimating
 tube lengths

The data from the first experiment (1” tube length) yielded a linear region from
roughly 6.5 to 2 inches, while the second experiment exhibits a linear region from
approximately 8.5 to 3 inches distance, thus the shorter tube length gives a better linear
range to operate with. In addition, the second experiment showed higher sensor readings
for a given distance, thus demonstrating the correlation between tube length and I.R.
intensity. These two advantages of the shorter tube are counter-balanced by a decrease
in resolution, however, as will be seen in the next section.

Sensor Readings vs. Object Distance
Experiment 1 - Tube length = 1"

Experiment 2 - Tube Length = .75"
470-Ohm Resistor with IR LED

85

90

95

100

105

110

115

120

125

130

Dist
an

ce
 (I

nc
he

s) 13 11 9.
5

8.
5

7.
5

6.
5

5.
5

4.
5

3.
5

2.
5

1.
5

Experiment 2

Experiment 1

17

Distance Sensitivities (Sensor units / Inch):

Experiment 1: 7.11 Units / Inch
Experiment 2: 5.82 Units / Inch

Experimental setup – Determination of Resolution

Resolution is an important factor in sensing the objects while performing the
perimeter construction procedure. The sooner the robot realizes that it has passed the
end of a side of an object, the more accurate the perimeter will be in determining the size
of an object.

Effective resolution for different tube lengths was determined by slowly inserting
the white paper object from both sides at a fixed distance of 5 inches and marking where
the edge of the paper sat when the sensor reading increased (from a minimum of 85 to
86).

 Figure 12 – Setup for resolution experiment

The following table lists resolution lengths for several different tube lengths, including
two for a 2.5” tube length (the second resolution length recorded was done with the
special high output I.R. LED). The normal reading column indicates the sensor reading
obtained when the paper object was placed directly in front of the sensor at 5 inches
distance.

18

Length of Collimating Tube Resolution Length Normal Reading
at 5 inches

1” 1 5/8” 105
1.5” 1 3/16” 99
1.75” 5/8” 97

2” 5/8” 95
2.5”

(Normal LED)
½” 92

2.5”
(High output LED)

1” 104

Table 1 – Resolution length experiment

Resolution improved with increased tube length as was expected. Intensity
readings decreased accordingly. The second reading with a 2.5” tube length using the
high output LED was taken in order to determine if the normal reading intensity could be
increased without sacrificing resolution length. This proved false, however, the
resolution was better for the high output LED compared to the normal LED with
equivalent normal intensity reading (1” compared to 1 5/8”). This result shows that
higher intensity I.R. offers an overall advantage.

Experimental Setup – Angled Object
Surfaces

All the experiments thus far have
assumed straight object sides which are
orthogonal to the sensor/emitter center line
so that most of the I.R. energy is reflected
straight back to the sensor. The following
experiments examine the effect of object
sides which are at angles to the sensor
center-line (see figure 13).

Figure 13 – Setup for angled
object surface experiments

19

 The experiments were performed by setting the white paper object at a fixed
distance from the sensor and incrementally rotating the object clockwise, increasing the
angle between the sensor center-line and the line normal to the object surface.

Figure 14 – Data from angle experiments

The collected from this experiment revealed that sensor readings dropped by
approximately 5 % at an angle of 35-40 degrees.

Sensor Readings vs. Angle on Object Surface
Experiment 1: Collimating tube length = 1"
Experiment 2: Collimating tube length = .75"

85

90

95

100

105

110

115

120

Ang
le

(d
eg

re
es

) 0 5 10 15 20 25 30 35 40 45 50 55

Experiment 1

Experiment 2

20

XIII. Conclusion

At the completion of the project, the robot performed its navigation, object
detection, circumnavigation, and communication tasks successfully. The one glaring
malfunction was the inability of the robot to maintain a straight path consistently.
Turning right angles accurately and consistently also proved to be difficult. Improved
positional systems need to be integrated into the robot, ones which rely on outside
landmarks or signals to guide the robot (e.g. a compass or several homing beacons).

The original goal of having the robot accurately convey object shape by creating a
two-dimensional slice of objects found was not met. This was partly due to time
constraints, and partly due to results of the angle deflection experiments which showed
that I.R. proximity data was unreliable for irregularly shaped objects. In addition, since
I.R. energy is reflected differently by different colors, only regularly shaped white objects
were used in testing. Perhaps a sonar system would yield more accurate results in this
respect.

Future work would include incorporation of an improved positional system as
well as more complex proximity detection for creating a 2-D slice of an object. Perhaps
several sensors and L.E.D.'s could be grouped in a special configuration for obtaining
accurate distance measurements regardless of the shape of the object. An alternative
could be use of a different circumnavigation algorithm: wall following. Provided that a
better positioning can be obtained, the robot could be programmed to follow the objects'
contours as it circumnavigates them while recording its distance traveled and direction
angle relative to some coordinate axes.

21

XIV. Documentation

Mekatronix - www.mekatronix.com

ABACOM Technologies -

22

XV. Appendices

Robot Control Code (created in ICC11)

#include <stdio.h>
#include <analog.h>
#include <clocktjp.h>
#include <motorme.h>
#include <serialtp.h>
#include <isrdecl.h>
#include <vectors.h>
#include <hc11.h>
#include <mil.h>

/************************ End of Includes ****************************/

/*************************** Constants **********************************/
#define CR 13
#define LF 10

#define right_ir analog(1)
#define left_ir analog(2)

#define zero 48
#define one 49
#define two 50
#define three 51
#define four 52
#define five 53

#define feet5 200
#define feet10 400
#define inch10 36

#define true 1
#define false 0

#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define MAX_SPEED 100
#define ZERO_SPEED 0

#define FORRIGHT analog(1)
#define FORLEFT analog(0)

23

#define SIDLEFT analog(3)
#define SIDRIGHT analog(2)

#define IRE *(unsigned char *)(0x7000)

#define FORIREON SET_BIT(IRE, 0x03)
#define FORIREOFF CLEAR_BIT(IRE, 0x03)

#define LEFT_IRE *(unsigned char *)(0x7000) = 0x04
#define RIGHT_IRE *(unsigned char *)(0x7000) = 0x08

#define IRE_OFF *(unsigned char *)(0x7000) = 0x00

#define RMOT motorme(RIGHT_MOTOR, rspeed)
#define LMOT motorme(LEFT_MOTOR, lspeed)
#define STOPR motorme(RIGHT_MOTOR, 0)
#define STOPL motorme(LEFT_MOTOR, 0)

/* VT100 clear screen */
#define CLEAR_SCREEN printf("\x1b\x5B\x32\x4A\x04");

/* VT100 position cursor at (x,y) = (3,12) command is "\x1b[3;12H"*/
#define HOME_SCREEN printf("\x1b[1;1H");
/************************ End of Constants ******************************/

/***************** Global variables ************************/
int direct, rspeed, lspeed, increm,o, side, detflag, obst;
int leftcount, rightcount, xpos, ypos;
/****************** End of Globals *************************/

/***/
/****** Interrupt service routines for shaft encoders ******/
#pragma interrupt_handler TIC1_isr, TIC2_isr

void init_shaft(void)
{
 INTR_OFF(); /* Turn interrupts off */
 CLEAR_FLAG(TFLG1, 0x07); /* Clear input capture interrupt
 flags for shaft encoders */
 CLEAR_BIT(TCTL2, 0x3C);
// SET_BIT(TCTL2, 0x28); /*Set IC flags for interrupt on falling edges*/
 SET_BIT(TCTL2, 0x3C); /*Set IC flags for interrupt on any edge*/

 SET_BIT(TMSK1, 0x06); /* Turn on IC interrupts */

24

 INTR_ON(); /* Turn interrupts on */
}

void TIC1_isr(void)
{
 ++leftcount;
 CLEAR_FLAG(TFLG1, 0x04);
}

void TIC2_isr(void)
{
 ++rightcount;
 ++increm;
 CLEAR_FLAG(TFLG1, 0x02);
}

/***/

void detect(void)
 {
 switch(obst)
 {
 case 0:
 if(FORRIGHT >= 125)
 { detflag = 1; side = 1; obst = 1; }

 else if(FORLEFT >= 125)
 { detflag = 1; side = 0; obst = 1; }

 break;

 case 1:

 if(side == 0)
 {
 if(SIDRIGHT < 90) detflag = 1;
 }

25

 else
 {
 if(SIDLEFT < 90) detflag = 1;
 }

 break;

 }

 }

/* Robot turns left and updates direction variable */

void leftturn(void)
{
 int a;
 int b;

 STOPR;
 STOPL;
 wait(500);
 a = leftcount;
 b = rightcount;

 motorme(LEFT_MOTOR, -30);
 motorme(RIGHT_MOTOR, 30);

 while ((leftcount <= a + 17) || (rightcount <= b + 17)) {}

 STOPR;
 STOPL;

 rightcount = leftcount;

 if (direct == three) direct = zero;
 else ++direct;

 wait(500);
}

26

/* Robot turns right and updates direction variable */

void rightturn(void)
{
 int a;
 int b;

 STOPR;
 STOPL;
 wait(500);
 a = rightcount;
 b = leftcount;

 motorme(LEFT_MOTOR, 30);
 motorme(RIGHT_MOTOR, -30);

 while ((rightcount <= a + 17) || (leftcount <= b + 17)) {}

 STOPR;
 STOPL;

 rightcount = leftcount;

 if (direct == zero) direct = three;
 else --direct;

 wait(500);
}

void move(void)
{
 if (increm >= 11)
 {
 printf("UUUU");
 putchar(direct);
 increm = 0;
 }
}

/**/
/* Synchronizes shaft encoders and calibrates servo speeds */
void cal_motor(void)
{
 rspeed = 7;

27

 RMOT;
 wait(100);
 rightcount = 0;
 while(rightcount == 0) {}
 STOPR;

 lspeed = 7;
 LMOT;
 wait(100);
 leftcount = 0;
 while(leftcount == 0) {}
 STOPL;

 wait(2000);

 leftcount = rightcount = 0;
 CLEAR_SCREEN;
 HOME_SCREEN;
 lspeed = 30;
 rspeed = 30;

 o = 1;
 LMOT;
 RMOT;

 while (o == 1)
 {
 wait(5000);

 if((leftcount - rightcount) > 1)
 {
 lspeed -= 1;
 RMOT;
 LMOT;
 wait(100);
 leftcount = rightcount = 0;
 }

 else if((rightcount - leftcount) > 1)
 {
 rspeed -= 1;
 RMOT;
 LMOT;
 wait(100);
 leftcount = rightcount = 0;

28

 }

 else
 {
 o = 0;
 }

 }
 STOPL;
 STOPR;
}

int straight(int distance)
 {
 int i;

 RMOT;
 LMOT;

 while((leftcount < distance) && (detflag == 0))
 {

 if((leftcount - rightcount) > 2)
 {

 lspeed -= 5;
 rspeed += 5;
 RMOT;
 LMOT;

 while (((leftcount - rightcount) > -1) && (leftcount < distance) && (detflag == 0))
 {

 for (i = 0; i <= 500; ++i)
 {
 move();
 detect();
 }
 }

 lspeed += 5;
 rspeed -= 5;
 rightcount = leftcount;

29

 if (leftcount < distance)
 {
 RMOT;
 LMOT;
 }

 }

 else if((rightcount - leftcount) > 2)
 {
 lspeed += 5;
 rspeed -= 5;
 RMOT;
 LMOT;

 while (((rightcount - leftcount) > -1) && (leftcount < distance) && (detflag == 0))
 {

 for (i = 0; i <= 500; ++i)
 {
 move();
 detect();
 }

 }

 lspeed -= 5;
 rspeed += 5;
 rightcount = leftcount;

 if (leftcount < distance)
 {
 RMOT;
 LMOT;
 }

 }

 else
 {
 move();
 detect();
 }

30

 }

 STOPR;
 STOPL;
 move();

 if(detflag == 1) return false;
 else return true;
 }

/***************************** Main **********************************/
void main(void)
{
 int path, dist, s, length, farside, resume, recover, last;
 unsigned int o, p;

 *(void(**)())0xffee = TIC1_isr; /* Set vectors for shaft encoders on */
 *(void(**)())0xffec = TIC2_isr; /* input capture 1 & 2 pins */

 init_motorme();
 init_serial();
 init_analog();
 init_clocktjp();
 init_shaft();

 setbaud(BAUD4800);

/* CLEAR_SCREEN;
 HOME_SCREEN;*/

/**/
// cal_motor();

 increm = leftcount = rightcount = detflag = obst = recover = 0;
 path = 3;
 direct = zero;

 //CLEAR_SCREEN;

31

 //HOME_SCREEN;

while(1)
 {

 FORIREON;

 while(detflag == 0)
 {
 lspeed = 35;
 rspeed = 35;

 if(recover == 0)
 {

 switch(path)
 {
 case 3:
 wait(1000);

 if (straight(leftcount + inch10) == true)
 {
 wait(500);
 leftturn();
 dist = feet5;
 path = 0;
 last = leftcount;
 }
 break;

 case 0:

 wait(500);

 rightturn();

 if(straight(leftcount + inch10) == true)
 {
 wait(500);
 rightturn();
 dist = feet10;
 path = 1;
 last = leftcount;
 }
 break;

32

 case 1:
 wait(500);
 leftturn();

 if(straight(leftcount + inch10) == true)
 {
 wait(500);
 leftturn();
 dist = feet10;
 path = 0;
 last = leftcount;
 }
 break;
 }
 }

 else
 {
 recover = 0;
 detflag = 0;
 obst = 0;
 }

 if(detflag == 0) straight(leftcount + dist);

 }

/*********** Obstacle found ***************/
 dist = leftcount - last;
 printf("UUUU");
 put_char(four);

 leftcount = rightcount = 0;
 lspeed = rspeed = 25;

 IRE_OFF;

 if(side == 0) { RIGHT_IRE; leftturn(); }
 else { LEFT_IRE; rightturn(); }

 s = 1;

 while (s <= 4)
 {

33

 detflag = 0;
 straight(leftcount + 500);
 LMOT;
 RMOT;

 for(o = 0; o < 10000; ++o)
 {
 for(p = 0; p < 4; ++p) move;
 }

 STOPR;
 STOPL;

 if(side == 0) rightturn();
 else leftturn();

 LMOT;
 RMOT;
 while((SIDRIGHT < 90) && (SIDLEFT < 90)) { move(); }

 switch(s)
 {
 case 2:
 farside = leftcount;
 break;

 case 3:
 farside = ((leftcount - farside)/2) - 20 ;
 break;

 case 4:
 IRE_OFF;
 detflag = 0;
 obst = 0;
 straight(leftcount + farside);
 break;

 }

 ++s;

 }
 wait(200);

34

 if(side == 0) leftturn();
 else rightturn();

 printf("UUUU");
 put_char(five);

 recover = 1;

 if (path == 1) path = 0;
 else path = 1;

 detflag = 0;
 obst = 0;

 }

}

35

Computer code for receiving and Interpreting Data (Visual Basic)

Option Explicit

Dim county, xobj, yobj, direct
Dim objdet As Boolean

Const zero As Byte = 48
Const one As Byte = 49
Const two As Byte = 50
Const three As Byte = 51
Const four As Byte = 52
Const five As Byte = 53

Private Sub Form_Load()

MSComm1.CommPort = 1
MSComm1.Settings = "4800,N,8,1"
MSComm1.Handshaking = comNone

MSComm1.InBufferSize = 1024
MSComm1.InputLen = 1
MSComm1.InputMode = comInputModeBinary
MSComm1.InBufferCount = 0
MSComm1.PortOpen = True
MSComm1.RThreshold = 1
MSComm1.SThreshold = 0
MSComm1.RTSEnable = False

objdet = False
direct = 0

county = 0

obj.Text = "0"
upconv
End Sub

36

Private Sub com()

Dim robin As Byte, order As Byte

'k = 1

' Do While k = 1

 robin = 0

 Do While robin <> 85
 If MSComm1.InBufferCount <> 0 Then robin = MSComm1.Input(0)
 Loop

 Do While robin = 85
 If MSComm1.InBufferCount <> 0 Then robin = MSComm1.Input(0)
 Loop

 If valid(robin) Then exec (robin)

' Loop

End Sub

Function valid(comm As Byte) As Boolean
 If (comm = zero Or comm = one Or comm = two Or comm = three Or
comm = four) Then
 valid = True

 Else: valid = False
 End If
End Function

Private Sub exec(blublee As Byte)

Select Case blublee

37

Case zero
 Movbotup
Case one
 Movbotleft
Case two
 Movbotdown
Case three
 Movbotright
Case four
 Object
Case five
 objdet = False

End Select

upconv

End Sub

Private Sub Object()

county = county + 1
obj.Text = county

Select Case direct
Case 0
 Circle (rover.Left + 202, rover.Top - 75), 70
Case 1
 Circle (rover.Left - 75, rover.Top + 202), 70
Case 2
 Circle (rover.Left + 202, rover.Top + 480), 70
Case 3
 Circle (rover.Left + 480, rover.Top + 202), 70
End Select

objdet = True

xobj = rover.Left + 202
yobj = rover.Top + 202

38

End Sub

Private Sub Movbotup()
 rover.Picture = Form2.robot(0).Picture
 If (rover.Top > 740) Then
 rover.Move rover.Left, rover.Top - 189
 End If

 If objdet = True Then
 Line (xobj, yobj)-(rover.Left + 202, rover.Top + 202)
 xobj = rover.Left + 202
 yobj = rover.Top + 202
 End If

 direct = 0

End Sub

Private Sub Movbotdown()
 rover.Picture = Form2.robot(1).Picture
 If (rover.Top < 7595) Then
 rover.Move rover.Left, rover.Top + 189
 End If

 If objdet = True Then
 Line (xobj, yobj)-(rover.Left + 202, rover.Top + 202)
 xobj = rover.Left + 202
 yobj = rover.Top + 202
 End If

 direct = 2

End Sub

Private Sub Movbotleft()
 rover.Picture = Form2.robot(2).Picture
 If (rover.Left > 4240) Then

39

 rover.Move rover.Left - 189, rover.Top
 End If

 If objdet = True Then
 Line (xobj, yobj)-(rover.Left + 202, rover.Top + 202)
 xobj = rover.Left + 202
 yobj = rover.Top + 202
 End If

 direct = 1

End Sub

Private Sub Movbotright()
 rover.Picture = Form2.robot(3).Picture
 If (rover.Left < 11195) Then
 rover.Move rover.Left + 189, rover.Top
 End If

 If objdet = True Then
 Line (xobj, yobj)-(rover.Left + 202, rover.Top + 202)
 xobj = rover.Left + 202
 yobj = rover.Top + 202
 End If

 direct = 3

End Sub

Private Sub delay()
 Dim Start
 Dim Check
 Start = Timer
 Do Until Check >= Start + 0.5
 Check = Timer
 Loop
End Sub

Private Sub upconv()

 Dim xfeet, xinch, yfeet, yinch, xpos, ypos

40

 xpos = rover.Left + 202 - 7940
 xinch = (xpos / 63) * 1.08
 xfeet = Fix(xinch / 12)
 xinch = Fix(xinch) Mod 12

 ypos = 7840 - rover.Top - 202
 yinch = (ypos / 63) * 1.08
 yfeet = Fix(yinch / 12)
 yinch = Fix(yinch) Mod 12

 y.Text = "Y position: " & yfeet & " feet" & " " & yinch & " inches"
 x.Text = "X position: " & xfeet & " feet" & " " & xinch & " inches"

End Sub

Private Sub Form_Unload(Cancel As Integer)
If MSComm1.PortOpen Then MSComm1.PortOpen = False

Unload Me
End Sub

Private Sub MSComm1_OnComm()

 Select Case MSComm1.CommEvent

 Case comEvReceive
 com

 Case comEventBreak
 Case comEventFrame
 Case comEventOverrun
 Case comEventRxOver
 Case comEventRxParity
 Case comEventTxFull
 Case comEventDCB
 Case comEvCD
 Case comEvCTS

41

 Case comEvDSR
 Case comEvRing
 Case comEvSend
 Case comEvEOF

 End Select
End Sub

42

43

