Sharlo

By: Paul Hart

EEL 5666: IMDL

Final Written Report

8/9/00

Table of Contents

Abstract

2

Executive Summary

3

Introduction

4

Integrated System

5

Mobile Platform

6

Actuation

7

Sensors

7-9

Behaviors

10-11

Conclusion

12

Documentation

13

Appendices

14-25

Abstract

This report serves as a final report for my robot project in EEL 5666. The introduction explains the robot and its functions. Each aspect of the robot has its own section in the main body of the report. The integrated system section explains the circuitry and “brains” of the robot and how each of the electrical parts is connected. Next the platform is discussed followed by the actuation of the robot. Sensors are the next topic that explains the function and type of each sensor planned for the robot as of this time.

Executive Summary

The robot I have designed this semester is one that will vacuum the floor of any room, avoiding obstacles, cleaning close to all walls, and turning itself off when the floor is clean. The body of the robot was designed in AutoCAD and made from balsa wood cut on a t-tech machine. The vacuum is a hand-held Black and Decker “Dust Buster”, purchased at Wal-Mart. Controlling the robot is a Motorola 68HC11 EVBU board with an ME11 attachment from Mekatronix. Additions to these two boards are an expanded digital output port using a 74’574, a relay circuit to control the vacuum cleaner, LED’s to inform the user of various modes the robot may be in. The relay circuit consists of one 74’04 inverter IC, two +5V reed relays, and one high current relay from a car. The current through a vacuum cleaner is close to 8 amps, so caution must be used in making connectors that will not melt and a relay that can handle the current. The actuation of the robot is handled exclusively by two ball bearing servos that have been hacked to work as dc motors. A plastic slide caster is used for the rear support of the robot and was chosen for the consistency of the friction generated by it. Three IR emitters and receivers are mounted on the front of the robot to sense obstacles. A bump sensor is also mounted on the front to inform the robot of obstacles that the IRs miss. A wall-detecting sensor is mounted on each side of the robot to assist in the wall following routine of the software. Along with wall following, the software includes a routine to avoid obstacles and randomly move around the room, one to detect debris entering the vacuum, and a few support routines.

Introduction

The problem that is to be solved by this robot is the condition of my apartment. Between the fleet of bicycles that are brought in daily and the general disregard for cleanliness of my roommate, and myself the floors are constantly in need of vacuuming. This report describes a robot that will solve the problem of my apartments’ floor. I set out to design a robot that can completely clean the floors in my apartment, avoiding any obstacles that may be there. The floors are tile, so the robot will be designed with this in mind and would need modifications to work on other surfaces such as carpet. The robot will be able to tell whether the floor is clean or not and will not waste power on a clean floor. Another goal, if time permits, is to have the robot recharge itself so it can keep the floor clean indefinitely. The main body of this report will consist of detailed descriptions of the different aspects of my robot.

Main Body

Integrated System

The integrated system of my robot is controlled centrally by the 68HC11 EVBU board with an ME11 attachment. The ME11 provides most of the circuitry to control the different parts of the robot. The vacuuming is done by a Black and Decker hand held Dustbuster which has been modified to be controlled by the ME11. The circuitry used to accomplish this consists of two single pull single throw reed relays, one high current relay from a car, and an inverter IC (74HC04). Three signals are required from the ME11; +5V, Ground, and one digital output. The car relay is tied directly to the battery pack because it needs more than 5V to turn on. The reed relays are used because they are actuated by a 5 volts signal that works out nicely with a digital output. This circuit enables the vacuum cleaner to be in either run mode or charge mode with one signal from the ME11. The complete circuit diagram is in the appendixes. CR is the car relay (I assume any high current relay would work) and R1 and R2 are reed relays available at Radio Shack. The inverter ensures that the vacuum is always in either run or charge mode. The initial circuit did not include the car relay, but the vacuum required more current than the reed relays could handle, so Scott Kanowitz designed the circuit to use the car relay.

Mobile Platform

My main objective in designing the platform for my robot was to make it a small as possible because size is very important in determining where and with how much ease a robot can go. Because of the vacuum cleaner, the platform had certain requirements that would not be met by any of the predesigned platforms. The body was designed in AutoCAD to be cut on the T-Tech machine in the lab. The top portion is rectangular in shape with curved front and back for easy sensor placement. The sides and bottom provide attachments for the servo mechanisms, a plastic caster on the back of the robot, and battery packs. The vacuum cleaner will fit through a precut hole in the top portion of the platform and will be attached with metal hardware. The AutoCAD files are in the appendixes. Initially a rotating wheel caster was used on the rear end, but there were a few problems. First, I had trouble securing the wheel to the robot, and when I used Super Glue, the bearings started locking up. The wheel also would not always turn in the direction the robot was moving. This caused very inconsistent movements and was impossible to fix in software. I finally decided on a plastic slide caster to provide a more constant friction that can be accounted for in software. The friction was slightly higher with the slide caster, but the consistency of the friction was much easier to work with.

Actuation

Servos provide the actuation for my robot. A special hack is performed to allow them to function as regular motors as opposed to standard servos that have a limited range of motion. Detailed instructions for this hack are available on www.mekatronix.com. The types used in this robot are Hitec HS-425BB Pro Servos that have a torque of approximately 43 oz-in. The ball bearing model was chosen as opposed to the HS-422 (common servo used in class) because of the large load placed on the servo by the vacuum. Two of these servos provide the only actuation in my robot. Steering is controlled by regulating the speed of each motor separately as to turn in any direction. The servos were purchased from www.hobbyshack.com.

Sensors

The main type of sensor that will be used is infrared emitters and receivers. The detectors are made by Sharp, and are commonly referred to as “sharp cans.” Three of these sensors will be placed on the top-front portion of the platform and will serve to alert the robot of objects in its path. A fourth infrared sensor (explained in detail below) pair will be placed inside the vacuum “mouth” and will detect objects that are picked up by the robot. This will prevent power from being wasted on a clean floor and will inform the robot that he does not need to be in that section of the apartment. A bump sensor will be placed on the front of the vacuum to alert the robot of any collision with an object that may have been missed by the infrared sensors. This will also prevent the robot from trying to vacuum objects that are too large. There are three bump switches in parallel that make up the bump sensor. The sensor is triggered if any of the switches are pressed. This is to make sure the robot detects any bumps up front. Wall detection sensors were also implemented in my robot. These were made from 3.5” springs purchased at Lowe’s Hardware, and thick guitar string. +5V is applied to the guitar string an the spring is connected to a pull-down resistor (10k) to ground in parallel with another 10k resistor to an input capture port A pin. The input capture reads 0 when the spring is not bent and 1 when the spring is bent and the guitar string completes the circuit. The bump switches are the same circuitry and are available in the lab.

The following are the details of the debris sensor I designed for my robot. It should be noted that the idea came from Scott Kanowitz. The materials I choose for the sensor are a purple LED to emit infrared light, and a Sharp “Can” IR receiver. Both of these are available from Mekatronix. The idea was to produce a beam of infrared light across the intake of the vacuum that could be broken when debris was picked up.

The first problem I encountered was too much IR inside the vacuum from the LED. There would not be any change in the Sharp can value when debris entered the intake because so much light was reflecting around inside. My solution to this was to isolate the beam so it would stay, within reason, as a beam across the intake. I made a tube-like housing for the LED with a hole on the side that pointed across the intake at the Sharp can. I could not seal the ends on the tube well enough and IR light was seeping out at all the intersections of the paper housing. I thought that a bicycle tube might work better to seal the housing and would be easier to work with than paper. It turns out that the black tube worked so well at stopping the IR from seeping out that it seemed to absorb most of the light and I was not getting much of a reading at all. The final solution was a white inner housing with a white offshoot (to point the beam) and all surfaces except the offshoot covered in black bicycle tubing. This seemed to isolate the beam better than any of the other tries.

I tested the sensor using a simple IR sensor program that reads the output from the Sharp can and outputs it to the screen in an endless loop. The debris used was small pieces of paper. This was the smallest debris that I could get a significant change in the output from the Sharp can. Attached, as an appendix is a graph of the output from the Sharp can as the vacuum picks up some paper. The data is not directly from the terminal of the computer. The program puts out many values every second so I scaled down the output for the graph. The drop in output value is not large but the value always returned to the original non-debris value after the drop so it can be used in software to accurately determine when debris is being picked up. The drop in the IR value lasts longer than it takes for the debris to be picked up. The reason for this is a lip after the intake shoot of the vacuum where the debris stops momentarily after coming up the intake. The sensor is placed directly in front of this lip and the IR beam is interrupted until the debris is pulled off the lip.

Behaviors

 The behaviors in my robot can be divided in to three major parts. The first is an obstacle avoidance program that randomly navigates a room avoiding objects. Next, there is a routine that follows the walls of the room including turns. The third routine tests the intake of the vacuum to make sure the robot is not wasting power on a clean floor. The vacuum routine is also responsible for handling the counters that time slice the wall following and obstacle avoidance routines, as well as the counters that turn the vacuum off when the floor is clean. The main routine starts by taking 50 samples of the debris sensor to get an average value used to compare current values in the vacuum routine. Main also decides whether to obstacle avoid or wall follow according to a counter value. The vacuum routine is executed after both the obstacle avoidance and wall following routines. The random turn routine, turn(), was borrowed from the ICC11 Primer, and written by Dr. Arroyo.

The obstacle avoidance routine uses the three front-mounted IRs to avoid any obstacles in the way of the robot. When the robot is not avoiding anything, a counter is incremented and the robot makes a random turn when this counter reaches a certain point. This prevents the robot from randomly turning into a wall it is trying to avoid. If the bump sensor is triggered, the robot stops, backs up and randomly turns to prevent it from getting stuck by going in the same direction after every bump. This routine is also executed if all three sensors read values too high, just in case the robot is stuck but the bump sensor is not triggered.

The wall following routine starts out by finding the closest wall if it has not been following a wall previously. When either wall sensors touch a wall, the wall following routine tries to keep the sensor touching the wall and keep that side’s IR value between certain limits. These limits are different on each side and were found experimentally. The middle IR value is used to see turns before the robot gets to them and initializes a turn early so the robot will not get stuck on the turn. If the bump sensor is triggered, the robot will back up and find the closest wall.

Finally, the vacuum routine checks the value of the debris sensor in order to know if the vacuum is picking anything up. If nothing cuts the beam, a debris counter (dcount1) is incremented and increments a second counter (dcount2) three times for every dcount1 overflow. When dcount2 reaches is has been incremented 4 times, the robot turns the vacuum off and executes a stop() routine that finds the nearest wall and turns off. Dcout1 and dcount2 are reset every time the debris sensor detects something. The main counters are also incremented in the vacuum routine. Count1 and count2 are used to make the robot wall follow 10% and obstacle avoid 90% of the time. LED’s are used to inform the user if the robot is wall following or obstacle avoiding, if any debris is detected, and if debris is stuck in front of the debris sensor. Full code is attached in the appendix section.

Closing

Conclusion

Almost all of the goals that I was aiming for at the start of this class were completed. The robot follows wall better than I expected it would since it is much larger than most of the robots in the class. I would like to expand the battery pack for the vacuum to enable the robot to clean larger rooms. Also, I would like to implement a self-charging circuit to the robot and create a recharging station so the robot could be completely autonomous. The debris sensor did not meet my expectations. I had planned to be able to detect any debris such as sand or other small particles, but the infrared sensor I designed was not precise enough and could only detect objects approximately as big as a dime. This turned out to work well for the demo, because the other major problem I had was the wheels slipping on the ground due to dirt and dust. I would like to find a set of wheels that are large enough for my platform and have enough grip to not slip on dirty surfaces. The biggest time factor I had was in calibrating the servos and the sensors. The servos were significantly different in their sensitivity to pulse width changes and it took a long time to find values that made them do what I wanted. The IRs were also very different and it took a great deal of trial and error to find the values I needed especially in the wall following routine.

Documentation

ME11 users manual, www.mekatronics.com
This is the main reference that I have used so far other than circuitry diagrams for parts such as the reed relays which were on the back of the package.

The ICC11 Primer was very helpful in writing the code. It is available at

www.mil.ufl.edu
Appendixes

Relay circuit to control vacuum cleaner.

CR = Car relay; R1 and R2 = +5V reed relays

GND to pin 7 of 74’04, and +5V to pin 14 of 74’04

[image: image1.wmf]Debris Sensor

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

95.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Series1

[image: image2.png]VACUUM

pins 1&2=charge
pins 2&3=run

PINI PIN PIN3
CR1 DGOUT /DGOUT
CR1
PIN3 —|__CR [~ PIN2 R1 GND PINT]_R2 [~ PIN2
+V GND GND
A
1
DGOUT ~ IDGouT
? 9 ? 7404

i)
+5VGND DGOUT ' +V ~18V|
‘ ME11/EVBU BATT PACK

Graph from experiment with debris sensor.

AutoCAD files could not be attached in Word, so they are stapled as the last page.

Code for Sharlo:

/***

* *

* Sharlo.c *

* by Paul Hart

*

*

*

* turn() from ICC11 Primer written by Dr. Arroyo

*

*

*

***/

#include <tjpbase.h>

#include <stdio.h>

#include <analog.h>

#include <motorme.h>

#include <hc11.h>

#include <mil.h>

#define LMOTOR

0

#define RMOTOR

2

#define LSTOP

2225

#define RSTOP

2080

#define RFWD

2310

#define LFWD

1980

#define RREV

1950

#define LREV

2350

#define RSLOW

2230

#define LSLOW

1990

#define
L_IR

analog(1)

#define
RIGHT_IR
analog(2)

#define
MID_IR

analog(3)

#define
DEBRIS

analog(7)

#define AVOID

105

#define CLOSE

110

int onleft = 0;

int onright = 0;

int count1 = 1;

int count2 = 1;

int dcount1 = 1;

int dcount2 = 1;

int VACLEVEL;

int stuck = 1;

int fifty = 0;

int sum = 0;

int dirt, j;

int five;

int mode = 0;

int random = 1;

void obstaclecorpse(void);

void wall(void);

void vacuum(void);

void bitset(int a, int b);

void bitclear(int c, int d);

void stop(void);

void turn(void);

void main(void)

{

init_analog();

init_motorme();

init_clocktjp();

init_servome();

/*turn off LEDs and turn on IRs*/

*(unsigned char *) 0x5000=0x00;

five = 0x00;

*(unsigned char *) 0x7000=0x0F;

bitset(0x5000, 0x10);

/*take avarage value of fifty readings from debris sensor*/

for (j = 0; j < 50; ++j){

dirt = DEBRIS;

++fifty;

sum = (sum + dirt); }

VACLEVEL = (sum / fifty);

printf("{%d}", VACLEVEL);

bitclear(0x5000, 0xEF);

/*turn on vacuum*/

bitset(0x5000, 0x01);

printf("vacuum on");

while(1)

{

if (mode == 0)

{

wall();

vacuum();

bitset(0x5000, 0x02);

bitclear(0x5000, 0xFB);
}

else

if (mode == 1)

{

obstaclecorpse();

vacuum();

bitset(0x5000, 0x04);

bitclear(0x5000, 0xFD);
}

else

{

while(1){};

}

}

}

void obstaclecorpse(void)

{

int rir, lir, mir, rspeed, lspeed, bump, i;

rir = RIGHT_IR;

lir = L_IR;

mir = MID_IR;

i = PORTA;

bump = (i & 0x04);

if (mir > AVOID)

{

if (rir >= lir)

{

lspeed = LSTOP;

rspeed = RFWD;

}

else

if (lir > rir)

{

lspeed = LFWD;

rspeed = RSTOP;

}

}

else

{

if (rir > AVOID)

{

if (lir > AVOID)
{

lspeed = LFWD;

rspeed = RFWD;
}

else

{

lspeed = LSLOW;

rspeed = RFWD;
}

}

else

if (lir > AVOID)

{

if (rir > AVOID)
{

lspeed = LFWD;

rspeed = RFWD;
}

else

{

lspeed = LFWD;

rspeed = RSLOW;
}

}

 /*random turns only occur when not avoiding any objects*/

else

{

++random;

if (random == 1500)

turn();

lspeed = LFWD;

rspeed = RFWD;

}

}

/*routine for front bumper or stuck in tight situation*/

if ((bump == 4)
| ((lir > CLOSE) && (rir > CLOSE) && (mir > CLOSE)))
{

lspeed = LSTOP;

rspeed = RSTOP;

servo(0, lspeed);

servo(2, rspeed);

wait(50);

lspeed = LREV;

rspeed = RREV;

servo(0, lspeed);

servo(2, rspeed);

wait(600);

turn();

lspeed = LFWD;

rspeed = RFWD;

}

servo(0, lspeed);

servo(2, rspeed);

 /*wall follows 10% of time*/

if (count2 == 1 | count2 ==11 | count2 == 21 | count2 == 31 | count2 == 41 | count2 == 51)

mode = 0;

else

mode = 1;

}

void wall(void)

{

int lwall, rwall, rspeed, lspeed, rir, lir, mir, bump, i;

i = PORTA;

lwall = (i & 0x02);

rwall = (i & 0x01);

bump = (i & 0x04);

rir = RIGHT_IR;

lir = LEFT_IR;

mir = MID_IR;

if (lwall == 2)

{

onleft = 1;

onright = 0;

if (lir > 105) {

lspeed = LFWD;

rspeed = RSTOP;

 }

else

if (lir < 95) {

lspeed = LSLOW;

rspeed = RFWD;

 }

else

if (mir > 120)

{

lspeed = LFWD;

rspeed = RSTOP;

}

else

 {

lspeed = LFWD;

rspeed = RFWD;

 }

 }

else

if (rwall == 1)

{

onright = 1;

onleft = 0;

if (rir > 115)

 {

rspeed = RFWD;

lspeed = LSTOP;

 }

else

if (rir < 105)

 {

rspeed = RSLOW;

lspeed = LFWD;

 }

else

if (mir > 120)

{

lspeed = LSTOP;

rspeed = RFWD;

}

else {

lspeed = LFWD;

rspeed = RFWD;

 }

}

else

if ((lwall == 0)&&(rwall == 0))

{

 /*goes back to wall if spring sensor does not touch anymore*/

if (onright == 1) {

rspeed = RSLOW;

lspeed = LFWD;

}

else

if (onleft == 1) {

rspeed = RFWD;

lspeed = LSLOW;

}

 /*finds wall initially*/

else {

if ((mir > CLOSE)&&((rir + 7) >= lir)){

lspeed = LSLOW;

rspeed = RFWD; }

else

if ((mir > CLOSE)&&(lir >= (rir + 7))){

lspeed = LFWD;

rspeed = RSLOW; }

else {

lspeed = LFWD;

rspeed = RFWD;}

 }

}

if (bump == 4)

{

lspeed = LREV;

rspeed = RREV;

servo(0, lspeed);

servo(2, rspeed);

wait(2000);

onright = 0;

onleft = 0;

}

servo(0, lspeed);

servo(2, rspeed);

if (count2 == 1 | count2 ==11 | count2 == 21 | count2 == 31 | count2 == 41 | count2 == 51)

mode = 0;

else

mode = 1;

}

void vacuum(void)

{

int dust;

dust = DEBRIS;

 /*when debris detected, resets debris counters*/

if (dust < (VACLEVEL - 3)){

bitset(0x5000, 0x10);

dcount1 = 1;

dcount2 = 1;

++stuck;

printf("break");

}

else

stuck = 1;

/*if beam broken for 50 consecutive readings stuck LED comes on*/

if (stuck == 50)

bitset(0x5000, 0x08);

 /*counter for time slicing main routines*/

++count1;

if (count1 == 0 | count1 == 21811 | count1 == -21811){

++count2;}

++dcount1;

if (dcount1 == 0 | dcount1 == 21811 | dcount1 == -21811){

++dcount2;

printf("\n %d", dcount2);}

 /*if no debris detected for approximately 2 minutes, vacuum off*/

else

if (dcount2 == 4){

bitclear(0x5000, 0x00);

printf("done");

mode = 3;

stop();

 }

else

if (dcount1 == 5000){

bitclear(0x5000, 0xEF);

bitclear(0x5000, 0xF7);}

}

/*enter location of bits, and specific bits to be set*/

void bitset(int a, int b){

int temp;

temp = five;

temp = (temp | b);

*(unsigned char *) a = temp;

five = temp;

}

/*same as bitset, but enter inverse of bits to be cleared*/

void bitclear(int c, int d){

int temp2;

temp2 = five;

temp2 = (temp2 & d);

*(unsigned char *) c = temp2;

five = temp2;

 }

/*finds wall and stops when bumper touches*/

void stop(void){

int rir, lir, mir, rspeed, lspeed, bump, i;

while (bump != 4)

{

rir = RIGHT_IR;

lir = L_IR;

mir = MID_IR;

i = PORTA;

bump = (i & 0x04);

if (mir > AVOID)

{

if ((rir + 7) > lir)

{

lspeed = LFWD;

rspeed = RSLOW;

}

else

if (lir > (rir + 7))

{

lspeed = LSLOW;

rspeed = RFWD;

}

else

{

lspeed = LSLOW;

rspeed = RSLOW;
}

}

else

{

lspeed = LFWD;

rspeed = RFWD;

}

servo(0, lspeed);

servo(2, rspeed);

wait(10);

}

servo(0, LSTOP);

servo(2, RSTOP);

}

/*executes random turn for random amount of time*/

void turn(void)

{

int i;

unsigned rand;

rand = TCNT;

if (rand & 0x0001)
{

servo(0, LREV);

servo(2, RFWD);
}

else

{

servo(0, LFWD);

servo(2, RREV);
}

i = (rand % 1024);

if (i > 250)

wait(i);

else

wait(250);

random = 1;

}

� EMBED Excel.Sheet.8 ���

2
2

[image: image3.wmf]Debris Sensor

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

95.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Series1

_1027194506.xls
Chart1

		95

		95

		95

		95

		95

		95

		95

		94

		94

		93

		93

		93

		92

		92

		93

		94

		95

		95

		95

		95

		95

		95

		95

		95

		95

		95

Sharp Can Value

Debris Sensor

Sheet1

		95		1

		95		2

		95		3

		95		4

		95		5

		95		6

		95		7

		94		8

		94		9

		93		10

		93		11

		93		12

		92		13

		92		14

		93		15

		94		16

		95		17

		95		18

		95		19

		95		20

		95		21

		95		22

		95		23

		95		24

		95		25

		95		26

Sheet2

		

Sheet3

		

