

University of Florida

Department of Electrical and Computer Engineering
EEL5666

Intelligent Machines Design Laboratory

BeggarBot
Final Report

Date: 8/8/02
Student Name: David Choy
TA: Tae Choi

 Uriel Rodriguez
Instructor: Arroyo/Schwartz

 2

Table of Contents

1) Abstract . p. 3

2) Executive Summary p. 3

3) Introduction . p. 3-4

4) Integrated System . p. 4

5) Mobile Platform . p. 5

6) Actuation . p. 6

7) Sensors . . p. 7-9

8) Behaviors . p. 10

9) Operational Flow Chart p. 11

10) Experimental Layout and Results p. 12-13

11) Conclusion p. 14

12) Documentation p. 14

13) Appendices p. 15-27

 3

Abstract

BeggarBot is an autonomous robot that searches for humans in order to ask them
for money. If a donation is made, BeggarBot is happy and goes along its way looking for
more humans. If a donation is not made, BeggarBot gets angry and will shoot the stingy
person. As a result of being lazy, BeggarBot will stop all actions once it has collected
enough money for the day.

Executive Summary

 BeggarBot performs all behaviors as intended in the initial design proposal. I

completed the robot about one week in advance, which gave me time to add the ability to

talk. Although this was successful, I did not have a housing for the speech board and

speaker on BeggarBot. This explains why the speech board looks like it was thrown on

the side of the robot - because it really was. One other improvement I could have made

to the robot's speech is to amplify the output to the speakers. However, I did not have

enough free time to devote to this. Another issue that can be improved upon is the

selection of the pyroelectric sensor. Although the sensor I selected was one of the more

expensive ones, it provided inconsistent data. If this robot were to be used for a more

serious application, a more accurate pyroelectric sensor is required. Overall I am

satisfied with the final product I have achieved and believe my robot is a success.

Introduction

 Everyone has been approached at least once in their lives by people asking for

money, whether it be a family member, friend, or even a stranger. I will refer to people

who ask for money as beggars. In many instances, the beggar provides an honest reason

for needing the money - usually the case for family and friends. Strangers, on the other

hand, may or may not be telling the truth. I have noticed in my experience that some

 4

dishonest people actually make a living asking for money based on a few colorful lies

they circulate through.

My robot design intends to model an extremely persuasive beggar. This project

can be used as part of a study of people's reactions to beggars, a study on ways to avoid

beggars, or to collect statistical data on the type of people who are willing to donate

money to strangers. The following sections describe the system components, platform,

actuators, sensors, robot behaviors, and experimental procedures and results of my robot.

Integrated System

 Figure 1 shows a block diagram of the complete integrated system. BeggarBot is

controlled by a 68HC11 mounted on a MTJPRO11 board. The sensory system is

composed of 2 IR detectors, 4 bump switches, a photointerrupter, and a pyroelectric

sensor. The actuating system consists of 2 servos modified for continuous rotation to

drive the robot, 1 standard servo used as a sweeper, and 1 standard servo used for pulling.

6 NiCd AA batteries will power the overall system.

Fig.1 Complete Integrated System

 MTJPRO11 Batteries

IR
detectors

Bump
switches

Photo-
interrupter

Pyroelectric
sensor

Drive servos Sweep servo Pulling servo

 5

Mobile Platform

BeggarBot's platform resembles the basic shape of a TJPro. Another level was

added on top in order to support the coin repository and the shooting device. The

platform was designed to house all the sensors and actuators in a compact and

aesthetically pleasing manner. Figures 2 and 3 show the structural parts of the body. The

round platforms were redesigned in the second board to support bump detection along

with larger holes for mounting screws.

 Fig.2 First Board

 Fig.3 Second Board

 6

Actuation

1) Drive motors

Purpose: The drive motors will control the movement of the robot.

Theory: A DC motor is the obvious solution to this problem. However, a

servo can be hacked to act like a DC gear-head motor. The

advantage is that these hacked servos can be driven directly from

the TJPro board without motor drivers.

Application: Two hacked servos with wheels attached to the horns will act as

the drive motors for BeggarBot.

2) Pyroelectric sensor sweep

 Purpose: The sweeper will control the movement of the pyroelectric sensor.

Theory: Servos have limited rotation for precision angular control. This

property can be used to position a device at different angles.

Application: The pyroelectric sensor will be mounted on the servo horn so the

sweep angle can be controlled by the servo.

3) Trigger puller

Purpose: The trigger puller will be used to depress the trigger on the

shooting device.

Theory: The movement of a servo is limited to 180 degrees of rotation. By

sending proper PWM signals, the servo arm can be moved from

one extreme to the other.

Application: A servo will be connected to shooting device in order to control the

trigger action.

 7

Sensors

1) IR emitter/detector (Part #: GP2D12)

Purpose: This sensor detects the amount of IR at a specific frequency.

Theory: This part is composed of both the IR emitter and detector. The

emitter outputs a modulated IR beam that is tuned to the detector's

sensitivity. The detector outputs an analog voltage that is

proportional to the intensity it sees.

Application: The IR sensors will be mounted at the front of BeggarBot. One

will be placed at the left front, the other at the right front. While

executing collision avoidance, once either detector obtains a

reading above a maximum threshold, the robot will turn to avoid

the object.

 Vendor: Mekatronix
316 NW 17th Street, Suite A
Gainesville, FL 32603

 352-376-7373

2) Bump switch

Purpose: Bump switches are basic push-button switches that let you know if

the button is pressed or not.

Theory: While the button is depressed, the terminals are short-circuited.

When the button is not depressed, the terminals are open.

Application: The bump switches will be placed at the front and back of the

robot's platform as a backup to the IR detectors. Along with aiding

in collision avoidance, the bump switches will also be used to

activate the robot upon reset.

 8

3) Pyroelectric sensor (Part #: R3-PYRO1)

Purpose: Pyroelectric sensors detect heat, outputting a voltage proportional

to the amount that it detects. This particular sensor is tuned to the

human body's infrared emissivity.

Theory: The detector is sensitive to all optical radiation. The detector

window limits the energy reaching the detector to about 7 - 16

micrometers. Humans emit a variety of wavelengths with the

wavelength of maximum energy around 9 micrometers. These

values are independent of race, but can be affected by clothing and

inhibited circulation due to smoking. This detector uses lithium

tantalite for its active substrate element since it is sensitive in the 8

- 14 micrometer range. Each side of the substrate is doped with an

electrode. When infrared energy hits the substrate, a charge is

developed between the electrodes, which is then amplified and

used as the output. This pyroelectric sensor uses a dual element

design that provides better performance than a single element

design.

Application: This sensor will be mounted on a servo at the front of the robot.

The servo will sweep left-right and right-left in order to detect both

moving and stationary humans.

 Vendor: www.acroname.com

4) Photointerrupter (Part #: Sharp 1A34LC)

 9

Purpose: A photointerrupter indicates if an object passes through it's

detection slot.

Theory: The photointerrupter uses an IR emitter mounted on one side of the

detection slot and an IR detector mounted on the other side of the

detection slot. The output of this device tells you when the IR

beam has been broken.

Application: The photointerrupter will be mounted on the inside of the coin

repository immediately underneath the coin slot. This will allow

the robot to know if a coin has been placed in the collector.

 Vendor: spare printer parts from the TA

 10

Behaviors

1) Obstacle avoidance:

 BeggarBot uses 2 IR emitter/detector pairs along with 4 bump switches to

implement obstacle avoidance. The left and right IR detectors tell how close an object is

in front of the robot. This allows BeggarBot to adjust its course to avoid colliding with

the object. If the IR detectors do not detect an object, the bump switches allow the robot

to stop moving whenever there is contact. The response of the robot to IR and bump data

will depend on the specific action being performed at the time.

2) Human search:

 BeggarBot will search for a human using a pyroelectric sensor that sweeps back

and forth, detecting body heat. Once a human is detected, or what it thinks is a human,

BeggarBot will position itself in front of the person.

3) Leave if satisfied:

 Once the robot is positioned in front of the human, it will expect a small donation

to be placed in the coin repository. If BeggarBot detects that a donation has been made,

it will turn around and start searching for another person. Once BeggarBot has obtained

enough money for the day, it stops all movement and waits for its owner.

4) Shoot if not satisfied:

 If BeggarBot detects that a donation has not been made, it will get very angry and

shoot at the person standing in front of it.

 11

y

y

y

y

n

n

n

n n

n

n

Operational Flow Chart

 Start

Rear
bumper

Full scan

Detect
human

Random turn,
forward

Forward search

Object
detect

midscan

Detect
human

message

Detect
coin

attack

Random turn,
forward

 3
donations

Rear
bumper

y

y

y

 12

Experimental Layout and Results

1) IR sensitivity

 Objective: Obtain the characteristics of each IR detector.

Procedure: I used an A/D port to read and print out the value of the IR detector

as I held a sheet of white paper in front of the device at different

distances.

Results: The maximum reading for both detectors occurred at 4 inches. The

left value was 144 and the right value was 145. Figure 4 shows the

results over a range of 2 feet.

IR detectors

0
20
40
60
80

100
120
140
160

0 2 4 6 8 10 12 14 16 18 20 22 24 26

distance (inches)

se
ns

or
 v

al
ue

left
right

Fig.4 IR characteristics

2) Pyroelectric sensitivity

 Objective: Obtain the characteristics of the pyroelectric sensor.

 13

Procedure: I used an A/D port to read and print out the value of the sensor

output. While the sensor was sweeping, I positioned myself at

various distances in front of the robot and recorded the reading.

Results: Figure 5 shows a graph of an average of the data that I obtained. I

am setting the threshold for the sensor at 140 since the smallest

human detect reading I obtained during the individual trials was

141. The output hovers between 125 - 135 when there is nothing

to detect. Clothing, as opposed to bare skin, seems to lower the

reading of the output. I noticed the sensor is fooled by televisions

and computer monitors. The sensor probably does not filter out the

radiation they emit properly. I also noted that the output

occasionally gets stuck at its high or low voltage level. This is

eventually corrected as the sensor continues to sweep.

Pyroelectric Sensor

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11

distance (feet)

se
ns

or
 v

al
ue

 Fig.5 Pyroelectric characteristics

 14

Conclusion

 I am satisfied with the final state of BeggarBot. All actuators and sensors work

well enough for the applications of my robot. BeggarBot can run for over 15 minutes

with the 6 NiCd AA battery pack. If I were to start over with my design, I would have a

more creative body, one that does not resemble a modified TJ Pro. One other

modification would be to have the ability to differentiate between different types of coins

and act based upon those observations. This would require a redesign of the coin

collector and perhaps a different sensor such as a load cell. Besides these two

considerations, all other specifications of my design would stay the same.

Documentation

[1] Keith L. Doty, Gainesville, FL,

TJPro Assembly Manual; Mekatronix 1999.

 15

Appendices

Final Robot Code

/**************************** Includes **********************************/

#include <tjpbase.h>
#include <stdio.h>

/**************************** Constants *********************************/

#define GUNSERVO 0
#define PYROSERVO 2

#define COIN analog(5)
#define PYROPORT analog(6)

#define LED_ON *(unsigned char *)(0x7000) = 0x80
#define LED_OFF *(unsigned char *)(0x7000) = 0x00

#define AVOID_THRESHOLD 90

/************************ Function Prototypes******************************/

void stopmotors();
void turnright(int time);
void turnleft(int time);
void forward(int time);
void reverse(int time);
void randomturn();
void randomforward();
int forward_search(int time);
int objectdetect();
int init_scan();
int mid_scan();
void clearpyro();
int coin_detect();
void attack();
void message();

/****************************** Main ***********************************/

int full;

void main() {

 16

 init_motortjp();
 init_servotjp();
 init_analog();
 init_serial();
 init_clocktjp();

 full = 0;

 LED_ON;
 while(BUMPER<120);
 LED_OFF;
 while(1) {
B1: if (init_scan()) {
B2: servo(PYROSERVO, 1500);
 if (forward_search(2500)) {
 // BEG
 message();
 if (!(coin_detect())) {
 reverse(1000);
 attack();
 }
 randomturn();
 randomforward();
 if (full >= 3) {
 START;
 full = 0;
 }
 goto B1;
 } else {
 if (mid_scan()) {
 goto B2;
 } else {
 goto B1;
 }
 }
 } else {
 randomturn();
 randomforward();
 }
 }

}

/*************************** Function Definitions*************************/

void stopmotors() {

 17

 motorp(LEFT_MOTOR, 0);
 motorp(RIGHT_MOTOR, 0);
}

/**/

void turnright(int time) {
 motorp(LEFT_MOTOR, 100);
 motorp(RIGHT_MOTOR, -100);
 wait(time);
 stopmotors();
}

/**/

void turnleft(int time) {
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, 100);
 wait(time);
 stopmotors();
}

/**/

void forward(int time) {
 int i;
 motorp(LEFT_MOTOR, 100);
 motorp(RIGHT_MOTOR, 100);
 for (i=time; i>=0; i=i-50) {
 if (objectdetect()) {
 randomturn();
 randomforward();
 break;
 } else {
 wait(50);
 }
 }
 stopmotors();
}

/**/

void reverse(int time) {
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, -100);
 wait(time);

 18

 stopmotors();
}

/**/

void randomturn() {

 int i;
 unsigned rand;

 rand = TCNT;

 i=(rand % 1024);
 if (i <= 250) i = 250;

 if (rand & 0x0001) {
 turnleft(i);
 }
 else {
 turnright(i);
 }

}

/**/

void randomforward() {

 int i;
 i=(TCNT % 5000);
 if(i>100) forward(i); else forward(1000);

}

/**/

int forward_search(int time) {
 int i;
 int rval = 0;
 motorp(LEFT_MOTOR, 100);
 motorp(RIGHT_MOTOR, 100);
 for (i=time; i>=0; i=i-50) {
 if (objectdetect()) {
 rval = 1;
 break;
 } else {

 19

 wait(50);
 }
 }
 stopmotors();
 return rval;
}

/**/

int objectdetect() {

 if ((RIGHT_IR > AVOID_THRESHOLD) || (LEFT_IR > AVOID_THRESHOLD)) {
 return 1;
 } else if (FRONT_BUMP) {
 return 1;
 } else {
 return 0;
 }

}

/**/

int init_scan() {

 int i,high,pyro,rval;
 rval = 0;
 high = 0;
 clearpyro();
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, 100);
 for (i=2000; i>=0; i=i-2) {
 //printf("{%d}\n", analog(6));
 pyro = PYROPORT;
 if (pyro > high) high = pyro;
 wait(2);
 }
 stopmotors();
 wait(1000);

if (high > 141) {
 LED_ON;
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, 100);
 for (i=2000; i>=0; i=i-2) {
 //printf("{%d}\n", analog(6));

 20

 pyro = PYROPORT;
 if (pyro > high-10 && pyro > 141) {
 rval = 1;
 break;
 }
 wait(2);
 }
 stopmotors();
 LED_OFF;
}

 return rval;
}

/**/

int mid_scan() {

 int i,high,pyro,rval;
 rval = 0;
 high = 0;
 turnright(90);
 clearpyro();
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, 100);
 for (i=180; i>=0; i=i-2) {
 //printf("{%d}\n", analog(6));
 pyro = PYROPORT;
 if (pyro > high) high = pyro;
 wait(2);
 }
 stopmotors();
 wait(1000);

if (high > 141) {
 LED_ON;
 turnright(180);
 clearpyro();
 motorp(LEFT_MOTOR, -100);
 motorp(RIGHT_MOTOR, 100);
 for (i=180; i>=0; i=i-2) {
 //printf("{%d}\n", analog(6));
 pyro = PYROPORT;
 if (pyro > high-10 && pyro > 141) {
 rval = 1;
 break;

 21

 }
 wait(2);
 }
 stopmotors();
 LED_OFF;
}

 return rval;
}

/**/

void clearpyro() {

 servo(PYROSERVO, 2650);
 wait(1000);
 servo(PYROSERVO, 2950);
 wait(100);
 servo(PYROSERVO, 2650);
 wait(100);
 servo(PYROSERVO, 2950);
 wait(100);
 servo(PYROSERVO, 2800);
 wait(500);

}

/**/

int coin_detect() {

 int i;
 for (i=100; i>=0; i=i-10) {
 COIN;
 wait(10);
 }
 LED_ON;
 for (i=5000; i>=0; i=i-10) {
 if (COIN > 20) {
 full++;
 wait(1000);
 LED_OFF;
 return 1;
 }
 wait(10);
 }

 22

 LED_OFF;
 return 0;

}

/**/

void attack() {

 servo(PYROSERVO, 2800);
 wait(500);
 // pull trigger
 servo(GUNSERVO,3200);
 wait(500);
 servo(GUNSERVO,0);
 wait(1000);
}

/**/

void message() {

 SET_BIT(PORTA,0x20);
 wait(250); // message length
 CLEAR_BIT(PORTA,0x20);
 wait(5000);

}

/**/

Analog test code

/**************************** Includes **********************************/
#include <tjpbase.h>
#include <stdio.h>
/************************ End of includes *******************************/

void main(void)
/****************************** Main ***********************************/
{
 int port,val;

/* VT100 clear screen */
 char c1, clear[]= "\x1b\x5B\x32\x4A\x04";

 23

/* VT100 position cursor at (x,y) = (3,12) command is "\x1b[3;12H"*/
 char place[]= "\x1b[1;1H"; /*Home*/

 init_clocktjp();
 init_analog();

 printf("%s", clear);
 printf("%s", place);

 printf("Enter analog port number (0-7): ");
 port = read_int();

while(1)
{
 val = analog(port);
 //printf("analog({%d}) value: {%d}\n",port,val);
 printf("%d\t",val);
 wait(10);

}

}
/**************************** End of Main ******************************/

Bumper test code

#include <analog.h>
#include <motortjp.h>
#include <clocktjp.h>
#include <isrdecl.h>
#include <vectors.h>
#include <stdio.h>

#define BUMPER analog(0)

void main(void) {

 int i,value;
 init_analog();
 while(BUMPER<120);
 while(1) {
 value = BUMPER;
 printf("bump value: {%d}\n",value);
 for (i=0; i<30000; i++);
 for (i=0; i<30000; i++);

 24

 for (i=0; i<30000; i++);
 }

}

IR test code
#include <analog.h>
#include <motortjp.h>
#include <clocktjp.h>
#include <isrdecl.h>
#include <vectors.h>
#include <stdio.h>

#define BUMPER analog(0)
#define LEFT_IR analog(2)
#define RIGHT_IR analog(3)

void main(void) {

 int i,irdr,irdl;
 init_analog();
 while(BUMPER<120);
 while(1) {
 irdr = RIGHT_IR;
 irdl = LEFT_IR;
 printf("Right IR value: {%d}\n",irdr);
 printf("Left IR va lue: {%d}\n",irdl);
 for (i=0; i<30000; i++);
 for (i=0; i<30000; i++);
 for (i=0; i<30000; i++);
 }

}

Motor test code

/**************************** Includes **********************************/
#include <tjpbase.h>
#include <stdio.h>
/************************ End of includes *******************************/

void main(void)
/****************************** Main ***********************************/
{
 int i,lspeed, rspeed, servo_index;

 25

 unsigned int PW;

/* VT100 clear screen */
 char c1, clear[]= "\x1b\x5B\x32\x4A\x04";

/* VT100 position cursor at (x,y) = (3,12) command is "\x1b[3;12H"*/
 char place[]= "\x1b[1;1H"; /*Home*/

// init_servotjp();
 init_motortjp();
 init_serial();
 init_clocktjp();

while(1)
{

 printf("%s", clear);
 printf("%s", place);

 printf("Enter percent of left motor speed, a number between -100 and 100: ");
 lspeed = read_int();

 printf("Enter percent of right motor speed, a number between -100 and 100: ");
 rspeed = read_int();

 motorp(RIGHT_MOTOR, rspeed);
 motorp(LEFT_MOTOR, lspeed);

 printf("Type any character to input new data.");
 c1 = get_char();
}

}
/**************************** End of Main ******************************/

Pyro test code

/**************************** Includes **********************************/
#include <tjpbase.h>
#include <stdio.h>
/************************ End of includes *******************************/

void main(void)
/****************************** Main ***********************************/
{
 int i,j,data,high,pyro;

 26

 init_servotjp();
 init_analog();
 init_serial();
 init_clocktjp();

while(BUMPER<20);

while(1)
{

 printf("\n");
 servo(2,1800);
 wait(500);
 for (i=2200; i<=3800; i+=400) {
 high = 0;
 servo(2, i);
 for (j=70; j>=0; j=j-2) {
 pyro = analog(6);
 if (pyro > high) high = pyro;
 wait(2);
 }
 printf("{%d}\n", high);
 }
 //data = read_int();

}

}
/**************************** End of Main ******************************/

Servo test code

/**************************** Includes **********************************/
#include <tjpbase.h>
#include <stdio.h>
/************************ End of includes *******************************/

void main(void)
/****************************** Main ***********************************/
{
 int i,lspeed, rspeed, servo_index;
 unsigned int PW;

/* VT100 clear screen */

 27

 char c1, clear[]= "\x1b\x5B\x32\x4A\x04";

/* VT100 position cursor at (x,y) = (3,12) command is "\x1b[3;12H"*/
 char place[]= "\x1b[1;1H"; /*Home*/

 init_servotjp();
// init_motortjp();
 init_serial();
 init_clocktjp();

while(1)
{

 printf("%s", clear);
 printf("%s", place);

 printf("\nEnter Servo Index: 0 to 2 (PA4-PA6) ");
 servo_index = read_int();

 printf("Enter Servo Pulse Width: 1000<PW<4000 or PW=0: ");
 PW = read_int();

 servo(servo_index, PW);

 printf("Type any character to input new data.");
 c1 = get_char();
}

}
/**************************** End of Main ******************************/

