
 
 
 

University of Florida 
Department of Electrical and Computer Engineering 

EEL 5666 
Intelligent Machines Design Laboratory 

 
 
 
 
 
 
 
 
 
 

WoMAN 
(Work-Oriented Mobile Autonomous Neat- freak) 

 
 
 
 
 
 
 
 
 

Name: Eric Donnelly 
Date: 8/8/02 

TAs: Tae Choi 
Uriel Rodriguez 

Instructor: Dr. A. A Arroyo 
             Dr. Eric M. Schwartz 

 
 
 
 
 
 
 
 
 
 
 
 



 2 

 
Table of Contents 
 
Executive Summary    3 
Abstract      4 
Introduction     5 
Integrated System    6 
Mobile Platform     7 
Actuation      9 
Sensors      10 
Behaviors      13 
Conclusion     15 
Documentation     16 
Appendix      17 
 

 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

Executive Summary 
 
WoMAN is designed for the purpose of vacuuming floors independently. Instead of 

developing complex algorithms to increase cleaning efficiency, which could only be used 

in a controlled environment, this robot design used a code based off of random numbers, 

routing the robot in different directions even when the same environment is used 

repeatedly.  The robot may cross over its own path, but it will most likely never take the 

exact path twice. Therefore, WoMAN will eventually clean an entire room, no matter 

what its size or shape. Obstacle avoidance is achieved by using IR as well as bump 

sensors, to provide two levels of obstacle detection. The robot’s reaction to these stimuli 

is also based on random numbers, in order to provide a great deal of robustness, and 

ensures that the robot cannot easily get “stuck”, where one sensor sends the robot in one 

direction, then another sensor sends the robot back the same direction. 

 

In order for WoMAN to be independent, it must be able to replenish its energy. In other 

words, the robot must be able to recharge its batteries. This is achieved by having the 

robot monitor its battery voltage, and when it drops below a predetermined threshold, it 

must begin searching for a place to recharge. WoMAN’s recharging station’s use a light 

bulb to act as a beacon.  WoMAN uses CdS cells to detect this light beacon, and follow it 

until it makes contact with the recharging station. Once the robot is recharging its 

batteries, it monitors their temperature to detect when they are fully charged. When the 

batteries temperature goes above a predetermined threshold, the robot disconnects from 

the station, and begins to vacuum again. 

 



 4 

Abstract 
 
WoMAN is an autonomous vehicle that randomly moves around a room vacuuming the 
floor as it goes. WoMAN monitors its battery and returns to its recharging station when it 
becomes low on power. WoMAN will demonstrate obstacle avoidance of walls as well as 
objects in the room, including people.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

Introduction 
 
Nobody likes a dirty floor. However, the solution to this is a task that few enjoy. Having 

to take the time and effort to sweep or vacuum a floor when you could be doing 

something much more productive (like watching TV) is highly undesirable. Hiring a 

maid to do this job for you can be very costly; therefore, another solution is needed. 

WoMAN is the solution. WoMAN roams around a room sucking up any dust or dirt on 

the floor. It avoids any obstructions in the room (walls, boxes, people), and when it gets 

low on battery power, it shuts down its vacuum (to save power) and finds its way back to 

a recharging station, where it recharges its batteries and sets off on another cleaning 

rampage. It can be left to do this all day long, or can be switched on at night to clean your 

floors while you sleep, and stay out of your way.   

 

 

 

 

 

 

 

 

 



 6 

Integrated System 

The robot uses a cylindrical platform for optimum mobility. This allows the robot to turn 

in place. Mounted on this are two hacked Futaba S3004 servos to drive the system. The 

brains of WoMAN is an Atmel ATmega163 microcontroller mounted on a MegaAVR 

development board. This chip has 3 PWM channels, two of which are used to control the 

speed of the servos. Two Infrared (IR) sensors (Sharp GP2D12) are used to detect the 

presence of an obstacle in the robot’s vicinity. These sensors are mounted cross-eyed at 

20 degrees from straight forward. Six bump switches surround the platform to sense the 

presence of obstacles from all directions, and act as a back-up for the IR sensors. Two 

CdS cells are used for finding its recharging station, which uses a 75-Watt light bulb as 

its beacon. Two LM35DT temperature sensors are used to monitor the temperature of the 

batteries while being recharged. The robot connects with the recharging station through at 

plate mounted on the front of its body and its bumper rim. A block diagram of this system 

can be seen in Figure 1 on the following page. 



 7 

 

Mobile Platform 

The platform used for WoMAN is cylindrically shaped, in order to decrease the chances 

of the robot getting stuck where it cannot escape. This shape allows WoMAN to spin in 

place, enabling itself to easily escape from corners. The platform is 11” in diameter and 

5” tall. The center of mass of the robot is near the rear of the platform, with the fan for 

the vacuum and the two battery packs, one for the fan and the controller, respectively. A 

nylon bulb  is mounted under the rear of the platform to support WoMAN (along with the 

2 wheels connected to the driving servos). CdS cells are mounted along with the IR 

detectors at the front of the platform. The temperature sensors are mounted on the battery 

packs, and adhered with heat-sink compound for good thermal conductivity.  Around the 

rim of the robot are the six bump switches. A 12-Gauge insulated copper wire is glued to 

the switches and encircles the entire platform. This allows the robot to detect obstacles 



 8 

from any direction. The front quadrant of this wire is stripped, exposing the copper. This 

wire is also connected the entire system’s ground. This allows the bumper rim to act as 

one of the conduction plates to be connected to the recharging station. The other 

conduction plate is mounted flat on the front of the robot, under the IR detectors and CdS 

cells. This plate is connected to the positive terminal of the controller’s battery pack. The 

placement of the conduction plates was decided after a dimensional analysis of the robot. 

Described in Cartesian coordinates; the robot moves in only two dimensions, along the 

xy-plane. Therefore all points on the robot along the z-axis will remain constant. 

Arbitrarily choosing any two points along this axis for placement of the conduction plates 

allows for predictable points of contact to the recharging station. This method is superior 

to any other DC conduction plate method placed in the xy-plane, such as the floor, which 

is vulnerable to reversed polarity across the plates. However, an AC in solution the xy-

plane is acceptable, but requires a rectifier circuit onboard the robot.   



 9 

 

Actuation 

Two hacked Futaba servos are used to drive and steer the robot. PWM, which is 

integrated into the ATmega163, is used to determine the speed and direction the motors 

will be running. The fan uses a separate battery pack to isolate it from the 

microcontroller. The fan is controlled by the microcontroller via a TTL logic relay to shut 

it down when the battery is low. Another relay is connected between the battery packs to 

allow the microcontroller to bridge them together once the fan is turned off. This gives 

the servos twice as much power to find the recharging station before the batteries die. 

This circuit is shown  in Figure 2 below. 

 

Figure 2. On-board relay and recharge circuitry 

 

 



 10 

Sensors 

The four types of sensors used in this robot are: IR detectors, Bump sensors, CdS cells, 

and temperature sensors. The CdS cells are used to detect a light beacon, in order for the 

robot to find its recharging station. 

 

Infrared 

Two infrared detectors are used for this robot. These are mounted on the front of the 

robot and angled 20 degrees inward and detect the presence of objects in front of it as 

shown in Figure 3. These sensors are the Sharp GP2D12 IR detectors which output an 

analog voltage relating to the amount of IR light bouncing back from an object. The 

closer the object (to a point), the greater amount of IR. 

 

Figure 3. IR positioning 

 

 



 11 

Bump Sensors  

Six bump sensors are mounted around the robot to detect if the robot runs into anything. 

These are normally-open push-button switches with a solid 12-gauge copper wire 

surrounding the perimeter of the platform as shown in Figure 4. Each switch is connected 

to a specific pin on Port B of the Atmel microcontroller. The switches are all tied to 

ground. Port B of the microcontroller has its internal pull-up resistors set. So in order to 

detect if WoMAN hits something, the microcontroller looks at the logical values of the 

Port B pins. If it sees a ‘1’, then nothing is hit. If a ‘0’ appears on one of the pins, then 

that bump switch is currently triggered and the robot can steer away accordingly.  

 

Figure 4. Bump Sensor Layout 

 

CdS Cells 

Cds cells are used to locate the recharging station. The recharging station has a 75-Watt 

light bulb attached to it, low to the ground, for the CdS cells to detect. When WoMAN is 

low on batteries, it begins to look for a light source. Since these cells are mounted inside 

pen caps, their light-sensitivity becomes very directional. By using two CdS cells, the 

direction of the light and therefore the recharging station can be determined. 

Exposed copper 



 12 

Experimenting with different resistor values for the voltage divider circuits, I found that 

for indoor applications with indoor lighting conditions, a 33kO resistor provides the 

optimum sensitivity. Testing was does done on the mounted CdS cells to determine its 

ability to find the light beacon. A 75-Watt light bulb mounted inside a desk lamp, giving 

it a 100 degree swath, was placed on the ground. The robot was placed at various 

distances away and the CdS cell values were read at various rotations of the robot. The 

data collected is shown below in Table 1. 

 0 degrees 20 degrees right 40 degrees right 20 degrees left 40 degrees left 
feet 
away Left  Right Left  Right Left  Right Left  Right Left  Right 

10 52 54 120 143 158 160 108 88 186 189 
8 39 39 83 91 160 161 87 55 178 163 
6 26 28 66 103 146 158 85 58 171 164 
4 8 14 8 40 39 160 110 16 165 103 
2 6 9 3 108 19 171 96 4 146 20 

Note: the ambient room lighting gave values of 186 and 189, 
respectively.     

     Table 1 

 

Temperature Sensors  

When WoMAN’s batteries get low on power, it finds its way to a recharging station to 

recharge its batteries via the CdS cells. A temperature sensor on each battery pack 

monitors the temperature of the batteries while recharging. If they get too hot, the 

batteries are recharged and the robot disconnects from the charging station and continues 

to clean. These were mounted with heatsink compound to get good thermal conduction 

from the battery pack to the temperature sensors. To find what values the temperature 

sensors read from the batteries the sensors were sampled during a 16 minute recharge. 

The results are shown in figure 5. 



 13 

Temperature vs. Time during 
Recharge

0

5

10

15

20

25

30

35

0 10 20

minutes

d
ig

ita
l v

al
u
e Controller

Battery

Fan Battery

 

    Figure 5 

Note: the starting voltages for the controller and fan batteries were 7.68V and 9.79V, 

respectively. The final voltages were 11.14V and 11.31V respectively. 

 

Behaviors 

WoMAN demonstrates obstacle avoidance by using its infrared and bump sensors. When 

an object is detected, it  chooses a new random direction to follow by taking the Mod of 

the Timer/Counter0 register. Note: the timer/counter used to create the random number 

MUST be different from the timer/counter used for the sensor interrupt service routine if 

a timer overflow interrupt is used. Otherwise, the random number will be determined at 

the same timer value each time. Using random numbers ensures that the ROBOT won’t 

take the exact same path every time it is activated, so it will most likely cover the entire 



 14 

room to be cleaned using a very simple programming algorithm. When WoMAN’s 

batteries get low, determined by a voltage divider connected to one of the A/D converter 

pins, it shuts down its fan to conserve power, bridges the batteries together to give more 

power to the servos, and searches for its recharging station. WoMAN uses a “dizzy 

search” method to find the recharging station. It starts monitoring its light sensors, 

looking for a high amount of light (determined by a threshold value). Every 10 seconds it 

spins in place for one full rotation (2 seconds), checking the light sensors every 10 ms. 

This gives the robot a resolution of 1.8 degrees. Once the light source is found, WoMAN 

locks onto the light source and drives to it. The robot stops when a large voltage is 

present across its batteries (meaning it has made contact with the recharging station). 

While recharging, if WoMAN comes disconnected from the station, it drives forward and 

even begins searching for light until it re-establishes contact with the recharging station. 

WoMAN monitors the temperatures on the battery packs while recharging. If the fan’s 

battery pack is finished recharging first (which should happen since the fan draws less 

current than the controller), the relay bridging the batteries is shut off. Once the 

controller’s battery pack is fully recharged (determined by its temperature), the robot 

disconnects from the recharging station, turns its fan back on, via the relay, and continues 

vacuuming the room. 



 15 

 

Conclusion 

This project set out to create an autonomous robot which could vacuum a room, avoid 

obstacles, and recharge itself when its power was low. WoMAN, the robot designed to 

accomplish these tasks, does this, although modestly. For a first design this robot is a 

success, for lessons are learned throughout the design process, and an even more robust 

second version could be created at the same expense of WoMAN. Some improvements 

could be made with the platform design. Having the bumper rim at a lower height would 

greatly improve the robot’s obstacle avoidance capabilities as shoes and other objects 

with low heights are commonly laying around on household floors. Protection of the 

circuitry would also greatly improve the design, as all of WoMAN’s circuitry resides 

exposed on the top of its platform. This project as strengthened my belief that an 

independent household vacuum is feasible. Hopefully sometime in the near future the 

household chore of manual vacuuming will no longer be necessary, as it will be taken 

over by autonomous robots.  



 16 

Documentation 

Special thanks to Dr. Eric M. Schwartz, Dr. Antonio Arroyo, Tae Choi, Uriel Rodriguez, 

and Dr. David Bloomquist for their contributions to this project. 

 

Atmel Corp., “Atmel AtMega163 Datasheet”, 

http://www.atmel.com/atmel/acrobat/doc1142.pdf. 

 

Progressive Resources, “MegaAVR Development Board”, 

http://www.prllc.com/MegaAVR_Dev.pdf.  



 17 

Appendix 

Program Code 

/********************************************* 
Project : WOMAN 
Version : 3.5 
Date    : 6/17/2002 
Author  : Eric Donnelly 
Company :  
Comments:Final Version  
Interrupt used to read IR and bump, new random generator using mods 
light sensing used, new interrupt routine based on priority sensors 
***adding battery monitor, relays for battery bridge and fan  
*** could be last version 
*** heat monitors integrated also 
 
Chip type           : ATmega163 
Program type        : Application 
Clock frequency     : 6.000000 MHz 
Memory model        : Small 
Internal SRAM size  : 1024 
External SRAM size  : 0 
Data Stack size     : 256 
********************************************* 
 
analog PORT definitions 
0 right IR 
1 left IR 
2 left CdS 
3  right CdS 
4 bad? 
5 uC temp sensor 
6 fan temp sensor 
7 voltage monitor --- .078V per tick, 8.5V = 108, 12V= 155 
 
BUMP SENSORS 
PORTB 
0 rear 
2 left side 
3 left front 
4 front 
5 front right 
6 right 
 
SERVOS 
PORTD.5  Left 
PORTD.4  Right 
 
Relays 
PORTD.2  FAN Enable 
PORTD.6  Power Bridge Enable 
 
Push-Button 



 18 

PORTB.7  find recharge station 
*/ 
 
#include <mega163.h> 
#include <delay.h>         
 
 
#define FIRST_ADC_INPUT 0 
#define LAST_ADC_INPUT 7 
 
#define L_EYE_TOLERANCE 60 //IR tolerance 
#define R_EYE_TOLERANCE 60 //........ 
#define MOTOR_STOP 18 
#define LOW_BATT 108     //ADC.7 value 
#define RECHARGE 155 //ADC.7 value   
#define CPU_TEMP 25     //battery temperature threshold's 
#define FAN_TEMP 23     //....... 
#define LIGHT_TOLERANCE 70 
 
static short int speed_val_l = 0;  //current value 
static short int speed_val_r = 0; 
static short int speed_temp_l = 0; 
static short int speed_temp_r= 0; 
//unsigned char light_val_l= 0; 
//unsigned char light_val_r = 0; 
unsigned char random_num;                               
bit sense = 0;   //tells if something's detected 
int temp; 
int count = 5; 
char batt_count = 0;  
int i = 0;   
bit home_lock = 0; 
bit find_home = 0;  
bit look = 0; 
 
void battery(void); 
void eyes(void); 
void skin(void);   
void light(void); 
void drive(int, int); 
void light(void);   
int random(unsigned char); 
void looky(void); 
 
// Timer 1 overflow interrupt service routine 
interrupt [TIM1_OVF] void timer1_ovf_isr(void) 
{ 
if(look) return; 
PORTC.1 = !PORTD.2; //turn on LED if fan on 
PORTC.0 = !PORTD.6; //turn on LED if batteries bridged 
if(count-- ==0){  
 PORTC.7 = PORTC.7 ^ 1; 
 PORTC.2 = !home_lock; //turn on if home locked 
 battery(); 
 light(); 
      eyes(); 
        skin(); 



 19 

         
 if(sense == 1){ 
        drive(speed_temp_l, speed_temp_r); 
        if(!home_lock) delay_ms(200*(random(7)+2) );//do it for mx 1sec  
    else delay_ms(200); 
        sense = 0; 
        PORTC = PORTC | 0b01110000;    //turn senses LEDs off 
        } 
        count = 3; 
 } 
} 
 
unsigned char analog[LAST_ADC_INPUT-FIRST_ADC_INPUT+1]; 
#define ADC_VREF_TYPE 0xE0      //0x60 --external 5V, 0xE0-- 
internal 2.56V 
// ADC interrupt service routine 
// with auto input scanning 
#pragma savereg- 
interrupt [ADC_INT] void adc_isr(void) 
{ 
#asm 
    push r26 
    push r27 
    push r30 
    push r31 
    in   r30,sreg 
    push r30 
#endasm 
register static unsigned char input_index=0; 
// Read the 8 most significant bits 
// of the AD conversion result 
analog[input_index]=ADCH; 
// Select next ADC input 
if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT)) 
   input_index=0; 
ADMUX=FIRST_ADC_INPUT|ADC_VREF_TYPE|input_index; 
// Start the AD conversion 
ADCSR|=0x40; 
#asm 
    pop  r30 
    out  sreg,r30 
    pop  r31 
    pop  r30 
    pop  r27 
    pop  r26 
#endasm 
} 
#pragma savereg+ 
 
void woman_init(void){ 
// Input/Output Ports initialization 
// Port A initialization 
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In 
Func7=In  
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T 
State7=T  
PORTA=0x00; 



 20 

DDRA=0x00; 
 
// Port B initialization 
PORTB=0xFD; 
DDRB=0x00;  //PORTB.1 is connected to LED 
// Port C initialization 
PORTC=0x7F;  //leave right light on 
DDRC=0xFF; 
// Port D initialization 
 
PORTD=0x00; 
DDRD=0x74; 
 
//Timer 0 set to clock 
TCCR0=0x01; 
TCNT0=0x00; 
// Timer/Counter 1 initialization 
// Clock source: System Clock 
// Clock value: 23.438 kHz 
// Mode: Ph. correct PWM top=00FFh 
// OC1A output: Non-Inv. 
// OC1B output: Non-Inv. 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
TCCR1A=0xA1; 
TCCR1B=0x04; 
TCNT1H=0x00; 
TCNT1L=0x00; 
OCR1AH=0x00; 
OCR1AL=18; 
OCR1BH=0x00; 
OCR1BL=18; 
 
TCCR2=0x00; 
ASSR=0x00; 
TCNT2=0x00; 
OCR2=0x00; 
 
GIMSK=0x00; 
MCUCR=0x00; 
 
TIMSK=0x04; 
 
UBRRHI=0x00; 
 
ACSR=0x80; 
SFIOR=0x00; 
 
// ADC initialization 
// ADC Clock frequency: 93.750 kHz 
// ADC Voltage Reference: Internal 2.56V 
// Only the 8 most significant bits of 
// the AD conversion result are used 
ADMUX=FIRST_ADC_INPUT|ADC_VREF_TYPE; 
ADCSR=0xCE; 
 
 



 21 

} 
 
 
void drive(short int speedl, short int speedr){ //speed from -2 to 2 
   if(speedl > 2) //can't overdrive servos 
   speedl =2;                       //.8 sec max total to change speeds 
   if(speedl < -2) 
   speedl = -2; 
   if(speedr > 2) 
   speedr = 2; 
   if(speedr < -2) 
   speedr = -2;  
   while(speed_val_l != speedl || speed_val_r != speedr){ 
 if(speed_val_l > speedl){ 
  OCR1AL = OCR1AL -1; 
  speed_val_l--; 
 }      
 if(speed_val_l < speedl){ 
  OCR1AL = OCR1AL +1; 
  speed_val_l++; 
 }      
 if(speed_val_r > speedr){ 
  OCR1BL = OCR1BL +1; //installed backwards 
  speed_val_r--; 
 }      
 if(speed_val_r < speedr){ 
  OCR1BL = OCR1BL -1; 
  speed_val_r++; 
 } 
    if(!home_lock) delay_ms(100);  //.2s delay on each increment 
to protect motor 
      //unless following light  
    
    } 
}    
 
 
int random(unsigned char range){  //generates random numbers 
between 0-range, max 254 
 range++; //so not 0-range-1 since using mods 
 return TCNT0 % range; 
} 
 
void eyes(void){                    
 // PORTC = PORTC ^ 0x80; 
 if(home_lock) return; 
 if(analog[1] > L_EYE_TOLERANCE || analog[0] > R_EYE_TOLERANCE){ 
  sense = 1; 
  PORTC.6 =0;  //IR LED 
  PORTC.4 = 1;  //light LED off 
  temp= random(3) - 2; //between -2 and 1 
   if(analog[1] > analog[0] + 10) // some lee-way 
   { speed_temp_l=  temp; 

speed_temp_r= temp + random(3)+1; //always will 
//make point away 

                }                 // from obstacle 
  



 22 

   else if(analog[0] > analog[1] + 10) //some lee-way 
  { speed_temp_l=  temp + random(3)+1; 

speed_temp_r= temp; //always will 
//make point away 

                }                 // from obstacle 
    
                else  

          {speed_temp_l = random(4) -2; //turn in place  
//if straight 

   speed_temp_r = -speed_temp_l;  //forward  
  }  
        } 
} 
 
void light(void){ 
if(((analog[2] < LIGHT_TOLERANCE) || (analog[3] < LIGHT_TOLERANCE)) && 
find_home){ 
  sense =1; 
  home_lock = 1; 
  PORTC.4 = 0;  //turn on light sense LED 
  if(analog[2] < analog[3] - 20 && analog[3] >= 20) 
  {       speed_temp_l =0;            
         speed_temp_r = 2; 
         return;               
  }  
  if(analog[3] < analog[2] - 20 && analog[2] >=20) 
  { speed_temp_r =0;            
   speed_temp_l = 2; 
   return;               
  }   
  if(analog[2] < analog[3] - 5 && analog[3] >=5) 
  { speed_temp_l =1;            
    speed_temp_r = 2; 
   return;               
  }  
  if(analog[3] < analog[2] - 5 && analog[2] >=5) 
  {     speed_temp_r =1;            
        speed_temp_l = 2; 
   return;               
  }  
 } 
 else home_lock = 0;              
}  
 
void skin(void){ 
 if(home_lock) return;   
    if(PINB==125 || PINB==127 || PINB == 253 || PINB ==255) return; 
    sense =1; 
    PORTC.4 =1;  //light LED off 
    PORTC.5 =0;  //skin LED 
    PORTC.6 =1;         //IR LED off 
    while(1){ 
 if(!PINB.4){   //front  
  drive(-1, -1);   //back up 
  delay_ms(300); 

speed_temp_l = random(4) -2; //turn in place 
//if straight 



 23 

  speed_temp_r = -speed_temp_l;  //forward            
  break; 
 }   
 else if(!PINB.3){    //left front 
    speed_temp_l= -1;  //right will reverse harder 
    speed_temp_r= -2; 
   break; 
 }      
 else if(!PINB.5){    //right front 
    speed_temp_r= -1;         //left will reverse harder 
    speed_temp_l= -2; 
   break; 
 }      
 else if(!PINB.2){    //left side 
    speed_temp_l= random(1)+1;  
    speed_temp_r= 0; 
   break; 
 } 
 else if(!PINB.6){ //right side 
    speed_temp_r= random(1)+1;  
    speed_temp_l= 0; 
  break; 
 } 
 else if(!PINB.0){  //forward!! 
    speed_temp_r= random(1)+1;  
    speed_temp_l= random(1) +1; 
  break; 
 }  
 else{ 
 return;       
 }  
     } 
}    
 
void battery(void){ 
 if(find_home ==1){ 
  PORTC.3 = PORTC.3 ^ 1;  //toggle LED 
  return; //no need to check 
 } 

if(analog[7] > RECHARGE){       // if accidentely on  
//station get away 

       drive(-2, -2); 
       delay_ms(200); 
       drive(2, -2); 
       delay_ms(1000); 
      }  
 if((analog[7]< LOW_BATT)|| PINB.7){  //possible low battery 
  if((++batt_count == 10) || PINB.7){  //so no flukes 
   find_home = 1;  //find home 
   PORTD.2 = 0;  //turn off fan 
   PORTD.6 = 1;  //bridge batteries 
  } 
 } 
 else batt_count =0;   //reset if not consecutive  
}   
 
void charge(){ 



 24 

 //found_home = 1;  //so won't look at sensors 
       // delay_ms(200); //let wheels stop moving 
 PORTC = 0xFF; 
 while(1){ 
 while(analog[7] > RECHARGE){     //if recharging 
  if(PORTC == 0x00) 
   PORTC = 0xFF; 
  else  
  PORTC= PORTC << 1; 
   
   
  DDRB.1 = 1;  //turn on recharge light 
  TCCR1B = 0x00;  //don't look at sensors 
  drive(0,0); 
  if(analog[6] > FAN_TEMP) //if fan battery toohot, cut 

//bridge 
   PORTD.6 = 0; 
     //   PORTC.0 = !PIND.7; 
  if((analog[5] > CPU_TEMP) || PINB.7){ //if CPU charged 
//or override 
   home_lock = 0; 
   find_home = 0;  //stop searching 
   PORTD.6 = 0;  //unbridge   
   PORTD.2 = 1;  //turn on fan 
           //  PORTC.0 = !PIND.7; 
      //  PORTC.1 = !PIND.2;    
   drive(-1, -1);   //back up 
   delay_ms(500); 
   drive(2,-2);            //turn around; 
   delay_ms(1000);  
   TCCR1B=0x04;  //look at sensors again 
   DDRB.1 = 0;  //turn off recharge light 
   PORTC = 0xFF; 
   return; 
  } 
 delay_ms(65); 
 } 
 PORTC = 0xFF; 
 DDRB.1 = 0;  //turn off recharge light 
 TCCR1B=0x04;  //enable timer for PWM    
 drive(1,1);  //reconnect 
 }  
   
}  
 
void looky(void){ 
      while(home_lock){ 
      drive(2,2);    
 if((analog[7] > RECHARGE) && find_home){ //on station 
         drive(0,0);     //stop             
         charge(); //goto charge routine 
        } 
      }          
if(find_home){                 
 look = 1; //don't look at senses 
       drive(-2,2); //spin in place to look for light for 2 secs. 



 25 

       for(i = 0; i < 120; i++){ //look for light every 20ms 150 
//for carpet 
  PORTC.3 = PORTC.3 ^ 1;  //toggle LED 
        light(); 
        if(home_lock){ 
         drive(speed_temp_l,speed_temp_r); 
         look = 0; 
         break; 
        }  
        else delay_ms(20); 
       }  
        look = 0; 
      }  
 
} 
 
void main(void) 
{ 
woman_init(); 
 
while(PINB & 0b00000001){       //tap on back  to start 
    if(PORTC == 0x7F)                    //do cool light show 
 while((PINB & 0b00000001) & (PORTC != 0xFE)){ 
  PORTC = PORTC >> 1; 
  PORTC.7 = 1; 
 delay_ms(40);  
 }  
    else{       
     PORTC = PORTC << 1; 
     PORTC.0 = 1; 
   }  
       delay_ms(40);  
 
} 
PORTC= 0x7F;  
// Global enable interrupts 
#asm("sei") 
 
PORTD.2 = 1;  //turn on fan 
drive(2, 2); 
find_home = 0; 
while (1) 
      { 
      // PORTC = PORTC ^ 0xFF; 
      looky(); 
 
       random_num = random(125);  //number between 0 and 125 
       while(random_num-- != 0){         // max drive in one 
//direction =12.5s 
        drive(2,2); 
        delay_ms(100); 
        if(home_lock) looky(); //if seeing light 
        } 
         
//        while(home_lock);  //if found home 
         
        drive(random(4)-2, random(4)-2);  //change directions 



 26 

       random_num = random(11); 
       while(random_num-- != 0){         // max change direction 
//time =1.0s 
        if(home_lock) looky(); 
        delay_ms(100); 
        } 
       } 
} 
 

 

 

 

 

 


