PAGE
2
EEL5666C
Intelligent Machine Design Laboratory
Page 37
Summer 2002

8/8/2002

EEL5666C: IMDL

Summer 2002

Mappie

 Final Report
August 8, 2002
Michael Pusatera

1. Table of Contents

21.
Table of Contents

22.
Table of Figures

33.
Abstract

34.
Introduction

35.
Integrated System

46.
Mobile Platform

47.
Actuation

48.
Sensors

48.1.
Bump Sensors

48.1.1.
Sensor Design

58.1.2.
Implementation

68.1.3.
Use

68.2.
Infrared Sensors

68.2.1.
Sensor Design

78.2.2.
Implementation

78.2.3.
Use

78.3.
Optical Mice

88.3.1.
Sensor Design

108.3.2.
Implementation

119.
Behaviors

119.1.
Obstacle Avoidance

119.2.
Go Straight

119.3.
Go Straight and Return

119.4.
Move in a Square

1210.
Experimental Layout and Results

1511.
Conclusion

1612.
Documentation

1613.
Appendices

1613.1.
Avoid.c

1813.2.
GoReturn.c

2413.3.
Square.c

3013.4.
Straight.c

3613.5.
Mouse Design

2. Table of Figures

5Figure 1.
Bump Switch Design

7Figure 2.
Infrared Sensor Design

7Figure 3.
How Optical Mouse Works [2]

8Figure 4.
Mouse State Machine [3]

9Figure 5.
Data Stream Format [2]

10Figure 6.
Optical Mouse Design

12Figure 7.
Position and speed – 2 feet

13Figure 8.
Change in speed – 2 feet

13Figure 9.
Position and speed – 3 feet

14Figure 10.
Change in speed – 3 feet

14Figure 11.
Position and speed – 4 feet

15Figure 12.
Change in speed – 4 feet

3. Abstract
The world of robotics is a rapidly expanding technology. It is a frontier today, much the way personal computing was twenty-years ago. The creation of autonomous mobile robotics in the last decade has created a universe of opportunity for robotic solutions to an infinite number of tasks.

This autonomous robot is modeled after the Talrik style robots designed at the University of Florida in the mid to late 1990’s. It is designed to utilize optical mice as a tool for navigation. The mice will allow the robot to determine distance traveled without the errors associated with stepping motors and optical encoders.

4. Introduction

As an engineer very interested in the practical application of the trade, I decided to try to use my experience in this lab as a building block upon which future students would be able to build. I wanted to work on a project which would be challenging and provide a new insight into a problem that has remained unsolved in the laboratory. Because my experience has shown that I am not mechanically gifted as an engineer, I also sought to choose a project with the least room for mechanical error.

I believed when I began this course that I had found such a project. I intended to use two optical mice as a distance sensor to map an environment such as a maze or a room. Because the mice were self contained, I assumed they would not cause any mechanical difficulties and I intended to attach them to the bottom of a robot platform. This would fulfill my requirements for my purpose in this course.

I call my robot Mappie.

5. Integrated System

The system is controlled by the Motorola 68HC11 microcontroller. This microcontroller is easy to use and many resources are available for it. It contains 8 analog-to-digital converters, which were used for analog sensors. It also contains timer hardware used to create PWM waveforms for driving the servos.

The 68HC11 is mounted on the EVBU board which can be purchased for approximately $60. The board contains a serial interface for communication with the COM port on a PC. This is used to program the chip. An expansion area is also available on the board.

The board is expanded for use in the robot through the Mekatronix ME11 board. It contains memory expansion and 40KHz wave generation as well as other useful tools. It was chosen because of its ease of integration with the EVBU board.

Finally, the Altera UP1 board is used to facilitate communication with the optical mice and the 68HC11. The board contains the Max EPM7128 CPLD and Flex 10k FPGA. It contains a ps/2 connector for connecting an optical mouse, as well as many LED’s and seven segment displays for debugging.
6. Mobile Platform

The platform is similar to the Talrik Junior platform designed by Mekatronix. It is larger in circumference and includes a circular platform upon which the EVBU and UP1 boards are mounted. It is eight inches in diameter and contains a box on the bottom to hold the servos. The platform is constructed of model airplane wood and was designed in AutoCad.
7. Actuation

Any mobile robot requires a means of movement. This robot is required to move in a straight line and make accurate turns. It will perform this task via two wheels attached to two servo motors. These motors are simple to interface to the 68HC11 microprocessor board.

A two wheel design creates an ease of movement that is not available in multi-wheel designs. Turning is simplified from a typical four-wheel design. To turn in one direction, one wheel must be driven forward while the other is driven in reverse.

Because the movement is simple, this design was chosen provide little problems in the design process. Unfortunately, the servos do not allow a great deal of speed control which created problems in the implementation of the design.
8. Sensors

8.1. Bump Sensors

Bump sensors are used on the exterior of the robot as a fail safe device to detect impact with objects in the robots path. This sensor is not used when infrared is working properly.

8.1.1. Sensor Design

The sensor is a voltage divider circuit consisting of several tactile push button switches connected in the following manner. The values of the sensor are chosen so that for any switch (s1-s4) that is pressed a different value will be placed on the analog(0) port.

[image: image10.wmf]

Inhibit_wait_count +1

Char_out = F4

Send_data=1

Inhibit_wait_count [10..9]

Send_data=1

Output_ready

Send_data=0

Send_data=0

IREADY_SET

INHABIT Tx

LOAD COMMAND

LOAD COMMAND 2

WAIT OUTPUT READY

WAIT CMD ACK

INPUT PACKETS

MOUSE STATE MACHINE

Figure 1. Bump Switch Design

8.1.2. Implementation

This sensor was implemented using four push button switches and five resistors. The resistor values are:

· R1 = 10k

· R2 = 22k

· R3 = 47k

· R4 = 100k

· R5 = 10k

The bump sensors are located at the front, front-right, front-left, and back of the robot. This will ensure that any collisions from forward or reverse motion will be covered by the sensor.

8.1.3. Use
The sensor is connected to the analog(0) port of the 68HC11. This requires only that the port be read and appropriate action be taken in response to the data. When the bump sensor reads a value of 50 the rear bumper has been pushed and the robot will move forward. When the bump sensor reads a value of 80 the right bumper has been activated and the robot will back up and move left. When the bump sensor reads a value of 130 the left bumper has been activated and the robot will back up and move right. When the bump sensor reads a value greater than 130 the front bumper has been activated and the robot will back up, turn in a random direction for a random amount of time and move on.

8.2. Infrared Sensors

The infrared sensors are designed to be the eyes of the robot. They will be used to detect objects in the path of the robot within a two-foot range of the sensors. Infrared sensors work by sending a pulse of light out from an emitter and receiving the light back in a detector. The detector will return a voltage value proportional to the amount of light received.

8.2.1. Sensor Design

The sensors selected were the Sharp GP2D12 sensors. They were selected because they were inexpensive (~$15) and readily available.

[image: image11.wmf]

Inhibit_wait_count +1

Char_out = F4

Send_data=1

Inhibit_wait_count [10..9]

Send_data=1

Output_ready

Send_data=0

Send_data=0

IREADY_SET

INHABIT Tx

LOAD COMMAND

LOAD COMMAND 2

WAIT OUTPUT READY

WAIT CMD ACK

INPUT PACKETS

MOUSE STATE MACHINE

Figure 2. Infrared Sensor Design

8.2.2. Implementation

The sensor was remarkably simple to implement. As the above figure suggests there are only three lines in the system.

· Vcc: connected to a regulated power supply

· Gnd: connected to system ground

· Analog(x): connected to the appropriate analog port

The three sensors were placed in the front, front-right, and front-left portion of the robot. This will allow the robot to “see” any objects in its path as well as objects near its sides.

8.2.3. Use

The three sensors are connected to the analog(1-3) ports on the 68HC11. The program which controls the sensors will read each sensor and modify behavior based on its result. When the sensors read a value greater than 120 there is an object within one foot of the robot. When the front sensor is activated the robot will turn for a random amount of time in a random direction. When the front-right sensor is activated the robot will turn left for a random amount of time. Similarly, when the front-left sensor is activated the robot will turn right for a random amount of time.
8.3. Optical Mice

[image: image1.png]2 To0s B

Do Edt Document Toos View Window Hop —ex

Ne@&B&e K «» OO0 B Al

IS e (e STt 10U U U TV IgatioTT
engine for processing.

HEOSS D R =W &>

Figure 1. Optical mice illuminate an area of the work surface with an LED, to reveal a micrascopic pattern of highlights and
shadows. These patterns are reflected onto the navigation sensor, which takes pictures at a rate of 1500 images per second or more.

o [z o]l [2o EEl=AR]
T [S = &

Figure 3. How Optical Mouse Works [2]
.

	Figure 4. Mouse State Machine[image: image12.png]HOUSE16

ovook_zsmuz Lerr_surTo i HEHORYHAPWHICE

oureusca. . o)

HOUSE16

H

S
T =
=
a1
a1
e =
o —a T

 [3]
	The main sensor for this design is a distance sensor composed of two optical mice. Optical mice are able to detect small distance changes, about 1/8th of a mm, with very little error

This is desirable in a mapping and navigation robot because the bot must know where it is at all times. This can be accomplished by comparing the values of the two mice, which will be placed on the left and right sides of the robot. If one value is greater than the other, the robot has turned in the direction of the shorter length. If the values are similar, the robot is moving in a straight line.

Optical mice also do not suffer from errors typically associated with relational positioning sensors. Because the sensor is independent of mechanical errors (i.e. slippage of wheels), the potential for accurate measurement is much greater.

8.3.1. Sensor Design

Optical mice conform to the PS/2 standard for operating any PC mouse. The system utilizes a data pin and a clock pin for use in a serial communications interface. The state machine associated with the interface is shown left.

Upon power up, the mouse enters a self-check. It is necessary to inhibit transmission during this period to ensure the mouse will work in PS/2 mode. The next two states force the mouse into a streaming mode in which the data can be read. When a command is acknowledged by the mouse, the data begins streaming.

The mouse will then send three bytes of data continuously until it is reset. The format of this data stream is shown below.

	
Byte 1
	Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Y overflow
X overflow
Y sign bit
X sign bit
Always 1
Middle Btn
Right Btn
Left Btn

	Byte 2
	X Movement

	Byte 3
	Y Movement

Figure 5. Data Stream Format [2]

The first byte of information, the condition code register, contains information about the signs of the x and y movement, overflow bits for x and y, and the button state for each of the three buttons in the design.

The second byte of information contains the position of the movement in the x direction.

The third byte of information contains the position of the movement in the y direction.

[image: image2]
Figure 6. Optical Mouse Design

8.3.2. Implementation

The mouse was interfaced to the UP1 board by Altera. The board contains the Flex 10k FPGA which was used to create the logic necessary to drive the two optical mice.

The state machine, created by Ty Black, interfaces the mouse and produces the 8-bit condition code register and two full 16-bit x and y registers for transfer. These outputs were connected to a memory mapped logic device that would alternate between the two mice outputs each time the address 0x7000 was read. The order of output is as follows:

· X[15..8]: upper eight bits of x data for mouse 1

· X[7..0]: lower eight bits of x data for mouse 1

· Y[15..8]: upper eight bits of y data for mouse 1

· Y[7..0]: lower eight bits of y data for mouse 1
· X2[15..8]: upper eight bits of x data for mouse 2

· X2[7..0]: lower eight bits of x data for mouse 2

· Y2[15..8]: upper eight bits of y data for mouse 2

· Y2[7..0]: lower eight bits of y data for mouse 2
· MCCR: condition code register for mouse 1

· MCCR2: condition code register for mouse 2
Upon reading the outputs into the HC11, the data from the two x and two y inputs are combined for a 16-bit x and y location register for each mouse. Once in the HC11, the data can be manipulated to determine distance and movement.

9. Behaviors

Because of the limitations of time and my platform, the robot is only able to avoid obstacles, go straight, and turn to an angle.

9.1. Obstacle Avoidance

This behavior is designed to keep the robot out of harms way in the room which it will navigate. It will utilize information from the bump and infrared sensors to manipulate the servos. When an obstacle is detected the robot will navigate around it. The code avoid.c in the appendix is the obstacle avoidance software.
9.2. Go Straight
This behavior allows the robot to move forward in a straight path for a predetermined amount of space. Currently the robot can go 4 feet with very little deviation from the center of the path. The robot corrects itself by comparing the values of the two optical mice.

Because the servos used in this project do not have great speed control, the robot will deviate from the center but will guide itself back onto the correct path.

The code for this behavior can be viewed in the appendix under straight.c.

9.3. Go Straight and Return
This behavior allows the robot to move forward utilizing the straight algorithm from the previous behavior. When the robot has moved a predetermined distance, it will turn around and return to its original location.

This routine suffers from the same problems as the previous behavior. It can be found in the appendix under goreturn.c.

9.4. Move in a Square

This behavior allows the robot to move forward utilizing the straight algorithm and turn using the turn algorithm. When the robot has moved a predetermined distance, it turns left and moves the same distance again. The robot will continue to alternate between moving and turning until it creates a square from its movements.

This routine is currently in development and has not run successfully. It suffers from the same complications as the previous behaviors and can be found in the appendix under square.c.
10. Experimental Layout and Results

The results shown below are for the straight.c program run for 2, 3, and 4 feet runs.

[image: image3.emf]0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ypos

y2pos

leftspeed

rightspeed

Figure 7. Position and speed – 2 feet

[image: image4.emf]-100

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time

ydif

change left speed

change right speed

Figure 8. Change in speed – 2 feet

[image: image5.emf]-2000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

ypos

y2pos

leftspeed

rightspeed

Figure 9. Position and speed – 3 feet
[image: image6.emf]-3000

-2500

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

time

ydif

change left speed

change right speed

Figure 10. Change in speed – 3 feet

[image: image7.emf]-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

ypos

y2pos

leftspeed

rightspeed

Figure 11. Position and speed – 4 feet

[image: image8.emf]-2500

-2000

-1500

-1000

-500

0

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

ydif

change left speed

change right speed

Figure 12. Change in speed – 4 feet
11. Conclusion

This robot has been the source of much frustration and education. I learned very early on that getting the two mice to integrate properly would take a great deal of time and set to work on it.
Once the platform was established and the base sensors and servos were mounted , obstacle avoidance was accomplished. This left only to get the mice working properly and mapping programmed.
Once the mice were integrated together, it became clear that they did not give as accurate data as was advertised. However, the mice seemed to be very consistently giving data at about 1/285th of an inch. It required a great deal of time to realize this.

The mice are also very susceptible to movement of the mice. If they are disturbed from resting on the ground, errors can be introduced. It is this problem that caused the most time loss. It took many weeks to determine that one of the problems was the platform, which as a two wheeled design, will rotate, causing the mice to lift slightly from the ground. This introduced error as well.

It is clear from this project that there is potential for two or more mice to be used as a navigation tool. Further research should be done with the two mice design on a four wheel platform, thus eliminating the problem of mice lifting. Also, the mice should be mounted in such a way as they are independent from the actual robot. This may be accomplished by creating a guide in which the mice can be placed. These corrections should eliminate many of the problems that plagued this design.

Another area of concern was the servo motors. The motors were economical and therefore did not display a great deal of lucidity. It was nearly impossible to control the speed of the motors. They turned at generally the same speed for almost any value of PWM. This caused added difficulties in the straight algorithm. It would be preferable to use servos which have linear speedup and slowdown. This will greatly improve the straight algorithm.

Overall, the project was successful in proving that navigation can be accomplished in a two mouse design. The mapping functionality was not accomplished, but is not unattainable in the future. The robot was able to navigate in a straight line and turn accurately, thus providing the foundation for future work in this area.

12. Documentation

[1] http://www.altera.com/
[2] http://www.howstuffworks.com/mouse3.htm
[3] Ty Black, Sensor Report, IMDL

[4] Ty Black, Final Report, IMDL
13. Appendices

13.1. Avoid.c

/**

 *

MEKATRONIX Copyright 1998

*

 * Title avoid.c *

 * Programmer
Michael Pusatera

*

 * Date June 30, 2002 *

 * Version
1

*

 *

 *

 * Description

*

 * Avoid obstacles.
*

 **/

/**************************** Includes **********************************/

#include <tjpbase.h>

/************************ End of includes *******************************/

#define Left_servo 2

#define Right_servo 1

#define left
2

#define right
1

#define random 0

#define Forward 3500

#define Backward 2500

#define Stop
0

#define FRONT_IR analog(1);

void turn(int);

void main(void)

/****************************** Main ***********************************/

{

 int i, irdr, irdl, irdf, bump;

 init_servome();

 init_clocktjp();

 init_analog();

 while(BUMPER < 20);

servo(Left_servo, Backward);

servo(Right_servo, Forward);

 while(1)

 {

irdr = RIGHT_IR;

irdl = LEFT_IR;

irdf = FRONT_IR;

bump = BUMPER;

servo(Left_servo, Backward);

servo(Right_servo, Forward);

if(irdf > 125)

turn(random);

 if(irdr > 125)

turn(left);

 if(irdl > 125)

turn(right);

if(bump > 60)

{

//back up

servo(Left_servo, Forward);

servo(Right_servo, Backward);

turn(random);

}

 }

}

/**************************** End of Main ******************************/

void turn(int dir)

{

int i;

unsigned rand;

rand = TCNT;

if(dir == 0) //front_ir turn random

{

if(rand & 0x0001)

dir = left; //randomly turn right or left

else dir = right;

}

if(dir == 1) //turn left

servo(Left_servo, Forward);

else

servo(Right_servo, Backward);

i=(rand % 1024);

if(i>250)

wait(i);

else wait(250);

return;

}
13.2. GoReturn.c

/**

 * Title goreturn.c *

 * Programmer
Michael Pusatera

*

 * Date July 31, 2002 *

 * Version
1

*

 *

 *

 * Description

*

 * robot will go straight turn around and return* **/

/**************************** Includes **********************************/

#include <tjpbase.h>

/************************ End of includes *******************************/

#define Left_servo 1

#define Right_servo 2

#define left
2

#define right
1

#define random 0

#define Forward 3700

#define Backward 2200

#define ForMin 3200

#define BackMin
2900

#define MaxSpeed 4500

#define MinSpeed 1000

#define Stop
0

#define FRONT_IR analog(1);

#define d 2.62 //distance in inches

#define inch 285 //factor for inches

#define rad 3.75

#define pi 3.14

void getpos(void);

void turn(float);

void getmice(void);

void straight(int);

int ypos[1000], y2pos[1000], ydif[100], y2dif[1000];

int yinch[1000], y2inch[1000], anglea[100], dif[1000];

int lefta[1000], righta[1000], yturn[100], y2turn[100];

int i, yold, y2old;

int xold, x2old;

int xpos[100], x2pos[100];

int xinch[100], x2inch[100];

int xdif[100], x2dif[100];

int xa[100], x2a[100];

int irdr, irdl, irdf, bump;

int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;

int diff, diff2, done;

int x, y, x2, y2, oldy, oldy2;

int leftspeed, rightspeed, marker;

float thetay, thetax;

void main(void)

/****************************** Main ***********************************/

{

 marker = 0;

 init_servome();

 init_clocktjp();

 init_analog();

 leftspeed=Backward;

 rightspeed=Forward;

 getmice();

 wait(1000);

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

 i=0;

 yold = 0;

 y2old = 0;

 oldy = 0;

 oldy2 = 0;

 straight(36);

 printf("out of 1st while\n");

 servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward;
//robot will turn in place

rightspeed = Forward;

wait(100);

xold = xpos[i-1];

x2old = x2pos[i-1];

turn(pi);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

wait(100);

 leftspeed=Backward;

 rightspeed=Forward;

oldy = ypos[i-1];

oldy2 = y2pos[i-1];

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

straight(36);

 //stop robot

servo(Left_servo, Stop);

servo(Right_servo, Stop);

 //wait for hook up to computer

 while(BUMPER < 20);

 while(BUMPER < 20);

 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");

 for(i = 0; i<100; i++)

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i], lefta[i], righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);

 printf("oldy = %d oldy2 = %d\n", oldy, oldy2);

 return ;

}

/**************************** End of Main ******************************/

void turn(float angle)

{

marker = 0;

while(marker != 1)

 {

if(i >=1000)

i = 0;

getmice();

getpos();

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

//printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1], xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

if((thetax >= (angle)) || (thetax <= (0 - (angle))))

marker = 1;

//read data in

wait(10);

 }

return;

}

void getpos()

{

ypos[i] = y;

 y2pos[i] = y2;

xpos[i] = x;

 x2pos[i] = x2;

 xinch[i] = x / inch;

 x2inch[i] = x2 / inch;

 yinch[i] = y / inch;

 y2inch[i] = y2 / inch;

 thetay = (y2 - y)/(inch*d);

 thetax = ((x2 - x2old)+ (x-xold))/ (2*rad*inch);

 anglea[i] = thetax;

 ydif[i] = y - yold;

 y2dif[i] = y2 - y2old;

 dif[i] = ypos[i] - y2pos[i];

 yold = y;

 y2old = y2;

i++;

return ;

}

void getmice()

{

xh = *(unsigned char *) 0x7000;

xl = *(unsigned char *) 0x7000;

xh2 = *(unsigned char *) 0x7000;

xl2 = *(unsigned char *) 0x7000;

yh = *(unsigned char *) 0x7000;

yl = *(unsigned char *) 0x7000;

yh2 = *(unsigned char *) 0x7000;

yl2 = *(unsigned char *) 0x7000;

mccr = *(unsigned char *) 0x7000;

mccr2 = *(unsigned char *) 0x7000;

//shift data in x and y

x = xh;

x2 = xh2;

x = x << 8;

x2 = x2 << 8;

x = x + xl;

x2 = x2 + xl2;

y = yh;

y2 = yh2;

y = y << 8;

y2 = y2 << 8;

y = y + yl;

y2 = y2 + yl2;

return ;

 }

void straight(int distance)

{

marker = 0;

 while(marker != 1)

 {

if(i >=1000)

i = 0;

printf("in while\n");

//read data in

getmice();

getpos();

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1], xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

diff = (ypos[i-1] - oldy) - (y2pos[i-1] - oldy2);

diff2 = ydif[i-1] - y2dif[i-1]; //

if(diff > 0) {//on left

if(diff2 > 0) { //veering left more

if((leftspeed - (diff/4)) > MinSpeed)

leftspeed = leftspeed - (diff/4); //speed up left

else {

if((rightspeed - (diff/4)) > ForMin)

rightspeed = rightspeed - (diff/4); //slow down right

else {

leftspeed=Backward - (diff/4);

rightspeed=Forward;

}

}

}

else { //veering right--correcting

if((rightspeed + (diff/8)) < MaxSpeed)

rightspeed = rightspeed + (diff/8); //speed up right

else {

if((leftspeed + (diff/8)) < BackMin)

leftspeed = leftspeed + (diff/8); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/8);

}

}

}

}

else { //on right

diff = - diff;

if(diff2 < 0) { //veering right more

if((rightspeed + (diff/4)) < MaxSpeed)

rightspeed = rightspeed + (diff/4); //speed up right

else {

if((leftspeed + (diff/4)) < BackMin)

leftspeed = leftspeed + (diff/4); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/4);

}

}

}

else { //veering left--correcting

if((leftspeed - (diff/8)) > MinSpeed)

leftspeed = leftspeed - (diff/8); //speed up left

else {

if((rightspeed - (diff/8)) > ForMin)

rightspeed = rightspeed - (diff/8); //slow down right

else {

leftspeed=Backward - (diff/8);

rightspeed=Forward;

}

}

}

}

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

righta[i-1] = rightspeed;

lefta[i-1] = leftspeed;

wait(70);

done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;

if((done) >= (inch * distance))

marker = 1;

 }

return ;

}
13.3. Square.c

/**

 * Title square.c *

 * Programmer
Michael Pusatera

*

 * Date July 31, 2002 *

 * Version
1

*

 *

 *

 * Description

*

 * robot will map out a square* ***/

/**************************** Includes **********************************/

#include <tjpbase.h>

/************************ End of includes *******************************/

#define Left_servo 1

#define Right_servo 2

#define left
2

#define right
1

#define random 0

#define Forward 3700

#define Backward 2200

#define ForMin 3200

#define BackMin
2900

#define MaxSpeed 4500

#define MinSpeed 1000

#define Stop
0

#define FRONT_IR analog(1);

#define d 2.62 //distance in inches

#define inch 285 //factor for inches

#define rad 3.0

#define pi 3.14

void getpos(void);

void turn(float);

void getmice(void);

void straight(int);

int ypos[1000], y2pos[1000], ydif[100], y2dif[1000];

int yinch[1000], y2inch[1000], anglea[100], dif[1000];

int lefta[1000], righta[1000], yturn[100], y2turn[100];

int i, yold, y2old;

int xold, x2old;

int xpos[100], x2pos[100];

int xinch[100], x2inch[100];

int xdif[100], x2dif[100];

int xa[100], x2a[100];

int irdr, irdl, irdf, bump;

int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;

int diff, diff2, done;

int x, y, x2, y2, oldy, oldy2;

int leftspeed, rightspeed, marker;

float thetay, thetax;

void main(void)

/****************************** Main ***********************************/

{

 marker = 0;

 init_servome();

 init_clocktjp();

 init_analog();

 leftspeed=Backward;

 rightspeed=Forward;

 wait(1000);

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

 i=0;

 yold = 0;

 y2old = 0;

 oldy = 0;

 oldy2 = 0;

 straight(24);

 printf("out of 1st while\n");

 servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward;
//robot will turn in place

rightspeed = Forward;

wait(100);

turn(pi/2);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

oldy = ypos[i-1];

oldy2 = y2pos[i-1];

straight(24);

printf("out of 1st while\n");

servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward;
//robot will turn in place

rightspeed = Forward;

wait(100);

turn(pi/2);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

oldy = ypos[i-1];

oldy2 = y2pos[i-1];

straight(24);

printf("out of 1st while\n");

servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward;
//robot will turn in place

rightspeed = Forward;

wait(100);

turn(pi/2);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

oldy = ypos[i-1];

oldy2 = y2pos[i-1];

straight(24);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

 //wait for hook up to computer

 while(BUMPER < 20);

 while(BUMPER < 20);

 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");

 for(i = 0; i<100; i++)

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i], lefta[i], righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);

 printf("oldy = %d oldy2 = %d\n", oldy, oldy2);

 return ;

}

/**************************** End of Main ******************************/

void turn(float angle)

{

marker = 0;

while(marker != 1)

 {

if(i >=1000)

i = 0;

getmice();

getpos();

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

//printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1], xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

if((thetax >= (angle)) || (thetax <= (0 - (angle))))

marker = 1;

//read data in

wait(30);

 }

return;

}

void getpos()

{

ypos[i] = y;

 y2pos[i] = y2;

xpos[i] = x;

 x2pos[i] = x2;

 xinch[i] = x / inch;

 x2inch[i] = x2 / inch;

 yinch[i] = y / inch;

 y2inch[i] = y2 / inch;

 thetay = (y2 - y)/(inch*d);

 thetax = (x2 + x)/ (2*rad*inch);

 anglea[i] = thetax;

 ydif[i] = y - yold;

 y2dif[i] = y2 - y2old;

 dif[i] = ypos[i] - y2pos[i];

 yold = y;

 y2old = y2;

i++;

return ;

}

void getmice()

{

xh = *(unsigned char *) 0x7000;

xl = *(unsigned char *) 0x7000;

xh2 = *(unsigned char *) 0x7000;

xl2 = *(unsigned char *) 0x7000;

yh = *(unsigned char *) 0x7000;

yl = *(unsigned char *) 0x7000;

yh2 = *(unsigned char *) 0x7000;

yl2 = *(unsigned char *) 0x7000;

mccr = *(unsigned char *) 0x7000;

mccr2 = *(unsigned char *) 0x7000;

//shift data in x and y

x = xh;

x2 = xh2;

x = x << 8;

x2 = x2 << 8;

x = x + xl;

x2 = x2 + xl2;

y = yh;

y2 = yh2;

y = y << 8;

y2 = y2 << 8;

y = y + yl;

y2 = y2 + yl2;

return ;

 }

void straight(int distance)

{

marker = 0;

 while(marker != 1)

 {

if(i >=1000)

i = 0;

printf("in while\n");

//read data in

getmice();

getpos();

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1], xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

diff = ypos[i-1] - y2pos[i-1];

diff2 = ydif[i-1] - y2dif[i-1]; //

if(diff > 0) {//on left

if(diff2 > 0) { //veering left more

if((leftspeed - (diff/4)) > MinSpeed)

leftspeed = leftspeed - (diff/4); //speed up left

else {

if((rightspeed - (diff/4)) > ForMin)

rightspeed = rightspeed - (diff/4); //slow down right

else {

leftspeed=Backward - (diff/4);

rightspeed=Forward;

}

}

}

else { //veering right--correcting

if((rightspeed + (diff/8)) < MaxSpeed)

rightspeed = rightspeed + (diff/8); //speed up right

else {

if((leftspeed + (diff/8)) < BackMin)

leftspeed = leftspeed + (diff/8); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/8);

}

}

}

}

else { //on right

diff = - diff;

if(diff2 < 0) { //veering right more

if((rightspeed + (diff/4)) < MaxSpeed)

rightspeed = rightspeed + (diff/4); //speed up right

else {

if((leftspeed + (diff/4)) < BackMin)

leftspeed = leftspeed + (diff/4); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/4);

}

}

}

else { //veering left--correcting

if((leftspeed - (diff/8)) > MinSpeed)

leftspeed = leftspeed - (diff/8); //speed up left

else {

if((rightspeed - (diff/8)) > ForMin)

rightspeed = rightspeed - (diff/8); //slow down right

else {

leftspeed=Backward - (diff/8);

rightspeed=Forward;

}

}

}

}

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

righta[i-1] = rightspeed;

lefta[i-1] = leftspeed;

wait(50);

done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;

if((done) >= (inch * distance))

marker = 1;

 }

return ;

}

13.4. Straight.c

/**

 * Title straight.c *

 * Programmer
Michael Pusatera

*

 * Date July 31, 2002 *

 * Version
1

*

 *

 *

 * Description

*

 * robot will go straight for 4 feet*

 *

*

 **/

/**************************** Includes **********************************/

#include <tjpbase.h>

/************************ End of includes *******************************/

#define Left_servo 1

#define Right_servo 2

#define left
2

#define right
1

#define random 0

#define Forward 3400

#define Backward 2800

#define ForMin 3280

#define BackMin
3120

#define MaxSpeed 3500

#define MinSpeed 2700

#define Stop
0

#define FRONT_IR analog(1);

#define d 2.62 //distance in inches

#define inch 72 //factor for inches

#define rad 3.75

#define pi 3.14

void getpos(void);

void getmice(void);

void straight(int);

int ypos[100], y2pos[100], ydif[100], y2dif[100];

int yinch[100], y2inch[100], anglea[100], dif[100];

int lefta[100], righta[100], yturn[100], y2turn[100];

int i, yold, y2old;

int xold, x2old;

int xpos[100], x2pos[100];

int xinch[100], x2inch[100];

int xdif[100], x2dif[100];

int xa[100], x2a[100];

int irdr, irdl, irdf, bump;

int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;

int diff, diff2, done;

int x, y, x2, y2, oldy, oldy2;

int leftspeed, rightspeed, marker;

float thetay, thetax;

void main(void)

/****************************** Main ***********************************/

{

 marker = 0;

 init_servome();

 init_clocktjp();

 init_analog();

 leftspeed=Backward;

 rightspeed=Forward;

 getmice();

 wait(1000);

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

 i=0;

 yold = 0;

 y2old = 0;

 oldy = 0;

 oldy2 = 0;

 straight(48);

 //stop robot

servo(Left_servo, Stop);

servo(Right_servo, Stop);

 //wait for hook up to computer

 while(BUMPER < 20);

 while(BUMPER < 20);

 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");

 for(i = 0; i<100; i++)

 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i], lefta[i],

 righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);

 return ;

}

/**************************** End of Main ******************************/

void getpos()

{

 ypos[i] = y;

 y2pos[i] = y2;

 xpos[i] = x;

 x2pos[i] = x2;

 xinch[i] = x / inch;

 x2inch[i] = x2 / inch;

 yinch[i] = y / inch;

 y2inch[i] = y2 / inch;

 thetay = (y2 - y)/(inch*d);

 thetax = ((x2 - x2old)+ (x-xold))/ (2*rad*inch);

 anglea[i] = thetax;

 ydif[i] = y - yold;

 y2dif[i] = y2 - y2old;

 dif[i] = ypos[i] - y2pos[i];

 yold = y;

 y2old = y2;

i++;

return ;

}

void getmice()

{

xh = *(unsigned char *) 0x7000;

xl = *(unsigned char *) 0x7000;

xh2 = *(unsigned char *) 0x7000;

xl2 = *(unsigned char *) 0x7000;

yh = *(unsigned char *) 0x7000;

yl = *(unsigned char *) 0x7000;

yh2 = *(unsigned char *) 0x7000;

yl2 = *(unsigned char *) 0x7000;

mccr = *(unsigned char *) 0x7000;

mccr2 = *(unsigned char *) 0x7000;

//shift data in x and y

x = xh;

x2 = xh2;

x = x << 8;

x2 = x2 << 8;

x = x + xl;

x2 = x2 + xl2;

y = yh;

y2 = yh2;

y = y << 8;

y2 = y2 << 8;

y = y + yl;

y2 = y2 + yl2;

x = x/4;

x2 = x2/4;

y = y/4;

y2 = y2/4;

return ;

 }

void straight(int distance)

{

marker = 0;

 while(marker != 1)

 {

if(i >=1000)

i = 0;

printf("in while\n");

//read data in

getmice();

getpos();

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1], xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

diff = (ypos[i-1] - oldy) - (y2pos[i-1] - oldy2);

diff2 = ydif[i-1] - y2dif[i-1]; //

if(diff > 0) {//on left

if(diff2 > 0) { //veering left more

if((leftspeed - (diff/3)) > MinSpeed)

leftspeed = leftspeed - (diff/3); //speed up left

else {

if((rightspeed - (diff/3)) > ForMin)

rightspeed = rightspeed - (diff/3); //slow down right

else {

leftspeed=Backward - (diff/3);

rightspeed=Forward;

}

}

}

else { //veering right--correcting

if((rightspeed + (diff/5)) < MaxSpeed)

rightspeed = rightspeed + (diff/5); //speed up right

else {

if((leftspeed + (diff/5)) < BackMin)

leftspeed = leftspeed + (diff/5); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/5);

}

}

}

}

else { //on right

diff = - diff;

if(diff2 < 0) { //veering right more

if((rightspeed + (diff/3)) < MaxSpeed)

rightspeed = rightspeed + (diff/3); //speed up right

else {

if((leftspeed + (diff/3)) < BackMin)

leftspeed = leftspeed + (diff/3); //slow down left

else {

leftspeed=Backward;

rightspeed=Forward + (diff/3);

}

}

}

else { //veering left--correcting

if((leftspeed - (diff/5)) > MinSpeed)

leftspeed = leftspeed - (diff/5); //speed up left

else {

if((rightspeed - (diff/5)) > ForMin)

rightspeed = rightspeed - (diff/5); //slow down right

else {

leftspeed=Backward - (diff/5);

rightspeed=Forward;

}

}

}

}

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

righta[i-1] = rightspeed;

lefta[i-1] = leftspeed;

wait(50);

done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;

if((done) >= (inch * distance))

marker = 1;

 }

return ;

}

13.5. Mouse Design

[image: image9]

Reset HC11

A15

A14

A13

A12

R/W

Eclk

8

PortC

on HC11

Clk Data

Mouse

� EMBED Unknown ���

Vcc

Clk Data

Mouse

FPGA

 Enable Reset 8 bit out

Vcc

Mouse

Mouse

IR Sensor

IR Sensor

IR Sensor

Analog(1)

Analog(3)

Analog(2)

Infrared Sensor Design

S4

S3

S2

S1

R?

Analog(0)

R4

R3

R2

Optical Mouse Design

R1

Vcc

Vcc

Vcc

Vcc

Bump Switch Design

_1087880027.vsd
�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

Title�

Inhibit_wait_count +1
Char_out = F4�

Send_data=1�

Inhibit_wait_count [10..9]�

Send_data=1�

Output_ready�

Send_data=0�

Send_data=0�

IREADY_SET�

INHABIT Tx�

LOAD COMMAND�

LOAD COMMAND 2�

WAIT OUTPUT READY�

WAIT CMD ACK�

INPUT PACKETS�

MOUSE STATE MACHINE�

