

EEL5666C: IMDL

Summer 2002

Mappie

 Final Report

August 13, 2002
Michael Pusatera

1. Table of Contents
1. Table of Contents.. 1
2. Table of Figures .. 2
3. Abstract ... 2
4. Executive Summary.. 3
5. Introduction... 3
6. Integrated System.. 4
7. Mobile Platform.. 6
8. Actuation... 7
9. Sensors .. 7

9.1. Bump Sensors ... 7
9.1.1. Sensor Design ... 7
9.1.2. Implementation ... 8
9.1.3. Use .. 8
9.1.4. Lessons Learned.. 9

9.2. Infrared Sensors .. 9
9.2.1. Sensor Design ... 9
9.2.2. Implementation ... 10
9.2.3. Use .. 10
9.2.4. Lessons Learned.. 10

9.3. Optical Mice.. 10
9.3.1. Sensor Design ... 11
9.3.2. Implementation ... 13

EEL5666C Intelligent Machine Design Laboratory Page 2/56
Summer 2002 8/13/2002

9.3.3. Lessons Learned.. 14
10. Behaviors .. 14

10.1. Obstacle Avoidance .. 14
10.2. Go Straight .. 16
10.3. Go Straight and Return ... 19
10.4. Move in a Square .. 21

11. Experimental Layout and Results ... 21
12. Conclusion .. 27
13. Documentation.. 29
14. Appendices.. 29

14.1. Avoid.c .. 29
14.2. GoReturn.c .. 31
14.3. Square.c... 37
14.4. Straight.c ... 43
14.5. Mouse16.vhd[3] .. 48
14.6. Output Controller (memorymapwmice.vhd) .. 53
14.7. Mouse Design ... 56

2. Table of Figures
Figure 1. Integrated System.. 4
Figure 2. Organizational Flow Chart... 5
Figure 3. Bump Switch Design ... 8
Figure 4. Infrared Sensor Design ... 9
Figure 5. How Optical Mouse Works [2] ... 10
Figure 6. Mouse State Machine [3].. 11
Figure 7. Data Stream Format [2] ... 12
Figure 8. Optical Mouse Design... 13
Figure 9. Obstacle Avoidance Algorithm ... 15
Figure 10. Go Straight Algorithm... 16
Figure 11. Mouse fading left... 17
Figure 12. Agent Fading Left with Correction... 18
Figure 13. Straight and Turn Movement .. 19
Figure 14. Arc formulations ... 20
Figure 15. Path for Movement in a Square .. 21
Figure 16. Position and speed – 2 feet ... 22
Figure 17. Change in speed – 2 feet ... 23
Figure 18. Position and speed – 3 feet ... 24
Figure 19. Change in speed – 3 feet ... 25
Figure 20. Position and speed – 4 feet ... 26
Figure 21. Change in speed – 4 feet ... 27

3. Abstract
The world of robotics is a rapidly expanding technology. It is a frontier today, much the
way personal computing was twenty-years ago. The creation of autonomous mobile
robotics in the last decade has created a universe of opportunity for robotic solutions to
an infinite number of tasks.

EEL5666C Intelligent Machine Design Laboratory Page 3/56
Summer 2002 8/13/2002

This autonomous robot is modeled after the Talrik style robots designed at the University
of Florida in the mid to late 1990’s. It is designed to utilize optical mice as a tool for
navigation. The mice will allow the robot to determine distance traveled without the
errors associated with stepping motors and optical encoders.

4. Executive Summary
The robotics project for this class is a two wheeled circular robot designed to navigate
using optical mice. Since the early 1990’s robotics classes at the University of Florida
have seen projects attempting so successfully navigate mazes and map a room. This is
increasingly difficult without the use of expensive motors because the servos typically
used do not have linear speed controls and do not operate at the same speed in both
directions.

This robot is designed to utilize a non-mechanical method of distance sensing so as to
eliminate the kinds of errors associated with stepper motors and optical encoders. These
previous designs suffer from errors due to slippage of the wheels on the surface the robot
runs on. This will not be a problem with the optical mice as the mice do not require the
wheels for measurement.

The agent should be designed to support the electronics required to operate the mice and
the servos needed to move the platform. The agent should be able to move around a
maze or room and take measurements of the room and objects in it. This will be
accomplished by coordinating the optical mice and infrared sensors to determine the
length of walls and the perimeters of objects in the room and the exterior of the room the
robot operates in.

5. Introduction
As an engineer very interested in the practical application of the trade, I decided to try to
use my experience in this lab as a building block upon which future students would be
able to build. I wanted to work on a project which would be challenging and provide a
new insight into a problem that has remained unsolved in the laboratory. Because my
experience has shown that I am not mechanically gifted as an engineer, I also sought to
choose a project with the least room for mechanical error.

I believed when I began this course that I had found such a project. I intended to build
upon the work of Ty Black in IMDL’s Spring 2002 class. The idea was to use two
optical mice as a distance sensor to map an environment such as a maze or a room.
Because the mice were self contained, I assumed they would not cause any mechanical
difficulties and I intended to attach them to the bottom of a robot platform. This would
fulfill my requirements for my purpose in this course.

This paper will outline the overall structure of the system. It will discuss the platform
design and limitations. It will discuss actuation and sensors, detailing expectations and
limitations. It will finally discuss behaviors implemented and show results from the

EEL5666C Intelligent Machine Design Laboratory Page 4/56
Summer 2002 8/13/2002

running robot. Finally, conclusions will be drawn and suggestions for future work will be
made.

6. Integrated System

Figure 1. Integrated System

The system is designed to use the data gathered by the optical mice as a tool for
navigation. The optical mice provide accurate distance measurements which are critical
for navigation. The two mice are interfaced to the microcontroller through the Flex 10k
FPGA. This programmable logic device allows the mice to receive the required data
inputs for operation. It also formats the data in single byte segments for memory map
reading by the microcontroller.

The microcontroller will use the data provided by the mice, infrared sensors, and bump
network to determine its surroundings and can control the servos in an appropriate
manner.

Optical
Mouse

Optical
Mouse

Left
Servo

Right
Servo

Bump
Sensor

IR
Sensors

EVBU Evaluation Board

Motorolla
68HC11

COM
to PC

UP1 Education Board

Flex 10k
FPGA

JTAG
Interface

PC

EEL5666C Intelligent Machine Design Laboratory Page 5/56
Summer 2002 8/13/2002

Figure 2. Organizational Flow Chart

The system will operate as pictured in Figure 2. The four sensors on board will be read
and analyzed. If an obstacle is detected, it will be avoided by causing the servos to
change direction to an appropriate heading. If there is no obstacle, the agent will
continue to navigate the environment recording positional measurements from the optical
mice.

The system is controlled by the Motorola 68HC11 microcontroller. This microcontroller
is easy to use and many resources are available for it. It contains 8 analog-to-digital
converters on Port E, which were used for infrared and bump sensors. It also contains
timer hardware on Port A used to create PWM waveforms for driving the servos. These
are input capture and output compare functions. The output compare function was used
to generate the PWM waveform needed to drive the servos. The 68HC11 is mounted on
the EVBU board which can be purchased for approximately $60. The board contains a
serial interface for communication with the COM port on a PC. This is used to program
the chip. An expansion area is also available on the board.

yes

no

Read
Mouse 1

Read
Mouse 1

Read IR
Sensors

Read
Bump

Network

Obstactle Obstacle
Avoidance

Continue
Navigation

EEL5666C Intelligent Machine Design Laboratory Page 6/56
Summer 2002 8/13/2002

The board is expanded for use in the robot through the Mekatronix ME11 board. It
contains memory expansion and 40KHz wave generation as well as other useful tools. It
was chosen because of its ease of integration with the EVBU board.

Finally, the Altera UP1 board is used to facilitate communication with the optical mice
and the 68HC11. The board contains the Max EPM7128 CPLD and Flex 10k FPGA. It
contains a ps/2 connector for connecting an optical mouse, as well as many LED’s and
seven segment displays for debugging.

7. Mobile Platform

The platform is similar to the Talrik Junior platform designed by Mekatronix. It is larger
in circumference and includes a circular platform upon which the EVBU and UP1 boards
are mounted. It is eight inches in diameter and contains a box on the bottom to hold the
servos. The platform is constructed of model airplane wood and was designed in
AutoCad 2000.

The original intent of the agent was to navigate a room. A circular 2-wheeled platform
would allow for simple movement algorithms to control the agent. This was the reason
for the choice of design.

A limitation emerged when the system, which requires the use of optical mice, required
the utilization of two evaluation boards for operation. The UP1 board and the EVBU
board are both large in size and heavy. The use of these two boards caused the agent to
be mechanically unstable and awkward. This caused further problems when the optical
mice were connected to the platform.

For the optical mice to operate correctly, they need to be placed just off the ground by
about the height of the width of a piece of paper. By doing this, the mice will work as if
they are on the ground, but will avoid the bumping and dragging associated with being
placed on the ground.

The mice were not attached in a secure manner to the agent. Because the agent was a 2-
wheeled design, quick movement in any direction causes rotation in the platform. This
caused the mice to lift slightly off the ground and caused errors in the measurements.
Also the mice were placed first underneath and finally behind the agent. They were
glued to metal brackets and screwed into the side of the platform. This caused
unnecessary movement of the mice due to the rotation of the platform and the instability
of the mice.

Future attempts at this type of robot should more carefully consider the placement of the
mice on the agent when designing the platform. A holder attached to the platform but
independent of the mice might prove successful. This solution would provide a square or
oval structure into which the mice could be placed. If the structure was attached to the
platform, it should provide a stable, yet independent means of ensuring the mice move

EEL5666C Intelligent Machine Design Laboratory Page 7/56
Summer 2002 8/13/2002

laterally with the agent. It would prevent any fish-tailing that sometimes occurred during
turning in this design.

8. Actuation

Any mobile robot requires a means of movement. This robot is required to move in a
straight line and make accurate turns. It will perform this task via two wheels attached to
two servo motors. These motors are simple to interface to the 68HC11 microprocessor
board. Movement requires connection to power and ground and a third line attached to
an output compare line from Port A on the 68HC11. Pulse Width Modulation is used to
drive these servos.

A two wheel design creates an ease of movement that is not available in multi-wheel
designs. Turning is simplified from a typical four-wheel design. To turn in one
direction, one wheel must be driven forward while the other is driven in reverse.

Because the movement is simple, this design was chosen to provide few problems in the
design process. This met the requirements that the agent be mechanically simple in
design so as to reduce the time spent learning to move the agent.

The two wheeled design was sufficient for this project. It allowed for simple movement
and correct turning. This was accomplished as intended.

However, because the platform was designed without correct placement for the mice, the
two wheeled design caused problems by rotating the platform and creating an unstable
environment for the mice to operate.

9. Sensors

9.1. Bump Sensors

Bump sensors are used on the exterior of the robot as a fail safe device to detect impact
with objects in the robots path. This sensor is not used when infrared is working
properly.

9.1.1. Sensor Design
The sensor is a voltage divider circuit consisting of several tactile push button
switches connected in the following manner. The values of the sensor are chosen
so that for any switch (s1-s4) that is pressed a different value will be placed on the
analog(0) port.

EEL5666C Intelligent Machine Design Laboratory Page 8/56
Summer 2002 8/13/2002

Figure 3. Bump Switch Design

9.1.2. Implementation
This sensor was implemented using four push button switches and five resistors.
The resistor values are:

• R1 = 10k
• R2 = 22k
• R3 = 47k
• R4 = 100k
• R5 = 10k

The bump sensors are located at the front, front-right, front- left, and back of the
robot. This will ensure that any collisions from forward or reverse motion will be
covered by the sensor.

9.1.3. Use
The sensor is connected to the analog(0) port of the 68HC11. This requires only
that the port be read and appropriate action be taken in response to the data. When

Bump Switch Design

Vcc Vcc Vcc Vcc

R1 R2 R3 R4

Analog(0)

R?

S1 S2 S3 S4

EEL5666C Intelligent Machine Design Laboratory Page 9/56
Summer 2002 8/13/2002

the bump sensor reads a value of 50 the rear bumper has been pushed and the robot
will move forward. When the bump sensor reads a value of 80 the right bumper
has been activated and the robot will back up and move left. When the bump
sensor reads a value of 130 the left bumper has been activated and the robot will
back up and move right. When the bump sensor reads a value greater than 130 the
front bumper has been activated and the robot will back up, turn in a random
direction for a random amount of time and move on.

9.1.4. Lessons Learned

The bump sensors work well. They were implemented quickly and continued to
work throughout the project.

9.2. Infrared Sensors
The infrared sensors are designed to be the eyes of the robot. They will be used to detect
objects in the path of the robot within a two-foot range of the sensors. Infrared sensors
work by sending a pulse of light out from an emitter and receiving the light back in a
detector. The detector will return a voltage value proportional to the amount of light
received.

9.2.1. Sensor Design
The sensors selected were Sharp GP2D12 sensors. They were selected because
they were inexpensive (~$15) and readily available.

Figure 4. Infrared Sensor Design

Infrared Sensor Design

Analog(2)

Analog(3)

Analog(1)

IR Sensor IR Sensor IR Sensor
Vcc

EEL5666C Intelligent Machine Design Laboratory Page 10/56
Summer 2002 8/13/2002

9.2.2. Implementation
The sensor was remarkably simple to implement. As Figure 4 suggests there are
only three lines in the system.

• Vcc: connected to a regulated power supply
• Gnd: connected to system ground
• Analog(x): connected to the appropriate analog port

The three sensors were placed in the front, front-right, and front- left portion of the
robot. This will allow the robot to “see” any objects in its path as well as objects
near its sides.

9.2.3. Use
The three sensors are connected to the analog(1-3) ports on the 68HC11. The
program which controls the sensors will read each sensor and modify behavior
based on its result. When the sensors read a value greater than 120 there is an
object within one foot of the robot. When the front sensor is activated the robot
will turn for a random amount of time in a random direction. When the front-right
sensor is activated the robot will turn left for a random amount of time. Similarly,
when the front- left sensor is activated the robot will turn right for a random amount
of time.

9.2.4. Lessons Learned
The infrared sensors were quickly implemented. They worked throughout the
project. There was one problem which occurred about a month before the end of
the project. When reassembling the platform, the sensors were reconnected
backwards causing the power and data pins to be switched. The infrared sensors
were replaced after that and a keyed pinout was used to prevent further problems.

9.3. Optical Mice

Figure 5. How Optical Mouse Works [2]

EEL5666C Intelligent Machine Design Laboratory Page 11/56
Summer 2002 8/13/2002

Figure 6. Mouse State Machine [3]

The main sensor for this design is a
distance sensor composed of two optical
mice. Optical mice are able to detect
small distance changes, about 1/8th of a
mm, with very little error

This is desirable in a mapping and
navigation robot because the robot must
know where it is at all times. This can be
accomplished by comparing the values of
the two mice, which will be placed on the
left and right sides of the robot. If one
value is greater than the other, the robot
has turned in the direction of the shorter
length. If the values are similar, the robot
is moving in a straight line.

Optical mice also do not suffer from errors
typically associated with relational
positioning sensors. Because the sensor is
independent of mechanical errors (i.e.
slippage of wheels), the potential for
accurate measurement is much greater.

9.3.1. Sensor Design
Optical mice conform to the PS/2 standard for operating any PC mouse. The
system utilizes a data pin and a clock pin for use in a serial communications
interface. The state machine associated with the interface is shown in Figure 6.

Inhibit_wait_count +1
Char_out = F4

Send_data=1

Inhibit_wait_count [10..9]

Send_data=1

Output_ready

Send_data=0

Send_data=0

IREADY_SET

INHABIT Tx

LOAD COMMAND

LOAD COMMAND 2

WAIT OUTPUT READY

WAIT CMD ACK

INPUT PACKETS

MOUSE STATE MACHINE

EEL5666C Intelligent Machine Design Laboratory Page 12/56
Summer 2002 8/13/2002

Upon power up, the mouse enters a self-check. It is necessary to inhibit
transmission during this period to ensure the mouse will work in PS/2 mode. The
next two states force the mouse into a streaming mode in which the data can be
read. When a command is acknowledged by the mouse, the data begins streaming.

The mouse will then send three bytes of data continuously until it is reset. The
format of this data stream is shown below in Figure 7.

Byte
1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Y overflow X overflow Y sign bit X sign bit Always 1 Middle Btn Right Btn Left Btn
Byte 2 X Movement
Byte
3 Y Movement

Figure 7. Data Stream Format [2]

The first byte of information, the condition code register, contains information about
the signs of the x and y movement, overflow bits for x and y, and the button state for
each of the three buttons in the design.

The second byte of information contains the position of the movement in the x
direction.

The third byte of information contains the position of the movement in the y
direction.

EEL5666C Intelligent Machine Design Laboratory Page 13/56
Summer 2002 8/13/2002

Figure 8. Optical Mouse Design

9.3.2. Implementation
The mouse was interfaced to the UP1 board by Altera. The board contains the
Flex 10k FPGA which was used to create the logic necessary to drive the two
optical mice.

The state machine, created by Ty Black, interfaces the mouse and produces the 8-
bit condition code register and two full 16-bit x and y registers for transfer. These
outputs were connected to a memory mapped logic device that would alternate
between the two mice outputs each time the address 0x7000 was read. The order
of output is as follows:

• X[15..8]: upper eight bits of x data for mouse 1
• X[7..0]: lower eight bits of x data for mouse 1
• X2[15..8]: upper eight bits of x data for mouse 2
• X2[7..0]: lower eight bits of x data for mouse 2

Optical Mouse Design
Mouse Mouse

Vcc

FPGA

 Enable Reset 8 bit

Clk
Data

Mouse

Clk
Data

Mouse

PortC
on HC11

8 A15
A14
A13
A12
R/W
Eclk

Reset HC11

EEL5666C Intelligent Machine Design Laboratory Page 14/56
Summer 2002 8/13/2002

• Y[15..8]: upper eight bits of y data for mouse 1
• Y[7..0]: lower eight bits of y data for mouse 1
• Y2[15..8]: upper eight bits of y data for mouse 2
• Y2[7..0]: lower eight bits of y data for mouse 2
• MCCR: condition code register for mouse 1
• MCCR2: condition code register for mouse 2

Upon reading the outputs into the HC11, the data from the two x and two y inputs
are combined for a 16-bit x and y location register for each mouse. Once in the
HC11, the data can be manipulated to determine distance and movement.

9.3.3. Lessons Learned
The mice were not easy to implement at all. The required timing and signals
needed to use the mice are not flexible and require the use of a powerful
programmable logic device, the Flex 10k FPGA, to interface to the microcontroller.
The mice also do not work correctly if they are not placed correctly in the platform.
They require a very specific mechanical layout to work well and consistently. It
was not possible under the platform designed for this robot to get consistent data all
the time from the mice. However, it was possible to get correct data when the mice
were placed gently and weighed down for stability.

Also, the mice did not give the same distance accuracy all the time. When only the
two evaluation boards were drawing power from the battery pack, the mice were
able to record distance at an accuracy of 4500 counts per foot, or 375 counts per
inch. However, when the servos were running the accuracy would denigrate and
typical results were around 285 counts per inch. This value was not constant and
was the cause of significant problems in the behavioral programming of the robot.
It is suggested that separate battery packs be used to drive the electronics and the
actuators of any future design.

10. Behaviors
Because of the limitations of time and my platform, the robot is only able to avoid
obstacles, go straight, and turn to an angle.

10.1. Obstacle Avoidance

EEL5666C Intelligent Machine Design Laboratory Page 15/56
Summer 2002 8/13/2002

Figure 9. Obstacle Avoidance Algorithm

This behavior is designed to keep the robot out of harms way in the room which it will
navigate. It will utilize information from the bump and infrared sensors to manipulate the
servos. When an obstacle is detected the robot will navigate around it. The code avoid.c
in the appendix is the obstacle avoidance software.

The algorithm requires the sensors to be read. Once read, the robot will turn if the robot
has encountered an obstacle. If the front IR sensor is triggered, the robot will turn in a
random direction. If the right IR sensor is triggered, the robot will turn to the left. If the
left IR sensor is triggered, the robot will turn to the right. If the bump network is
triggered, the robot will back up and turn in a random direction.

No

No

No

No

Yes

Yes

Yes

Yes

Read IR
Sensors

Read Bump
Sensors

Right IR > 125

Left IR > 125

Front IR > 125

Bump > 60

Turn in random
direction

Turn
Left

Turn
Right

Turn
Around

Turn in random
direction

EEL5666C Intelligent Machine Design Laboratory Page 16/56
Summer 2002 8/13/2002

10.2. Go Straight

Figure 10. Go Straight Algorithm

This behavior allows the robot to move forward in a straight path for a predetermined
amount of space. Currently the robot can go 4 feet with very little deviation from the
center of the path. The robot corrects itself by comparing the values of the two optical
mice.

Because the servos used in this project do not have great speed control, the robot will
deviate from the center but will guide itself back onto the correct path. The code for this
behavior can be viewed in the appendix under straight.c.

Yes

Yes

Read
Mouse 1

Read
Mouse 2

Yleft < Yright

Straighten out

Turn Left

Heading Left

Heading Right

Turn Right

Yes

No

No

No

EEL5666C Intelligent Machine Design Laboratory Page 17/56
Summer 2002 8/13/2002

This algorithm requires the mice to be read. Once read the y directional values of both
mice are compared. If the left mouse value is less than the right mouse value, the agent is
fading to the left.

Figure 11. Mouse fading left

The algorithm checks the total value of the y length of each mouse. This value is the
length of the arcs in the above illustration. If the agent is fading left for two consecutive
reads, the algorithm will cause the left wheel to speed up, or the right wheel to slow
down, depending on their current values.

Right
Mouse

Left
Mouse

EEL5666C Intelligent Machine Design Laboratory Page 18/56
Summer 2002 8/13/2002

Figure 12. Agent Fading Left with Correction

If the agent is fading left for one reading, it will attempt to turn right. This works
similarly for fading right. If it continues to fade left it will continue to increase the left
speed or decrease the right speed until the fading corrects to the center line. Once the
agent begins to correct itself, it will slow down the correction speeds causing the agent to
smoothly fade back into a straight line path.

Right
Mouse

Left
Mouse

EEL5666C Intelligent Machine Design Laboratory Page 19/56
Summer 2002 8/13/2002

10.3. Go Straight and Return

Figure 13. Straight and Turn Movement

This behavior allows the robot to move forward utilizing the straight algorithm from the
previous behavior. When the robot has moved a predetermined distance, it will turn
around and return to its original location.

This routine suffers from the same problems as the previous behavior. It can be found in
the appendix under goreturn.c.

This behavior will utilize the straight algorithm from the above behavior. It will also turn
to a specified angle. It does this by comparing the x-values of the two mice. The
following equation will give the angle of current motion:

 T = ((XLeft – X_Left_old)+ (XRight – X_Right_old))/ (2*radius*inch)

In this equation, XLeft and XRight are the current values in the x-direction for the two
mice. The X_Left_old and X_Right_old values are the values of the x-direction of the
two mice at the beginning of turning. The equation is divided by 2 for the average of the
two values. It is divided by inch to get the value of turning in inches. The equation is
finally divided by radius. This is the value of the radius of curvature of the turn. The

EEL5666C Intelligent Machine Design Laboratory Page 20/56
Summer 2002 8/13/2002

equation is illustrated below in Figure 14. In this illustration S is equal to ((XLeft –
X_Left_old)+ (XRight – X_Right_old))/ 2.

Figure 14. Arc formulations

This behavior worked most of the time. It ran into problems when the limitations of the
mechanical design of the robot became apparent. It is clear from the testing that the
algorithms do work. Mechanical problems aside, this behavior worked fairly well.
However, there is a limitation in the turning algorithm. Because the values are calculated
only for the current turn and the previous values are subtracted out, the algorithm has the
effect of compounding error for multiple turns. This is apparent in the next behavior.

Radius

T

S

EEL5666C Intelligent Machine Design Laboratory Page 21/56
Summer 2002 8/13/2002

10.4. Move in a Square

Figure 15. Path for Movement in a Square

This behavior allows the robot to move forward utilizing the straight algorithm and turn
using the turn algorithm. When the robot has moved a predetermined distance, it turns
left and moves the same distance again. The robot will continue to alternate between
moving and turning until it creates a square from its movements.

This routine ran successfully many times. It was not able to consistently make the correct
movements because of the compounding error in the turning algorithm when applied
multiple times. It suffers from the same complications as the previous behaviors and can
be found in the appendix under square.c.

The behavior works somewhat sparingly and tends to either turn to much or not enough
to complete a box. The best way to fix this problem is to implement a general turning
algorithm that utilizes a combination of the x and y values of the mice. Some kind of
error correction due to overall angular movement could be calculated using the y-values
and applied to the x-values equation.

11. Experimental Layout and Results

The results shown below are for the straight.c program run for 2, 3, and 4 feet runs.

EEL5666C Intelligent Machine Design Laboratory Page 22/56
Summer 2002 8/13/2002

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ypos
y2pos

leftspeed
rightspeed

Figure 16. Position and speed – 2 feet

It is clear from Figure 16 that the agent was able to move in a straight line path for two
feet. The positional values almost mirror each other and the speed of the corresponding
wheels is adjusted accordingly. When the left wheel is sped up the value is decreased.
When it is slowed down, it is increased. This is important to note as the graphs show
increases and decreases only.

EEL5666C Intelligent Machine Design Laboratory Page 23/56
Summer 2002 8/13/2002

-100

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time

ydif
change left speed

change right speed

Figure 17. Change in speed – 2 feet

Figure 17 shows difference between the two values of y and the corresponding change in
speed to the left or right wheel. It can be seen that when the difference is positive
(indicating a right fade), that the robot is attempting to slow down the right side or speed
up the left side. As of note, a positive change in left speed indicates a slowing down of
the left side. A negative change in left speed indicates a speeding up of the left side.

EEL5666C Intelligent Machine Design Laboratory Page 24/56
Summer 2002 8/13/2002

-2000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

ypos

y2pos
leftspeed

rightspeed

Figure 18. Position and speed – 3 feet

Figure 18 is a graph of the straight algorithm at three feet. It shows a similar situation
with the two feet example. However, there is a discontinuity in the path at the distance
close to three feet. This corresponds to a sharp change in the left and right speed of the
agent. This data was caused by a sharp turn in the agent to quickly correct the path.

EEL5666C Intelligent Machine Design Laboratory Page 25/56
Summer 2002 8/13/2002

-3000

-2500

-2000

-1500

-1000

-500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

time

ydif
change left speed
change right speed

Figure 19. Change in speed – 3 feet

Figure 19 shows similar results to the two feet example. It shows a growing right fade
towards the end of the run. This is compensated by a sharp change in speeds in the left
and right wheels. This is an attempt to quickly correct an error in movement.

EEL5666C Intelligent Machine Design Laboratory Page 26/56
Summer 2002 8/13/2002

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

ypos

y2pos
leftspeed

rightspeed

Figure 20. Position and speed – 4 feet

This example illustrated in Figure 20 is very similar to the three foot example. There is a
sharp turn at around the three foot mark. This causes greater changes in the speed of the
left and right wheels to account for fading on either side. This behavior worked correctly
and finished its run in the correct position.

EEL5666C Intelligent Machine Design Laboratory Page 27/56
Summer 2002 8/13/2002

-2500

-2000

-1500

-1000

-500

0

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

ydif

change left speed
change right speed

Figure 21. Change in speed – 4 feet

Figure 21 shows similar results to the two and three feet example. It shows a growing
right fade towards the end of the run. This is compensated by a sharp change in speeds in
the left and right wheels. This is an attempt to quickly correct an error in movement.

The results from these three runs, all of which were successful in completing their runs in
a straight path, show that a more comprehensive algorithm is necessary to guarantee a
straight path from beginning to end. A more extensive speed control algorithm should be
implemented to aide the effect of slowing down and speeding up the two servos. This
combined with a more effective means of modifying the actuator speeds should keep the
robot in a straight path.

12. Conclusion
This robot has been the source of much frustration and education. The robot was
completed and modestly completed the tasks. The final demonstration failed to show the
true capability of the robot, but it showed indications of is abilities. It did prove the
concept that optical mice can be used for navigational control.

The robot was fairly simple to implement electronically. The servos and sensors were
not difficult to implement or test and worked consistently throughout the semester. Once
the platform was established and the base sensors and servos were mounted, obstacle
avoidance was accomplished. This left only to get the mice working properly and
mapping programmed. I learned very early on that getting the two mice to integrate
properly would take a great deal of time and set to work on it.

EEL5666C Intelligent Machine Design Laboratory Page 28/56
Summer 2002 8/13/2002

The first attempt to integrate the mice was an idea to implement it with the serial port of
the 68hc11. This was an attempt to get one mouse working quickly to learn about its
possibilities as a sensor. This proved extremely difficult and complicated because the
method for communicating with the programmer used the serial port. This idea was
abandoned after a few weeks of work. The second attempt to integrate the mice was to
use a CPLD I currently owned. This was a fine solution, but the CPLD was unable to
hold the physical size of the programmable logic needed to interface the mice. This
forced the purchase of the UP1 board which contained the Flex chip used in Ty Black’s
successful implementation of the mice. After waiting a week for the board to arrive and
another learning to program it, the mice worked. By this time several weeks had been
wasted working on the mice and there was little time to program it.

Once the mice were integrated together, it became clear that they did not give as accurate
data as was advertised. However, the mice seemed to be very consistently giving data at
about 1/285th of an inch. It required a great deal of time to realize this.

The mice are also very susceptible to movement of the mice. If they are disturbed from
resting on the ground, errors can be introduced. It is this problem that caused the most
time loss. It took many weeks to determine that one of the problems was the platform,
which as a two wheeled design, will rotate, causing the mice to lift slightly from the
ground. This introduced error as well.

It is clear from this project that there is potential for two or more mice to be used as a
navigation tool. Further research could be done with the two mice design on a four wheel
platform, thus eliminating the problem of mice lifting. Also, the mice should be mounted
in such a way as they are independent from the actual robot. This may be accomplished
by creating a guide in which the mice can be placed, as indicated in the platform portion
of the paper. These corrections should eliminate many of the problems that plagued this
design.

If given the opportunity to redesign this robot, a more appropriate platform with a very
detailed design for mounting the mice would be the first objective. With the mice now
working, a more appropriate controller should also be chosen. A controller with an
integrated FPGA would be most helpful. A small board with programmable logic and a
microcontroller would greatly reduce the weight problems associated with the two
evaluation boards. If such a board is not available, a smaller evaluation module for an
FPGA should be utilized. Finally the mice should not be directly attached to the agent.
This should reduce the errors causing such inconsistency in this design.

The new robot should also be enhanced to utilize a network of infrared sensors. Many
sensors would allow navigation in a room and make wall following very simple. Also,
the robot should be shown to move straight and make accurate turns as a bare minimum.
The straight line path should be accomplished with minute corrections and never deviate
far from the center line.

EEL5666C Intelligent Machine Design Laboratory Page 29/56
Summer 2002 8/13/2002

Overall, the project was successful in proving that navigation can be accomplished in a
two mouse design. The mapping functionality was not accomplished, but is not
unattainable in the future. The robot was able to navigate in a straight line and turn
accurately, thus providing the foundation for future work in this area.

13. Documentation
[1] http://www.altera.com/
[2] http://www.howstuffworks.com/mouse3.htm
[3] Ty Black, Sensor Report, IMDL
[4] Ty Black, Final Report, IMDL
[5] http://www.motorolla.com
[6] http://www.mekatronics.com
[7] http://mil.ufl.edu
[8] http://www.acroname.com

14. Appendices
14.1. Avoid.c
/***
*
 * MEKATRONIX Copyright 1998 *
 * Title avoid.c *
 * ProgrammerMichael Pusatera *
 * Date June 30, 2002 *
 * Version 1 *
 * *
 * Description *
 * Avoid obstacles. *

**
/

/**************************** Includes **********************************/
#include <tjpbase.h>
/************************ End of includes *******************************/

#define Left_servo 2
#define Right_servo 1
#define left 2
#define right 1
#define random 0
#define Forward 3500
#define Backward 2500
#define Stop 0
#define FRONT_IR analog(1);

void turn(int);

EEL5666C Intelligent Machine Design Laboratory Page 30/56
Summer 2002 8/13/2002

void main(void)
/****************************** Main ***********************************/
{
 int i, irdr, irdl, irdf, bump;

 init_servome();
 init_clocktjp();
 init_analog();

 while(BUMPER < 20);
 servo(Left_servo, Backward);
 servo(Right_servo, Forward);
 while(1)
 {
 irdr = RIGHT_IR;
 irdl = LEFT_IR;
 irdf = FRONT_IR;
 bump = BUMPER;
 servo(Left_servo, Backward);
 servo(Right_servo, Forward);
 if(irdf > 125)
 turn(random);
 if(irdr > 125)
 turn(left);
 if(irdl > 125)
 turn(right);

 if(bump > 60)
 {
 //back up
 servo(Left_servo, Forward);
 servo(Right_servo, Backward);
 turn(random);
 }
 }

}
/**************************** End of Main ******************************/
void turn(int dir)
{
 int i;
 unsigned rand;

 rand = TCNT;

EEL5666C Intelligent Machine Design Laboratory Page 31/56
Summer 2002 8/13/2002

 if(dir == 0) //front_ir turn random
 {
 if(rand & 0x0001)
 dir = left; //randomly turn right or left
 else dir = right;
 }

 if(dir == 1) //turn left
 servo(Left_servo, Forward);
 else
 servo(Right_servo, Backward);

 i=(rand % 1024);
 if(i>250)
 wait(i);
 else wait(250);
 return;

}

14.2. GoReturn.c
/***
*
 * Title goreturn.c *
 * ProgrammerMichael Pusatera *
 * Date July 31, 2002 *
 * Version 1 *
 * *
 * Description *
 * robot will go straight turn around and return*
**
/

/**************************** Includes **********************************/
#include <tjpbase.h>
/************************ End of includes *******************************/

#define Left_servo 1
#define Right_servo 2
#define left 2
#define right 1
#define random 0
#define Forward 3700
#define Backward 2200
#define ForMin 3200
#define BackMin 2900

EEL5666C Intelligent Machine Design Laboratory Page 32/56
Summer 2002 8/13/2002

#define MaxSpeed 4500
#define MinSpeed 1000
#define Stop 0
#define FRONT_IR analog(1);
#define d 2.62 //distance in inches
#define inch 285 //factor for inches
#define rad 3.75
#define pi 3.14

void getpos(void);
void turn(float);
void getmice(void);
void straight(int);

int ypos[1000], y2pos[1000], ydif[100], y2dif[1000];
int yinch[1000], y2inch[1000], anglea[100], dif[1000];
int lefta[1000], righta[1000], yturn[100], y2turn[100];
int i, yold, y2old;
int xold, x2old;
int xpos[100], x2pos[100];
int xinch[100], x2inch[100];
int xdif[100], x2dif[100];
int xa[100], x2a[100];
int irdr, irdl, irdf, bump;
int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;
int diff, diff2, done;
int x, y, x2, y2, oldy, oldy2;
int leftspeed, rightspeed, marker;
 float thetay, thetax;

void main(void)
/****************************** Main ***********************************/
{
 marker = 0;
 init_servome();
 init_clocktjp();
 init_analog();
 leftspeed=Backward;
 rightspeed=Forward;
 getmice();
 wait(1000);
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 i=0;
 yold = 0;
 y2old = 0;

EEL5666C Intelligent Machine Design Laboratory Page 33/56
Summer 2002 8/13/2002

 oldy = 0;
 oldy2 = 0;
 straight(36);

 printf("out of 1st while\n");
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);
 leftspeed = Forward; //robot will turn in place
 rightspeed = Forward;
 wait(100);
 xold = xpos[i-1];
 x2old = x2pos[i-1];
 turn(pi);

 servo(Left_servo, Stop);
 servo(Right_servo, Stop);
 wait(100);
 leftspeed=Backward;
 rightspeed=Forward;
 oldy = ypos[i-1];
 oldy2 = y2pos[i-1];
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);

 straight(36);

 //stop robot
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

 //wait for hook up to computer
 while(BUMPER < 20);
 while(BUMPER < 20);
 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");
 for(i = 0; i<100; i++)
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i],
lefta[i], righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);
 printf("oldy = %d oldy2 = %d\n", oldy, oldy2);
 return ;
}
/**************************** End of Main ******************************/
void turn(float angle)
{
 marker = 0;
 while(marker != 1)
 {

EEL5666C Intelligent Machine Design Laboratory Page 34/56
Summer 2002 8/13/2002

 if(i >=1000)
 i = 0;
 getmice();
 getpos();
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 //printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1],
xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

 if((thetax >= (angle)) || (thetax <= (0 - (angle))))
 marker = 1;
 //read data in
 wait(10);
 }
 return;

}

void getpos()
{
 ypos[i] = y;
 y2pos[i] = y2;
 xpos[i] = x;
 x2pos[i] = x2;
 xinch[i] = x / inch;
 x2inch[i] = x2 / inch;
 yinch[i] = y / inch;
 y2inch[i] = y2 / inch;
 thetay = (y2 - y)/(inch*d);
 thetax = ((x2 - x2old)+ (x-xold))/ (2*rad*inch);
 anglea[i] = thetax;
 ydif[i] = y - yold;
 y2dif[i] = y2 - y2old;
 dif[i] = ypos[i] - y2pos[i];
 yold = y;
 y2old = y2;
 i++;
 return ;
}
void getmice()
{
 xh = *(unsigned char *) 0x7000;
 xl = *(unsigned char *) 0x7000;
 xh2 = *(unsigned char *) 0x7000;
 xl2 = *(unsigned char *) 0x7000;
 yh = *(unsigned char *) 0x7000;

EEL5666C Intelligent Machine Design Laboratory Page 35/56
Summer 2002 8/13/2002

 yl = *(unsigned char *) 0x7000;
 yh2 = *(unsigned char *) 0x7000;
 yl2 = *(unsigned char *) 0x7000;
 mccr = *(unsigned char *) 0x7000;
 mccr2 = *(unsigned char *) 0x7000;
 //shift data in x and y
 x = xh;
 x2 = xh2;
 x = x << 8;
 x2 = x2 << 8;
 x = x + xl;
 x2 = x2 + xl2;
 y = yh;
 y2 = yh2;
 y = y << 8;
 y2 = y2 << 8;
 y = y + yl;
 y2 = y2 + yl2;
 return ;
 }
void straight(int distance)
{
 marker = 0;
 while(marker != 1)
 {
 if(i >=1000)
 i = 0;
 printf("in while\n");
 //read data in
 getmice();
 getpos();
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1],
xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
 diff = (ypos[i-1] - oldy) - (y2pos[i-1] - oldy2);
 diff2 = ydif[i-1] - y2dif[i-1]; //
 if(diff > 0) {//on left
 if(diff2 > 0) { //veering left more
 if((leftspeed - (diff/4)) > MinSpeed)
 leftspeed = leftspeed - (diff/4); //speed up left
 else {
 if((rightspeed - (diff/4)) > ForMin)
 rightspeed = rightspeed - (diff/4); //slow down right
 else {
 leftspeed=Backward - (diff/4);
 rightspeed=Forward;
 }

EEL5666C Intelligent Machine Design Laboratory Page 36/56
Summer 2002 8/13/2002

 }
 }
 else { //veering right--correcting
 if((rightspeed + (diff/8)) < MaxSpeed)
 rightspeed = rightspeed + (diff/8); //speed up right
 else {
 if((leftspeed + (diff/8)) < BackMin)
 leftspeed = leftspeed + (diff/8); //slow down left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/8);
 }
 }
 }
 }
 else { //on right
 diff = - diff;
 if(diff2 < 0) { //veering right more
 if((rightspeed + (diff/4)) < MaxSpeed)
 rightspeed = rightspeed + (diff/4); //speed up right
 else {
 if((leftspeed + (diff/4)) < BackMin)
 leftspeed = leftspeed + (diff/4); //slow down left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/4);
 }
 }
 }
 else { //veering left--correcting
 if((leftspeed - (diff/8)) > MinSpeed)
 leftspeed = leftspeed - (diff/8); //speed up left
 else {
 if((rightspeed - (diff/8)) > ForMin)
 rightspeed = rightspeed - (diff/8); //slow down right
 else {
 leftspeed=Backward - (diff/8);
 rightspeed=Forward;
 }
 }
 }
 }
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 righta[i-1] = rightspeed;
 lefta[i-1] = leftspeed;

EEL5666C Intelligent Machine Design Laboratory Page 37/56
Summer 2002 8/13/2002

 wait(70);
 done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;
 if((done) >= (inch * distance))
 marker = 1;
 }
 return ;
}

14.3. Square.c
/***
*
 * Title square.c *
 * ProgrammerMichael Pusatera *
 * Date July 31, 2002 *
 * Version 1 *
 * *
 * Description *
 * robot will map out a square*
***/

/**************************** Includes **********************************/
#include <tjpbase.h>
/************************ End of includes *******************************/

#define Left_servo 1
#define Right_servo 2
#define left 2
#define right 1
#define random 0
#define Forward 3700
#define Backward 2200
#define ForMin 3200
#define BackMin 2900
#define MaxSpeed 4500
#define MinSpeed 1000
#define Stop 0
#define FRONT_IR analog(1);
#define d 2.62 //distance in inches
#define inch 285 //factor for inches
#define rad 3.0
#define pi 3.14

void getpos(void);
void turn(float);
void getmice(void);
void straight(int);

EEL5666C Intelligent Machine Design Laboratory Page 38/56
Summer 2002 8/13/2002

int ypos[1000], y2pos[1000], ydif[100], y2dif[1000];
int yinch[1000], y2inch[1000], anglea[100], dif[1000];
int lefta[1000], righta[1000], yturn[100], y2turn[100];
int i, yold, y2old;
int xold, x2old;
int xpos[100], x2pos[100];
int xinch[100], x2inch[100];
int xdif[100], x2dif[100];
int xa[100], x2a[100];
int irdr, irdl, irdf, bump;
int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;
int diff, diff2, done;
int x, y, x2, y2, oldy, oldy2;
int leftspeed, rightspeed, marker;
 float thetay, thetax;

void main(void)
/****************************** Main ***********************************/
{
 marker = 0;
 init_servome();
 init_clocktjp();
 init_analog();
 leftspeed=Backward;
 rightspeed=Forward;
 wait(1000);
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 i=0;
 yold = 0;
 y2old = 0;
 oldy = 0;
 oldy2 = 0;
 straight(24);

 printf("out of 1st while\n");
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);
 leftspeed = Forward; //robot will turn in place
 rightspeed = Forward;
 wait(100);
 turn(pi/2);

 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

EEL5666C Intelligent Machine Design Laboratory Page 39/56
Summer 2002 8/13/2002

 oldy = ypos[i-1];
 oldy2 = y2pos[i-1];
 straight(24);

 printf("out of 1st while\n");
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);
 leftspeed = Forward; //robot will turn in place
 rightspeed = Forward;
 wait(100);
 turn(pi/2);
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

 oldy = ypos[i-1];
 oldy2 = y2pos[i-1];
 straight(24);

 printf("out of 1st while\n");
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);
 leftspeed = Forward; //robot will turn in place
 rightspeed = Forward;
 wait(100);
 turn(pi/2);
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

 oldy = ypos[i-1];
 oldy2 = y2pos[i-1];
 straight(24);

 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

 //wait for hook up to computer
 while(BUMPER < 20);
 while(BUMPER < 20);
 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");
 for(i = 0; i<100; i++)
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i],
lefta[i], righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);
 printf("oldy = %d oldy2 = %d\n", oldy, oldy2);
 return ;
}

EEL5666C Intelligent Machine Design Laboratory Page 40/56
Summer 2002 8/13/2002

/**************************** End of Main ******************************/
void turn(float angle)
{
 marker = 0;
 while(marker != 1)
 {
 if(i >=1000)
 i = 0;
 getmice();
 getpos();
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 //printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1],
xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

 if((thetax >= (angle)) || (thetax <= (0 - (angle))))
 marker = 1;
 //read data in
 wait(30);
 }
 return;

}

void getpos()
{
 ypos[i] = y;
 y2pos[i] = y2;
 xpos[i] = x;
 x2pos[i] = x2;
 xinch[i] = x / inch;
 x2inch[i] = x2 / inch;
 yinch[i] = y / inch;
 y2inch[i] = y2 / inch;
 thetay = (y2 - y)/(inch*d);
 thetax = (x2 + x)/ (2*rad*inch);
 anglea[i] = thetax;
 ydif[i] = y - yold;
 y2dif[i] = y2 - y2old;
 dif[i] = ypos[i] - y2pos[i];
 yold = y;
 y2old = y2;
 i++;
 return ;
}
void getmice()

EEL5666C Intelligent Machine Design Laboratory Page 41/56
Summer 2002 8/13/2002

{
 xh = *(unsigned char *) 0x7000;
 xl = *(unsigned char *) 0x7000;
 xh2 = *(unsigned char *) 0x7000;
 xl2 = *(unsigned char *) 0x7000;
 yh = *(unsigned char *) 0x7000;
 yl = *(unsigned char *) 0x7000;
 yh2 = *(unsigned char *) 0x7000;
 yl2 = *(unsigned char *) 0x7000;
 mccr = *(unsigned char *) 0x7000;
 mccr2 = *(unsigned char *) 0x7000;
 //shift data in x and y
 x = xh;
 x2 = xh2;
 x = x << 8;
 x2 = x2 << 8;
 x = x + xl;
 x2 = x2 + xl2;
 y = yh;
 y2 = yh2;
 y = y << 8;
 y2 = y2 << 8;
 y = y + yl;
 y2 = y2 + yl2;
 return ;
 }
void straight(int distance)
{
 marker = 0;
 while(marker != 1)
 {
 if(i >=1000)
 i = 0;
 printf("in while\n");
 //read data in
 getmice();
 getpos();
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1],
xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
 diff = ypos[i-1] - y2pos[i-1];
 diff2 = ydif[i-1] - y2dif[i-1]; //
 if(diff > 0) {//on left
 if(diff2 > 0) { //veering left more
 if((leftspeed - (diff/4)) > MinSpeed)
 leftspeed = leftspeed - (diff/4); //speed up left
 else {

EEL5666C Intelligent Machine Design Laboratory Page 42/56
Summer 2002 8/13/2002

 if((rightspeed - (diff/4)) > ForMin)
 rightspeed = rightspeed - (diff/4); //slow
down right
 else {
 leftspeed=Backward - (diff/4);
 rightspeed=Forward;
 }
 }
 }
 else { //veering right--correcting
 if((rightspeed + (diff/8)) < MaxSpeed)
 rightspeed = rightspeed + (diff/8); //speed up right
 else {
 if((leftspeed + (diff/8)) < BackMin)
 leftspeed = leftspeed + (diff/8); //slow down
left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/8);
 }
 }
 }
 }
 else { //on right
 diff = - diff;
 if(diff2 < 0) { //veering right more
 if((rightspeed + (diff/4)) < MaxSpeed)
 rightspeed = rightspeed + (diff/4); //speed up right
 else {
 if((leftspeed + (diff/4)) < BackMin)
 leftspeed = leftspeed + (diff/4); //slow down
left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/4);
 }
 }
 }
 else { //veering left--correcting
 if((leftspeed - (diff/8)) > MinSpeed)
 leftspeed = leftspeed - (diff/8); //speed up left
 else {
 if((rightspeed - (diff/8)) > ForMin)
 rightspeed = rightspeed - (diff/8); //slow
down right
 else {

EEL5666C Intelligent Machine Design Laboratory Page 43/56
Summer 2002 8/13/2002

 leftspeed=Backward - (diff/8);
 rightspeed=Forward;
 }
 }
 }
 }
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 righta[i-1] = rightspeed;
 lefta[i-1] = leftspeed;
 wait(50);
 done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;
 if((done) >= (inch * distance))
 marker = 1;
 }
 return ;
}

14.4. Straight.c
/***
*
 * Title straight.c *
 * ProgrammerMichael Pusatera *
 * Date July 31, 2002 *
 * Version 1 *
 * *
 * Description *
 * robot will go straight for 4 feet*
 * *

**
/

/**************************** Includes **********************************/
#include <tjpbase.h>
/************************ End of includes *******************************/

#define Left_servo 1
#define Right_servo 2
#define left 2
#define right 1
#define random 0
#define Forward 3400
#define Backward 2800
#define ForMin 3280

EEL5666C Intelligent Machine Design Laboratory Page 44/56
Summer 2002 8/13/2002

#define BackMin 3120
#define MaxSpeed 3500
#define MinSpeed 2700
#define Stop 0
#define FRONT_IR analog(1);
#define d 2.62 //distance in inches
#define inch 72 //factor for inches
#define rad 3.75
#define pi 3.14

void getpos(void);
void getmice(void);
void straight(int);

int ypos[100], y2pos[100], ydif[100], y2dif[100];
int yinch[100], y2inch[100], anglea[100], dif[100];
int lefta[100], righta[100], yturn[100], y2turn[100];
int i, yold, y2old;
int xold, x2old;
int xpos[100], x2pos[100];
int xinch[100], x2inch[100];
int xdif[100], x2dif[100];
int xa[100], x2a[100];
int irdr, irdl, irdf, bump;
int mccr, mccr2, xh, xl, xh2, xl2, yh, yl, yh2, yl2;
int diff, diff2, done;
int x, y, x2, y2, oldy, oldy2;
int leftspeed, rightspeed, marker;
float thetay, thetax;

void main(void)
/****************************** Main ***********************************/
{
 marker = 0;
 init_servome();
 init_clocktjp();
 init_analog();
 leftspeed=Backward;
 rightspeed=Forward;
 getmice();
 wait(1000);
 servo(Left_servo, leftspeed);
 servo(Right_servo, rightspeed);
 i=0;
 yold = 0;
 y2old = 0;

EEL5666C Intelligent Machine Design Laboratory Page 45/56
Summer 2002 8/13/2002

 oldy = 0;
 oldy2 = 0;
 straight(48);
 //stop robot
 servo(Left_servo, Stop);
 servo(Right_servo, Stop);

 //wait for hook up to computer
 while(BUMPER < 20);
 while(BUMPER < 20);
 printf("ypos\t y2pos\t leftspeed \t rightspeed \t angle\t xpos\t x2pos\t dif\n");
 for(i = 0; i<100; i++)
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i], y2pos[i], lefta[i],

 righta[i], anglea[i], xpos[i], x2pos[i], dif[i]);
 return ;
}
/**************************** End of Main ******************************/
void getpos()
{
 ypos[i] = y;
 y2pos[i] = y2;
 xpos[i] = x;
 x2pos[i] = x2;
 xinch[i] = x / inch;
 x2inch[i] = x2 / inch;
 yinch[i] = y / inch;
 y2inch[i] = y2 / inch;
 thetay = (y2 - y)/(inch*d);
 thetax = ((x2 - x2old)+ (x-xold))/ (2*rad*inch);
 anglea[i] = thetax;
 ydif[i] = y - yold;
 y2dif[i] = y2 - y2old;
 dif[i] = ypos[i] - y2pos[i];
 yold = y;
 y2old = y2;
 i++;
 return ;
}
void getmice()
{
 xh = *(unsigned char *) 0x7000;
 xl = *(unsigned char *) 0x7000;
 xh2 = *(unsigned char *) 0x7000;
 xl2 = *(unsigned char *) 0x7000;
 yh = *(unsigned char *) 0x7000;
 yl = *(unsigned char *) 0x7000;

EEL5666C Intelligent Machine Design Laboratory Page 46/56
Summer 2002 8/13/2002

 yh2 = *(unsigned char *) 0x7000;
 yl2 = *(unsigned char *) 0x7000;
 mccr = *(unsigned char *) 0x7000;
 mccr2 = *(unsigned char *) 0x7000;
 //shift data in x and y
 x = xh;
 x2 = xh2;
 x = x << 8;
 x2 = x2 << 8;
 x = x + xl;
 x2 = x2 + xl2;
 y = yh;
 y2 = yh2;
 y = y << 8;
 y2 = y2 << 8;
 y = y + yl;
 y2 = y2 + yl2;
 x = x/4;
 x2 = x2/4;
 y = y/4;
 y2 = y2/4;
 return ;
 }
void straight(int distance)
{
 marker = 0;
 while(marker != 1)
 {
 if(i >=1000)
 i = 0;
 printf("in while\n");
 //read data in
 getmice();
 getpos();
 printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypos[i-1], y2pos[i-1],
xpos[i-1], x2pos[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
 diff = (ypos[i-1] - oldy) - (y2pos[i-1] - oldy2);
 diff2 = ydif[i-1] - y2dif[i-1]; //
 if(diff > 0) {//on left
 if(diff2 > 0) { //veering left more
 if((leftspeed - (diff/3)) > MinSpeed)
 leftspeed = leftspeed - (diff/3); //speed up left
 else {
 if((rightspeed - (diff/3)) > ForMin)
 rightspeed = rightspeed - (diff/3); //slow down right
 else {

EEL5666C Intelligent Machine Design Laboratory Page 47/56
Summer 2002 8/13/2002

 leftspeed=Backward - (diff/3);
 rightspeed=Forward;
 }
 }
 }
 else { //veering right--correcting
 if((rightspeed + (diff/5)) < MaxSpeed)
 rightspeed = rightspeed + (diff/5); //speed up right
 else {
 if((leftspeed + (diff/5)) < BackMin)
 leftspeed = leftspeed + (diff/5); //slow down left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/5);
 }
 }
 }
 }
 else { //on right
 diff = - diff;
 if(diff2 < 0) { //veering right more
 if((rightspeed + (diff/3)) < MaxSpeed)
 rightspeed = rightspeed + (diff/3); //speed up right
 else {
 if((leftspeed + (diff/3)) < BackMin)
 leftspeed = leftspeed + (diff/3); //slow down left
 else {
 leftspeed=Backward;
 rightspeed=Forward + (diff/3);
 }
 }
 }
 else { //veering left--correcting
 if((leftspeed - (diff/5)) > MinSpeed)
 leftspeed = leftspeed - (diff/5); //speed up left
 else {
 if((rightspeed - (diff/5)) > ForMin)
 rightspeed = rightspeed - (diff/5); //slow down right
 else {
 leftspeed=Backward - (diff/5);
 rightspeed=Forward;
 }
 }
 }
 }
 servo(Left_servo, leftspeed);

EEL5666C Intelligent Machine Design Laboratory Page 48/56
Summer 2002 8/13/2002

 servo(Right_servo, rightspeed);
 righta[i-1] = rightspeed;
 lefta[i-1] = leftspeed;
 wait(50);
 done =((y2pos[i-1]-oldy2)+(ypos[i-1]-oldy))/2;
 if((done) >= (inch * distance))
 marker = 1;
 }
 return ;
}

14.5. Mouse16.vhd[3]
--mouse to talrik
--column = x
--row = y
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.all;
 USE IEEE.STD_LOGIC_ARITH.all;
 USE IEEE.STD_LOGIC_UNSIGNED.all;

 ENTITY mouse16 IS

 PORT(clock_25Mhz, reset : IN std_logic;
 SIGNAL mouse_data : INOUT std_logic;
 SIGNAL mouse_clk : INOUT std_logic;
 SIGNAL left_button, right_button: OUT std_logic;
 SIGNAL mouse_y : OUT std_logic_vector(15 DOWNTO 0);
 SIGNAL mouse_x : OUT std_logic_vector(15 DOWNTO 0);
 signal mouse_condition_register : out std_logic_vector(7
downto 0));

 END mouse16;

 ARCHITECTURE behavior OF mouse16 IS

 TYPE STATE_TYPE IS (INHIBIT_TRANS, LOAD_COMMAND,LOAD_COMMAND2,
WAIT_OUTPUT_READY,
 WAIT_CMD_ACK, INPUT_PACKETS);

 -- Signals for Mouse
 SIGNAL mouse_state :
state_type;
 SIGNAL inhibit_wait_count :
std_logic_vector(10 DOWNTO 0);
 SIGNAL CHARIN, CHAROUT :
std_logic_vector(7 DOWNTO 0);
 SIGNAL new_y, new_x :
std_logic_vector(15 DOWNTO 0);
 SIGNAL y, x :
std_logic_vector(15 DOWNTO 0);

EEL5666C Intelligent Machine Design Laboratory Page 49/56
Summer 2002 8/13/2002

 SIGNAL INCNT, OUTCNT, mSB_OUT :
std_logic_vector(3 DOWNTO 0);
 SIGNAL PACKET_COUNT :
std_logic_vector(1 DOWNTO 0);
 SIGNAL SHIFTIN :
std_logic_vector(8 DOWNTO 0);
 SIGNAL SHIFTOUT :
std_logic_vector(10 DOWNTO 0);
 SIGNAL PACKET_CHAR1, PACKET_CHAR2, PACKET_CHAR3
 : std_logic_vector(7 DOWNTO 0);
 SIGNAL MOUSE_CLK_BUF, DATA_READY, READ_CHAR
 : std_logic;
 SIGNAL i :
integer;
 SIGNAL cursor, iready_set, break, toggle_next, output_ready,
send_char, send_data
 : std_logic;
 SIGNAL MOUSE_DATA_DIR, MOUSE_DATA_OUT, MOUSE_DATA_BUF,
MOUSE_CLK_DIR
 : std_logic;
 SIGNAL MOUSE_CLK_FILTER :
std_logic;
 SIGNAL filter :
std_logic_vector(7 DOWNTO 0);
 signal condition_register :
std_logic_vector(7 DOWNTO 0);

 BEGIN

 mouse_y <= y;
 mouse_x <= x;
 mouse_condition_register <= condition_register;

 -- tri_state control logic for mouse data and clock lines
 MOUSE_DATA <= 'Z' WHEN MOUSE_DATA_DIR = '0' ELSE MOUSE_DATA_BUF;
 MOUSE_CLK <= 'Z' WHEN MOUSE_CLK_DIR = '0' ELSE MOUSE_CLK_BUF;

 -- state machine to send init command and start recv
process.
 PROCESS (reset, clock_25Mhz)
 BEGIN
 IF reset = '1' THEN
 mouse_state <= INHIBIT_TRANS;
 inhibit_wait_count <= conv_std_logic_vector(0,11);
 SEND_DATA <= '0';
 ELSIF clock_25Mhz'EVENT AND clock_25Mhz = '1' THEN
 CASE mouse_state IS
 -- Mouse powers up and sends self test codes, AA and 00 out
 -- before board is downloaded
 -- Pull clock line low to inhibit any transmissions from
mouse
 -- Need at least 60usec to stop a transmission in progress
 -- Note: This is perhaps optional since mouse should not be
tranmitting
 WHEN INHIBIT_TRANS =>
 inhibit_wait_count <= inhibit_wait_count + 1;
 IF inhibit_wait_count(10 DOWNTO 9) = "11" THEN

EEL5666C Intelligent Machine Design Laboratory Page 50/56
Summer 2002 8/13/2002

 mouse_state <= LOAD_COMMAND;
 END IF;
 -- Enable Streaming Mode Command, F4
 charout <= "11110100";
 -- Pull data low to signal data available to mouse
 WHEN LOAD_COMMAND =>
 SEND_DATA <= '1';
 mouse_state <= LOAD_COMMAND2;
 WHEN LOAD_COMMAND2 =>
 SEND_DATA <= '1';
 mouse_state <= WAIT_OUTPUT_READY;
 -- Wait for Mouse to Clock out all bits in command.
 -- Command sent is F4, Enable Streaming Mode
 -- This tells the mouse to start sending 3-byte packets
with movement data
 WHEN WAIT_OUTPUT_READY =>
 SEND_DATA <= '0';
 -- Output Ready signals that all data is clocked out of
shift register
 IF OUTPUT_READY='1' THEN
 mouse_state <= WAIT_CMD_ACK;
 ELSE
 mouse_state <= WAIT_OUTPUT_READY;
 END IF;
 -- Wait for Mouse to send back Command Acknowledge, FA
 WHEN WAIT_CMD_ACK =>
 SEND_DATA <= '0';
 IF IREADY_SET='1' THEN
 mouse_state <= INPUT_PACKETS;
 END IF;
 -- Release clock_25Mhz and data lines and go into mouse
input mode
 -- Stay in this state and recieve 3-byte mouse data packets
forever
 -- Default rate is 100 packets per second
 WHEN INPUT_PACKETS =>
 mouse_state <= INPUT_PACKETS;
 END CASE;
 END IF;
 END PROCESS;

 WITH mouse_state SELECT
 -- Mouse Data Tri-state control line: '1' FLEX Chip drives,
'0'=Mouse Drives
 MOUSE_DATA_DIR <= '0' WHEN INHIBIT_TRANS,
 '0' WHEN LOAD_COMMAND,
 '0' WHEN LOAD_COMMAND2,
 '1' WHEN WAIT_OUTPUT_READY,
 '0' WHEN WAIT_CMD_ACK,
 '0' WHEN INPUT_PACKETS;
 -- Mouse Clock Tri-state control line: '1' FLEX Chip drives,
'0'=Mouse Drives
 WITH mouse_state SELECT
 MOUSE_CLK_DIR <= '1' WHEN INHIBIT_TRANS,
 '1' WHEN LOAD_COMMAND,
 '1' WHEN LOAD_COMMAND2,
 '0' WHEN WAIT_OUTPUT_READY,

EEL5666C Intelligent Machine Design Laboratory Page 51/56
Summer 2002 8/13/2002

 '0' WHEN WAIT_CMD_ACK,
 '0' WHEN INPUT_PACKETS;
 WITH mouse_state SELECT
 -- Input to FLEX chip tri-state buffer mouse clock_25Mhz line
 MOUSE_CLK_BUF <= '0' WHEN INHIBIT_TRANS,
 '1' WHEN LOAD_COMMAND,
 '1' WHEN LOAD_COMMAND2,
 '1' WHEN WAIT_OUTPUT_READY,
 '1' WHEN WAIT_CMD_ACK,
 '1' WHEN INPUT_PACKETS;

 -- filter for mouse clock
 PROCESS
 BEGIN
 WAIT UNTIL clock_25Mhz'event and clock_25Mhz = '1';
 filter(7 DOWNTO 1) <= filter(6 DOWNTO 0);
 filter(0) <= MOUSE_CLK;
 IF filter = "11111111" THEN
 MOUSE_CLK_FILTER <= '1';
 ELSIF filter = "00000000" THEN
 MOUSE_CLK_FILTER <= '0';
 END IF;
 END PROCESS;

 --This process sends serial data going to the mouse
 SEND_UART:
 PROCESS (send_data, Mouse_clK_filter)
 BEGIN
 IF SEND_DATA = '1' THEN
 OUTCNT <= "0000";
 SEND_CHAR <= '1';
 OUTPUT_READY <= '0';
 -- Send out Start Bit(0) + Command(F4) + Parity Bit(0) + Stop
Bit(1)
 SHIFTOUT(8 DOWNTO 1) <= CHAROUT ;
 -- START BIT
 SHIFTOUT(0) <= '0';
 -- COMPUTE ODD PARITY BIT
 SHIFTOUT(9) <= not (charout(7) xor charout(6) xor
charout(5) xor
 charout(4) xor Charout(3) xor charout(2) xor charout(1)
xor
 charout(0));
 -- STOP BIT
 SHIFTOUT(10) <= '1';
 -- Data Available Flag to Mouse
 -- Tells mouse to clock out command data (is also start bit)
 MOUSE_DATA_BUF <= '0';

 ELSIF(MOUSE_CLK_filter'event and MOUSE_CLK_filter='0') THEN
 IF MOUSE_DATA_DIR='1' THEN
 -- SHIFT OUT NEXT SERIAL BIT
 IF SEND_CHAR = '1' THEN
 -- Loop through all bits in shift register
 IF OUTCNT <= "1001" THEN
 OUTCNT <= OUTCNT + 1;
 -- Shift out next bit to mouse

EEL5666C Intelligent Machine Design Laboratory Page 52/56
Summer 2002 8/13/2002

 SHIFTOUT(9 DOWNTO 0) <= SHIFTOUT(10 DOWNTO 1);
 SHIFTOUT(10) <= '1';
 MOUSE_DATA_BUF <= SHIFTOUT(1);
 OUTPUT_READY <= '0';
 -- END OF CHARACTER
 ELSE
 SEND_CHAR <= '0';
 -- Signal the character has been output
 OUTPUT_READY <= '1';
 OUTCNT <= "0000";
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS SEND_UART;

 RECV_UART:
 PROCESS(reset, mouse_clk_filter)
 BEGIN
 IF RESET='1' THEN
 INCNT <= "0000";
 READ_CHAR <= '0';
 PACKET_COUNT <= "00";
 LEFT_BUTTON <= '0';
 RIGHT_BUTTON <= '0';
 CHARIN <= "00000000";

 ELSIF MOUSE_CLK_FILTER'event and MOUSE_CLK_FILTER='1' THEN
 IF MOUSE_DATA_DIR='0' THEN
 IF MOUSE_DATA='0' AND READ_CHAR='0' THEN
 READ_CHAR<= '1';
 IREADY_SET<= '0';
 ELSE
 -- SHIFT IN NEXT SERIAL BIT
 IF READ_CHAR = '1' THEN
 IF INCNT < "1001" THEN
 INCNT <= INCNT + 1;
 SHIFTIN(7 DOWNTO 0) <= SHIFTIN(8 DOWNTO 1);
 SHIFTIN(8) <= MOUSE_DATA;
 IREADY_SET <= '0';
 -- END OF CHARACTER
 ELSE
 CHARIN <= SHIFTIN(7 DOWNTO 0);
 READ_CHAR <= '0';
 IREADY_SET <= '1';
 PACKET_COUNT <= PACKET_COUNT + 1;
 -- PACKET_COUNT = "00" IS ACK COMMAND
 IF PACKET_COUNT = "00" THEN
 -- Set Cursor to middle of screen

 -- I CHANGED THIS
 x <= CONV_STD_LOGIC_VECTOR(0,16);
 y <= CONV_STD_LOGIC_VECTOR(0,16);
 new_x <= CONV_STD_LOGIC_VECTOR(0,16);
 new_y <= CONV_STD_LOGIC_VECTOR(0,16);

EEL5666C Intelligent Machine Design Laboratory Page 53/56
Summer 2002 8/13/2002

 ELSIF PACKET_COUNT = "01" THEN
 PACKET_CHAR1 <= SHIFTIN(7 DOWNTO 0);
 y <= new_y;
 x <= new_x;
 --END IF;
 ELSIF PACKET_COUNT = "10" THEN
 PACKET_CHAR2 <= SHIFTIN(7 DOWNTO 0);

 ELSIF PACKET_COUNT = "11" THEN
 PACKET_CHAR3 <= SHIFTIN(7 DOWNTO 0);
 END IF;
 INCNT <= conv_std_logic_vector(0,4);
 IF PACKET_COUNT = "11" THEN
 PACKET_COUNT <= "01";
 -- Packet Complete, so process data in packet
 -- Sign extend X AND Y two's complement motion
values and
 -- add to Current Cursor Address
 --
 -- Y Motion is Negative since up is a lower x
address

 condition_register <= PACKET_CHAR1 ;
 new_y <= y + (PACKET_CHAR3(7) &
 PACKET_CHAR3(7) & PACKET_CHAR3(7) &
 PACKET_CHAR3(7) & PACKET_CHAR3(7) &
 PACKET_CHAR3(7) & PACKET_CHAR3(7) &
 PACKET_CHAR3(7) & PACKET_CHAR3(7) &
 PACKET_CHAR3);

 new_x <= x + (PACKET_CHAR2(7) &
 PACKET_CHAR2(7) & PACKET_CHAR2(7) &
 PACKET_CHAR2(7) & PACKET_CHAR2(7) &
 PACKET_CHAR2(7) & PACKET_CHAR2(7) &
 PACKET_CHAR2(7) & PACKET_CHAR2(7) &
 PACKET_CHAR2);

 LEFT_BUTTON <= PACKET_CHAR1(0);
 RIGHT_BUTTON <= PACKET_CHAR1(1);
 END IF;
 END IF;
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS RECV_UART;

 END behavior;

14.6. Output Controller (memorymapwmice.vhd)
library ieee;
 use ieee.std_logic_1164.all;

EEL5666C Intelligent Machine Design Laboratory Page 54/56
Summer 2002 8/13/2002

 USE IEEE.STD_LOGIC_ARITH.all;

 entity memorymapwmice is
 port(cs :in std_logic;
 clk_25MHz :in std_logic;
 y, x, y_2, x_2 :IN std_logic_vector(15 DOWNTO 0);
 cond, cond_2 :IN std_logic_vector(7 DOWNTO 0);
 outbus :out std_logic_vector(7 downto 0)
);
 end memorymapwmice ;
 architecture structure of memorymapwmice is
 signal buf : std_logic_vector(7 downto 0);
 SIGNAL filter : std_LOGIC_vector(1 DOWNTO 0) ;
 signal cs_filter : std_logic ;

 TYPE ASMstateType IS (init, XL, XL2, XH, XH2, MCCR, MCCR2, YH, YL, YH2,
YL2) ;
 SIGNAL state : ASMstateType ;

 begin
 process (clk_25MHz)
 begin
 if clk_25MHz'event and clk_25MHz= '1' then
 filter(0) <= cs ;
 filter(1) <= filter(0) ;
 end if ;
 end process ;

 WITH filter select
 cs_filter <=
 '0' WHEN "00" ,
 '1' WHEN OTHERS ;

 PROCESS (cs_filter)
 begin
 if cs_filter'event AND cs_filter = '1' then
 case state is
 WHEN init =>
 state <= XH;
 WHEN XH =>
 state <= XL;
 WHEN XL =>
 state <= XH2;
 WHEN XH2 =>
 state <= XL2;
 When XL2 =>

EEL5666C Intelligent Machine Design Laboratory Page 55/56
Summer 2002 8/13/2002

 state <= YH ;
 WHEN YH =>
 state <= YL;
 WHEN YL =>
 state <= YH2;
 WHEN YH2 =>
 state <= YL2;
 WHEN YL2 =>
 state <= MCCR;
 When MCCR=>
 state <= MCCR2 ;
 When MCCR2=>
 state <= XH ;
 END CASE ;
 end if ;
 end process ;

 WITH cs select
 outbus <= buf WHEN '0' ,
 "ZZZZZZZZ" WHEN OTHERS ;

 WITH state select
 buf <=
 x(15 DOWNTO 8) WHEN XH ,
 x(7 DOWNTO 0) WHEN XL ,
 x_2(15 DOWNTO 8) WHEN XH2 ,
 x_2(7 DOWNTO 0) WHEN XL2 ,
 y(15 DOWNTO 8) WHEN YH ,
 y(7 DOWNTO 0) WHEN YL ,
 y_2(15 DOWNTO 8) WHEN YH2 ,
 y_2(7 DOWNTO 0) WHEN YL2 ,
 cond(7 DOWNTO 0) WHEN MCCR ,
 cond_2(7 DOWNTO 0) WHEN MCCR2 ,
 "00000000" WHEN others ;

 end structure;

EEL5666C Intelligent Machine Design Laboratory Page 56/56
Summer 2002 8/13/2002

14.7. Mouse Design

