CoOoNOOrWNE P

EEL5666C: IMDL
Summer 2002

Mappie
Final Report

August 13, 2002
Michael Pusatera

Table of Contents

T A @ OF CONMEENES. ...t mnmnnnnn
TADIE Of FIQUIES ...
P o1 = o PSRRI

EXECULIVE SUMIMAIY ...ttt ettt s nne e s neenneennenns
(0o [0Tox (o] o 1SR
INEEGraALEd SYSIEIML. ...t
(YKol o R = 1 0] o S

0.1, BUMP SENSOIS ...eiiiiiiieiiee ettt ste sttt e e s s sse e b e sbe e e sbe e e sbe e e saneeesnneeennes
9.1.1. S S 0 gl D1 T o o USRS
9.1.2. IMPIEMENTALION ... e
S0 R T U ST URPRRSR
9.14. LESSONS LEAMNEM.........ecuiiieiiieiieieie ettt st s

S 1= = 0 = 0 oSSR
.21, SENSOI DESIGN ..ottt
9.2.2. IMPIEMENLALIONeoiiieieee e
S0 T U < S
9.2.4. LESSONS LEAMEM.cceiieeeieeieeee ettt sne e

LS G T © o)1 [or= 1V oS
9.3.1 SENSON DESIGN ..ttt b e sr e ne e nree s
9.3.2. IMPIEMENTALION ... e

EEL5666C Intelligent Machine Design Laboratory Page 2/56

Summer 2002 8/13/2002
9.3.3. LESSONS LEAMNEM.........ocuiiiiiiieieieie et s 14
10. [T 0= Vo] €3PS 14
10.1. Obstacle AVOITANCEccueeeeeieece et 14
10.2. (10T = o | SRS 16
10.3. GO Straight and REIUMooiiiiieeeeee e 19
10.4. MOVE TN @ SQUAE ...ttt s 21
11. Experimental Layout and RESUILS.........cccveeeieeie e 21
12. (@00 0ox 11 [0 o H PSR 27
13. Do Toi U1 4= 01 = 1] o 1P 29
I N o0 [o= 29
14.1. N Yo o oS RSRR 29
14.2. GOREIUIMNLC ...ttt ettt s b e s e b e e s ae e s meeeeneeemneesneeas 31
14.3. B0 (U2 X oSSR 37
14.4. SHAIGNE.C .t 43
14.5. Y LoTU S S KGRV oo | SRR 48
14.6. Output Controller (memorymapwmice.Vhd)ccevvrceneiinnieieececeee 53
14.7. IMOUSE DESIGN ..ottt st sttt s nre e 56
2. Tableof Figures
Figurel. Integrated SyStEM.... ..o iiiiiie it ne e 4
Figure2. Organizational FIOW Chart..........ccoceriiiiiiininieeeeecee e 5
Figure3. Bump SMTICh DESIGN ...ocvoiviiirieiieee e 8
Figure4. Infrared SENSOr DESIGNcooveeiieeiecieeie ettt e 9
Figure5. How Optical MOUSE WOIKS [2]ooeeiiiiiiiiesiee e 10
Figure6. Mouse Sate Maching [3]ccecererreerieriinie e 11
Figure7. Data IreamFormat [2]ccccceeveiiieiieieiie s 12
Figure8. Optical MOUSE DESIGN.....ccuuiiiiieiie ettt st 13
Figure9. Obstacle Avoidance AIOrithm ... 15
Figure 10. Go Sraight AlgOrithM.......ccue e e 16
Figure 11. Mouse fading [Eft..........cooieiii e 17
Figure12. Agent Fading Left with COrrection...........c.ccooeeeeieeieeieneneneseseseeeees 18
Figure13. Straight and TUrn MOVEIMENTccoiiiirininereeeee e 19
Figure14. ArcformulationsS.........cccooiieieiiecicie et 20
Figure 15. Path for Movement in & SQUAre.........oceverereeneeee e 21
Figure 16. Position and SPEed — 2 TEELoviieeee e 22
Figure 17. Change in Speed — 2 fEEL ..o 23
Figure 18. Position and speed — 3 TEEL ..o 24
Figure 19. Changein Speed — 3TEEL ... 25
Figure 20. Position and Speed — 4 fEEL ..o e 26
Figure 21. Changein Speed — 4 fEEloovv e 27

3. Abstract

The world of roboticsis arapidly expanding technology. It isafrontier today, much the
way persona computing was twenty-years ago. The creation of autonomous mobile
robotics in the last decade has created a universe of opportunity for robotic solutions to
an infinite number of tasks.

EEL5666C Intelligent Machine Design Laboratory Page 3/56
Summer 2002 8/13/2002

This autonomous robot is modeled after the Talrik style robots designed at the University
of Floridain the mid to late 1990's. It is designed to utilize optical mice as atool for
navigation. The mice will allow the robot to determine distance traveled without the
errors associated with stepping motors and optical encoders.

4, Executive Summary

The robotics project for this classis atwo wheeled circular robot designed to navigate
using optical mice. Since the early 1990’ s robotics classes at the University of Florida
have seen projects attempting so successfully navigate mazes and map aroom. Thisis
increasingly difficult without the use of expensive motors because the servos typically
used do not have linear speed controls and do not operate at the same speed in both
directions.

This robot is designed to utilize a non- mechanical method of distance sensing so asto
eliminate the kinds of errors associated with stepper motors and optical encoders. These
previous designs suffer from errors due to sippage of the wheels on the surface the robot
runson. Thiswill not be a problem with the optical mice as the mice do not require the
wheels for measurement.

The agent should be designed to support the electronics required to operate the mice and
the servos needed to move the platform. The agent should be able to move around a
maze or room and take measurements of the room and objectsinit. Thiswill be
accomplished by coordinating the optical mice and infrared sensors to determine the
length of walls and the perimeters of objects in the room and the exterior of the room the
robot operatesin.

5. I ntroduction

As an engineer very interested in the practical application of the trade, | decided to try to
use my experience in this lab as a building block upon which future students would be
ableto build. | wanted to work on a project which would be challenging and provide a
new insight into a problem that has remained unsolved in the laboratory. Because my
experience has shown that | am not mechanically gifted as an engineer, | also sought to
choose a project with the least room for mechanica error.

| believed when | began this course that | had found such a project. | intended to build
upon the work of Ty Black in IMDL’s Spring 2002 class. The ideawas to use two
optical mice as a distance sensor to map an environment such as a maze or aroom.
Because the mice were self contained, | assumed they would not cause any mechanical
difficulties and | intended to attach them to the bottom of arobot platform. Thiswould
fulfill my requirements for my purpose in this course.

This paper will outline the overall structure of the system. It will discuss the platform
design and limitations. It will discuss actuation and sensors, detailing expectations and
limitations. It will finally discuss behaviors implemented and show results from the

EEL5666C Intelligent Machine Design Laboratory Page 4/56
Summer 2002 8/13/2002

running robot. Finally, conclusions will be drawn and suggestions for future work will be
made.

6. I ntegr ated System

L eft Right
Sevo | Sevo
IR >
Sensors Motorolla COM
68HC11 to PC
Bump
Sensor » EVBU Evauation Board oo
Optical Flex 10k JTAG
Mouse ¢ ' FPGA Interface
Optical UP1 Education Board
Mouse |¢—

Figurel. Integated System

The system is designed to use the data gathered by the optical mice as atool for
navigation. The optical mice provide accurate distance measurements which are critical
for navigation. The two mice are interfaced to the microcontroller through the Flex 10k
FPGA. This programmable logic device allows the mice to receive the required data
inputs for operation. It also formats the data in single byte segments for memory map
reading by the microcontroller.

The microcontroller will use the data provided by the mice, infrared sensors, and bump
network to determine its surroundings and can control the servos in an appropriate
manner.

EEL5666C Intelligent Machine Design Laboratory Page 5/56
Summer 2002 8/13/2002

Read
Mouse 1

!

Read
Mouse 1

v

Read IR
Sensors

Read
Bump
Network

Obstactle €S Obstacle
Avoidance
l o
Continue
Navigatior

Figure2. Organizational Flow Chart

The system will operate as pictured in Figure 2. The four sensors on board will be read
and analyzed. If an obstacle is detected, it will be avoided by causing the servos to
change direction to an appropriate heading. If there is no obstacle, the agent will
continue to navigate the environment recording positional measurements from the optical
mice.

The system is controlled by the Motorola 68BHC11 microcontroller. This microcontroller
is easy to use and many resources are available for it. It contains 8 analog-to-digital
converterson Port E which were used for infrared and bump sensors. It also contains
timer hardware on Port A used to create PWM waveforms for driving the servos. These
are input capture and output compare functions. The output compare function was used
to generate the PWM waveform needed to drive the servos. The 68HC11 is mounted on
the EVBU board which can be purchased for approximately $60. The board contains a
serial interface for communication with the COM port on aPC. Thisis used to program
the chip. An expansion areais also available on the board.

EEL5666C Intelligent Machine Design Laboratory Page 6/56
Summer 2002 8/13/2002

The board is expanded for use in the robot through the Mekatronix ME11 board. It
contains memory expansion and 40KHz wave generation as well as other useful tools. It
was chosen because of its ease of integration with the EVBU board.

Finally, the Altera UPL board is used to facilitate communication with the optical mice
and the 68HC11. The board contains the Max EPM 7128 CPLD and Flex 10k FPGA. It
contains a ps/2 connector for connecting an optical mouse, as well as many LED’s and
seven segment displays for debugging.

7. M obile Platform

Theplatform issimilar to the Talrik Junior platform designed by Mekatronix. It islarger
in circumference and includes a circular platform upon which the EVBU and UP1 boards
are mounted. It iseight inches in diameter and contains a box on the bottom to hold the
servos. The platform is constructed of model airplane wood and was designed in
AutoCad 2000.

The original intent of the agent was to navigate aroom. A circular 2-wheeled platform
would allow for simple movement algorithms to control the agent. This was the reason
for the choice of design.

A limitation emerged when the system, which requires the use of optical mice, required
the utilization of two evaluation boards for operation. The UP1 board and the EVBU
board are both large in size and heavy. The use of these two boards caused the agent to
be mechanically unstable and awkward. This caused further problems when the optical
mice were connected to the platform.

For the optical mice to operate correctly, they need to be placed just off the ground by
about the height of the width of a piece of paper. By doing this, the mice will work as if
they are on the ground, but will avoid the bumping and dragging associated with being
placed on the ground.

The mice were not attached in a secure manner to the agent. Because the agent was a 2-
wheeled design, quick movement in any direction causes rotation in the platform. This
caused the mice to lift dightly off the ground and caused errors in the measurements.
Also the mice were placed first underneath and finally behind the agent. They were
glued to metal brackets and screwed into the side of the platform. This caused
unnecessary movement of the mice due to the rotation of the platform and the instability
of the mice.

Future attempts at this type of robot should more carefully consider the placement of the
mice on the agent when designing the platform. A holder attached to the platform but
independent of the mice might prove successful. This solution would provide a square or
oval structure into which the mice could be placed. If the structure was attached to the
platform, it should provide a stable, yet independent means of ensuring the mice move

EEL5666C Intelligent Machine Design Laboratory Page 7/56
Summer 2002 8/13/2002

laterally with the agent. It would prevent any fishttailing that sometimes occurred during
turning in this design.

8. Actuation

Any mobile robot requires a means of movement. This robot is required to movein a
straight line and make accurate turns. It will perform this task via two wheels attached to
two servo motors. These motors are simple to interface to the 6BHC11 microprocessor
board. Movement requires connection to power and ground and a third line attached to
an output compare line from Port A on the 68HC11. Pulse Width Modulation is used to
drive these servos.

A two wheel design creates an ease of movement that is not available in multi- wheel
designs. Turning is simplified from atypical four-wheel design. To turnin one
direction, one wheel must be driven forward while the other is driven in reverse.

Because the movement is simple, this design was chosen to provide few problemsin the
design process. This met the requirements that the agent be mechanically smplein
design so as to reduce the time spent learning to move the agent.

The two wheeled design was sufficient for this project. It allowed for simple movement
and correct turning. This was accomplished as intended.

However, because the platform was designed without correct placement for the mice, the
two wheeled design caused problems by rotating the platform and creating an unstable
environment for the mice to operate.

0. Sensors

9.1. Bump Sensors

Bump sensors are used on the exterior of the robot as a fail safe device to detect impact
with objects in the robots path. This sensor is not used when infrared is working
properly.

9.1.1. Sensor Design

The sensor is avoltage divider circuit consisting of several tactile push button
switches connected in the following manner. The values of the sensor are chosen
so thet for any switch (s1-4) that is pressed a different value will be placed on the
analog(0) port.

EEL5666C Intelligent Machine Design Laboratory Page 8/56
Summer 2002 8/13/2002
Bump Switch Design
Ve Vee Vee Vee
Sl) 3 A
R1 R2 R3 R4
Anaog0) >
R?

9.1.2. Implementation

Figure3. Bump Switch Design

This sensor was implemented using four push button switches and five resistors.

The resistor values are:
R1 = 10k
R2 = 22k
R3 =47k
R4 = 100k
R5 = 10k

The bump sensors are located at the front, front-right, front-left, and back of the
robot. Thiswill ensure that any collisions from forward or reverse motion will be

covered by the sensor.

9.13. Use

The sensor is connected to the analog(0) port of the 68HC11. Thisrequiresonly
that the port be read and appropriate action be taken in response to the data. When

EEL5666C Intelligent Machine Design Laboratory Page 9/56
Summer 2002 8/13/2002

the bump sensor reads a value of 50 the rear bumper has been pushed and the robot
will move forward. When the bump sensor reads a value of 80 the right bumper
has been activated and the robot will back up and move left. When the bump
sensor reads a value of 130 the left bumper has been activated and the robot will
back up and move right. When the bump sersor reads a value greater than 130 the
front bumper has been activated and the robot will back up, turn in arandom
direction for arandom amount of time and move on.

9.1.4. LessonsLearned

The bump sensors work well. They were implemented quickly and continued to
work throughout the project.

9.2. Infrared Sensors

The infrared sensors are designed to be the eyes of the robot. They will be used to detect
objects in the path of the robot within atwo-foot range of the sensors. Infrared sensors
work by sending a pulse of light out from an emitter and receiving the light back in a
detector. The detector will return a voltage value proportiona to the amount of light
received.

9.2.1. Sensor Design
The sensors selected were Sharp GP2D12 sensors. They were selected because
they were inexpensive (~$15) and readily available.

| nfrared Sensor Design

IR Sensor IR Sensor IR Sensor

Voo

Analog(1) >

Anaog(2)

Analog(3) >

Figure4. Infrared Sensor Design

EEL5666C Intelligent Machine Design Laboratory Page 10/56
Summer 2002 8/13/2002

9.3.

9.2.2. Implementation
The sensor was remarkably simple to implement. As Figure 4 suggests there are
only three lines in the system.

Vcc: connected to a regulated power supply
Gnd: connected to system ground
Anaog(x): connected to the appropriate analog port

The three sensors were placed in the front, front-right, and front- left portion of the
robot. Thiswill alow the robot to “see” any objects in its path as well as objects
near its sides.

9.23. Use

The three sensors are connected to the analog(1-3) ports on the 68HC11. The
program which controls the sensors will read each sensor and modify behavior
based on its result. When the sensors read a value greater than 120 thereisan
object within one foot of the robot. When the front sensor is activated the robot
will turn for arandom amount of time in arandom direction. When the front-right
sensor is activated the robot will turn left for a random amount of time. Similarly,
when the front- left sensor is activated the robot will turn right for a random amount
of time.

9.2.4. LessonsLearned

The infrared sensors were quickly implemented. They worked throughout the
project. There was one problem which occurred about a month before the end of
the project. When reassembling the platform, the sensors were reconnected
backwards causing the power and data pins to be switched. The infrared sensors
were replaced after that and a keyed pinout was used to prevent further problems.

Optical Mice

Figure5. How Optical Mouse Works|[2]

EEL5666C
Summer 2002

/ENHABIT Tx

Inhibit_wait_count +1
Char_out = F4

Inhibit_wait_count [10..9

Send_data=1

A

LOAD COMMAND

l LOAD COMMAND 2

Send_data=1

}

Send_data=0

Output_ready

Send_data=0

WAIT OUTPUT READY

WAIT CMD ACK

/: INPUT PACKETS

N /

Figure 6. Mouse State Machine [3]

9.3.1. Sensor Design

Intelligent Machine Design Laboratory

Page 11/56
8/13/2002

The main sensor for thisdesignisa
distance sensor composed of two optical
mice. Optical mice are able to detect
small distance changes, about 1/8" of a
mm, with very little error

Thisis desirable in a mapping and
navigation robot because the robot must
know whereitisat al times. Thiscan be
accomplished by comparing the values of
the two mice, which will be placed on the
left and right sides of the robot. If one
value is greater than the other, the robot
has turned in the direction of the shorter
length. If the values are similar, the robot
iIsmoving in astraight line.

Optical mice aso do not suffer from errors
typically associated with relational
positioning sensors. Because the sensor is
independent of mechanical errors (i.e.
dippage of wheels), the potential for
accurate measurement is much greater.

Optical mice conform to the PS/2 standard for operating any PC mouse. The
system utilizes a data pin and a clock pin for use in a serial communications
interface. The state machine associated with the interface is shown in Figure 6.

EEL5666C Intelligent Machine Design Laboratory Page 12/56
Summer 2002

Upon power up, the mouse enters a self-check. It is necessary to inhibit
transmission during this period to ensure the mouse will work in PS/2 mode. The
next two states force the mouse into a streaming mode in which the data can be
read. When acommand is acknowledged by the mouse, the data begins streaming.

The mouse will then send three bytes of data continuoudly until it isreset. The
format of this data stream is shown below in Figure 7.

Bit 7 Bit6 Bit5 Bit 4 Bit3 Bit 2 Bit1 BitO

8/13/2002

Byte

1 | Y overflow | X overflow | Y sign bit | X sign bit | Always 1 | Middle Btn | Right Btn | Left Btn |
Byte 2| X Movement |
Eyte ‘ Y Movement ‘

Figure7. Data Stream Format [2]

The first byte of information, the condition code register, contains information about
the signs of the x and y movement, overflow bits for x and y, and the button state for
each of the three buttons in the design.

The second byte of information contains the position of the movement in the x
direction.

The third byte of information contains the position of the movement in the y
direction.

EEL5666C Intelligent Machine Design Laboratory Page 13/56
Summer 2002 8/13/2002

Optical Mouse Design

Mouse Mouse
\/ce
Clk Clk
Data Data
FPGA
Enable Reset 8pit

Al5 — /I/ 8
Ald] !
Al13 | PortC
Al2 —— on HC11
RW —
Felk |

Reset HC11 >

Figure8. Optical Mouse Design

9.3.2. Implementation
The mouse was interfaced to the UP1 board by Altera. The board contains the

Flex 10k FPGA which was used to create the logic necessary to drive the two
optical mice.

The state machine, created by Ty Black, interfaces the mouse and produces the 8-
bit condition code register and two full 16-bit x and y registers for transfer. These
outputs were connected to a memory mapped logic device that would aternate
between the two mice outputs each time the address 0x7000 was read. The order
of output is as follows:

X[15..8]: upper eight bits of x data for mouse 1
X[7..0]: lower eight bits of x datafor mouse 1
X2[15..8]: upper eight bits of x data for mouse 2
X2[7..0]: lower eight bits of x data for mouse 2

EEL5666C Intelligent Machine Design Laboratory Page 14/56
Summer 2002 8/13/2002

Y[15..8]: upper eight bits of y data for mouse 1
Y[7..0]: lower eight bits of y data for mouse 1

Y 2[15..8]: upper eight bits of y data for mouse 2
Y 2[7..0]: lower eight bits of y data for mouse 2
MCCR: condition code register for mouse 1
MCCR2: condition code register for mouse 2

Upon reading the outputs into the HC11, the data from the two x and two y inputs
are combined for a 16-bit x and y location register for each mouse. Once in the
HC11, the data can be manipulated to determine distance and movement.

9.3.3. Lessons Learned

The mice were not easy to implement at al. The required timing and signals
needed to use the mice are not flexible and require the use of a powerful
programmable logic device, the Flex 10k FPGA, to interface to the microcontroller.
The mice also do not work correctly if they are not placed correctly in the platform.
They require avery specific mechanical layout to work well and consistently. It
was not possible under the platform designed for this robot to get consistent data all
the time from the mice. However, it was possible to get correct data when the mice
were placed gently and weighed down for stability.

Also, the mice did not give the same distance accuracy all the time. When only the
two evaluation boards were drawing power from the battery pack, the mice were
able to record distance at an accuracy of 4500 counts per foot, or 375 counts per
inch. However, when the servos were running the accuracy would denigrate and
typical results were around 285 counts per inch. This value was not constant and
was the cause of significant problemsin the behavioral programming of the robot.
It is suggested that separate battery packs be used to drive the el ectronics and the
actuators of any future design.

10. Behaviors
Because of the limitations of time and my platform, the robot is only able to avoid
obstacles, go straight, and turn to an angle.

10.1. Obstacle Avoidance

EEL5666C Intelligent Machine Design Laboratory Page 15/56

Summer 2002 8/13/2002
Read IR <
—P
Sensors
Read Bump
Sensors

Turn in random
directior

Bump > 60

Yes

Turn
Around

Turn in random
directior

Figure9. Obstacle Avoidance Algorithm

This behavior is designed to keep the robot out of harms way in the room which it will
navigate. It will utilize information from the bump and infrared sensors to manipulate the
servos. When an obstacle is detected the robot will navigate around it. The code avoid.c
in the appendix is the obstacle avoidance software.

The algorithm requires the sensors to be read. Once read, the robot will turn if the robot
has encountered an obstacle. If the front IR sensor is triggered, the robot will turn in a
random direction. If theright IR sensor is triggered, the robot will turn to the left. If the
left IR sensor is triggered, the robot will turn to the right. If the bump network is
triggered, the robot will back up and turn in a random direction.

EEL5666C Intelligent Machine Design Laboratory Page 16/56
Summer 2002 8/13/2002

10.2. Go Sraight

Read
Mouse 1

v

Read Turn Left
Mouse 2

Yes

Heading Left

Yes L No
Heading Right Straighten out J_>
Yes

Turn Right

Figure 10. Go Straight Algorithm

This behavior allows the robot to move forward in a straight path for a predetermined

amount of space. Currently the robot can go 4 feet with very little deviation from the

center of the path. The robot corrects itself by comparing the values of the two optical
mice.

Because the servos used in this project do not have great speed control, the robot will
deviate from the center but will guide itself back onto the correct path. The code for this
behavior can be viewed in the appendix under straight.c.

EEL5666C Intelligent Machine Design Laboratory Page 17/56
Summer 2002 8/13/2002

This agorithm requires the miceto beread. Once read the y directional values of both
mice are compared. If the left mouse value is less than the right mouse value, the agent is
fading to the | eft.

Right
Mouse

Left
Mouse

Figure 11. Mouse fading left

The agorithm checksthe total value of the y length of each mouse. Thisvalueisthe
length of the arcsin the above illustration. [If the agent is fading left for two consecutive
reads, the algorithm will cause the left wheel to speed up, or the right wheel to Slow
down, depending on their current values.

EEL5666C Intelligent Machine Design Laboratory Page 18/56
Summer 2002 8/13/2002

Right
Mouse

Left
Mouse

Figure 12. Agent Fading Left with Correction

If the agent is fading left for one reading, it will attempt to turn right. This works
smilarly for fading right. If it continues to fade left it will continue to increase the left
speed or decrease the right speed until the fading corrects to the center line. Once the
agent begins to correct itself, it will low down the correction speeds causing the agent to
smoothly fade back into a straight line path.

EEL5666C Intelligent Machine Design Laboratory Page 19/56
Summer 2002 8/13/2002

10.3. Go Straight and Return

SPASY
SPASPRVS

Figure 13. Straight and Turn Movement

This behavior allows the robot to move forward utilizing the straight algorithm from the
previous behavior. When the robot has moved a predetermined distance, it will turn
around and return to its original location.

This routine suffers from the same problems as the previous behavior. It can be found in
the appendix under goreturn.c.

This behavior will utilize the straight algorithm from the above behavior. It will also turn
to aspecified angle. It does this by comparing the x-values of the two mice. The
following equation will give the angle of current motion:

T = (XLeft — X_Left_old)+ (XRight — X_Right_old))/ (2*radius*inch)

In this equation, XLeft and XRight are the current values in the x-direction for the two
mice. The X_Left_old and X_Right_old values are the values of the x-direction of the
two mice at the beginning of turning. The equation is divided by 2 for the average of the
two values. It isdivided by inch to get the value of turning in inches. The equation is
finally divided by radius. Thisisthe value of the radius of curvature of the turn. The

EEL5666C Intelligent Machine Design Laboratory Page 20/56
Summer 2002 8/13/2002

equation is illustrated belowin Figure 14. In thisillustration Sis equal to ((XLeft —
X_Left_old)+ (XRight — X_Right_old))/ 2.

A\

Figure 14. Arc formulations

Radius

This behavior worked most of the time. It ran into problems when the limitations of the
mechanical design of the robot became apparent. It is clear from the testing that the
algorithms do work. Mechanical problems aside, this behavior worked fairly well.
However, there is alimitation in the turning algorithm. Because the values are calculated
only for the current turn and the previous values are subtracted out, the algorithm has the
effect of compounding error for multiple turns. Thisis apparent in the next behavior.

EEL5666C Intelligent Machine Design Laboratory Page 21/56
Summer 2002 8/13/2002

10.4. Movein a Square

XD

D
D

Figure 15. Path for Movement in a Square

SVASPLOY

This behavior allows the robot to move forward utilizing the straight algorithm and turn
using the turn algorithm. When the robot has moved a predetermined distance, it turns
left and moves the same distance again. The robot will continue to alternate between
moving and turning until it creates a square from its movements.

This routine ran successfully many times. It was not able to consistertly make the correct
movements because of the compounding error in the turning algorithm when applied
multiple times. It suffers from the same complications as the previous behaviors and can
be found in the appendix under square.c.

The behavior works somewhat sparingly and tends to either turn to much or not enough
to complete abox. The best way to fix this problem is to implement a general turning
algorithm that utilizes a combination of the x and y values of the mice. Some kind of
error correction due to overall angular movement could be calculated using the y-values
and applied to the x- values equation.

11. Experimental L ayout and Results

The results shown below are for the straight.c program run for 2, 3, and 4 feet runs.

EEL5666C Intelligent Machine Design Laboratory Page 22/56
Summer 2002 8/13/2002

8000
7000
6000

5000

—e—ypos

—m—y2pos
leftspeed

—<—rightspeed

4000

3000

2000

1000

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 16. Position and speed — 2 feet

It is clear from Figure 16 that the agent was able to move in a straight line path for two
feet. The positional values almost mirror each other and the speed of the corresponding
wheels is adjusted accordingly. When the Ieft whed is sped up the value is decreased.
When it is Slowed down, it isincreased. Thisisimportant to note as the graphs show
increases and decreases only.

EEL5666C Intelligent Machine Design Laboratory Page 23/56
Summer 2002 8/13/2002

250

200

150

100

ydif
@ change left speed
Ochange right speed

50

-50

-100

time

Figure 17. Change in speed — 2 feet

Figure 17 shows difference between the two values of y and the corresponding change in
speed to the left or right wheel. It can be seen that when the difference is positive
(indicating a right fade), that the robot is attempting to slow down the right side or speed
up theleft side. As of note, a positive change in left speed indicates a slowing down of
the left side. A negative change in left speed indicates a speeding up of the left side.

EEL5666C Intelligent Machine Design Laboratory Page 24/56
Summer 2002 8/13/2002

14000
12000
10000

8000

—e—ypos

—f—y2pos
leftspeed

——rightspeed

6000

4000

2000

-2000

Figure 18. Position and speed — 3 feet

Figure 18 is a graph of the straight algorithm at three feet. It showsasimilar situation
with the two feet example. However, there is a discontinuity in the path at the distance
close to three feet. This corresponds to a sharp change in the left and right speed of the
agent. This data was caused by a sharp turn in the agent to quickly correct the path.

EEL5666C Intelligent Machine Design Laboratory Page 25/56
Summer 2002 8/13/2002

-500

-1000

Dydif
change left speed
DOchange right speed

-1500

-2000

-2500

-3000

time

Figure 19. Change in speed — 3 feet

Figure 19 shows similar results to the two feet example. It shows a growing right fade
towards the end of the run. Thisis compensated by a sharp change in speeds in the left
and right wheels. Thisis an attempt to quickly correct an error in movement.

EEL5666C Intelligent Machine Design Laboratory Page 26/56
Summer 2002 8/13/2002

16000
14000
12000

10000

8000 e ypos

——y2pos
leftspeed
—— rightspeed

6000

4000

2000

-2000

Figure 20. Position and speed — 4 feet

This example illustrated in Figure 20 is very similar to the three foot example. Thereisa
sharp turn at around the three foot mark. This causes greater changes in the speed of the
left and right wheels to account for fading on either side. This behavior worked correctly
and finished its run in the correct position.

EEL5666C Intelligent Machine Design Laboratory Page 27/56
Summer 2002 8/13/2002

500

et e et Iy

L A - B - L s e e oot T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 HQ lwm-ﬂ:{u’

@ ydif
-1000 HH M change left speed
O change right speed

-1500 HHHHH HHHHHE

-2000 H

-2500

Figure 21. Change in speed — 4 feet

Figure 21 shows similar results to the two and three feet example. It shows a growing
right fade towards the end of the run. Thisis compensated by a sharp change in speedsin
the left and right wheels. Thisis an attempt to quickly correct an error in movement.

The results from these three runs, all of which were successful in completing their runsin
a straight path, show that a more comprehensive algorithm is necessary to guarantee a
straight path from beginning to end. A more extensive speed control agorithm should be
implemented to aide the effect of slowing down and speeding up the two servos. This
combined with a more effective means of modifying the actuator speeds should keep the
robot in a straight path.

12. Conclusion

This robot has been the source of much frustration and education. The robot was
completed and modestly completed the tasks. The final demonstration failed to show the
true capability of the robot, but it showed indications of is abilities. It did prove the
concept that optical mice can be used for navigationa control.

The robot was fairly smple to implement electronically. The servos and sensors were
not difficult to implement or test and worked consistently throughout the semester. Once
the platform was established and the base sensors and servos were mounted, obstacle
avoidance was accomplished. Thisleft only to get the mice working properly and
mapping programmed. | learned very early on that getting the two mice to integrate
properly would take a great deal of time and set to work on it.

EEL5666C Intelligent Machine Design Laboratory Page 28/56
Summer 2002 8/13/2002

The first attempt to integrate the mice was an idea to implement it with the serial port of
the 68hcll. Thiswas an attempt to get one mouse working quickly to learn about its
possibilities as a sensor. This proved extremely difficult and complicated because the
method for communicating with the programmer used the serial port. Thisideawas
abandoned after a few weeks of work. The second attempt to integrate the mice was to
use aCPLD I currently owned. Thiswas afine solution, but the CPLD was unable to
hold the physical size of the programmable logic needed to interface the mice. This
forced the purchase of the UP1 board which contained the Flex chip used in Ty Black’s
successful implementation of the mice. After waiting a week for the board to arrive and
another learning to program it, the mice worked. By this time several weeks had been
wasted working on the mice and there was little time to program it.

Once the mice were integrated together, it became clear that they did not give as accurate
data as was advertised. However, the mice seemed to be very consistently giving data at
about 1/285™" of an inch. It required a great deal of time to realize this.

The mice are also very susceptible to movement of the mice. If they are disturbed from
resting on the ground, errors can be introduced. It is this problem thet caused the most
timeloss. It took many weeks to determine that one of the problems was the platform,
which as atwo wheeled design, will rotate, causing the mice to lift dightly from the
ground. Thisintroduced error as well.

It is clear from this project that there is potential for two or more mice to be used as a
navigation tool. Further research could be done with the two mice design on a four wheel
platform, thus eliminating the problem of mice lifting. Also, the mice should be mounted
in suchaway as they are independent from the actual robot. This may be accomplished
by creating a guide in which the mice can be placed, as indicated in the platform portion
of the paper. These corrections should eliminate many of the problems that plagued this
design.

If given the opportunity to redesign this robot, a more appropriate platform with a very
detailed design for mounting the mice would be the first objective. With the mice now
working, a more appropriate controller should also be chosen. A controller with an
integrated FPGA would be most helpful. A small board with programmable logic and a
microcontroller would grestly reduce the weight problems associated with the two
evaluation boards. If such aboard is not available, a smaller evaluation module for an
FPGA should be utilized. Finaly the mice should not be directly attached to the agent.
This should reduce the errors causing such inconsistency in this design.

The new robot should aso be enhanced to utilize a network of infrared sensors. Many
sensors would alow navigation in a room and make wall following very simple. Also,
the robot should be shown to move straight and make accurate turns as a bare minimum.
The straight line path should be accomplished with minute corrections and never deviate
far from the center line.

EEL5666C Intelligent Machine Design Laboratory Page 29/56
Summer 2002 8/13/2002

Overal, the project was successful in proving that navigation can be accomplished in a
two mouse design. The mapping functionality was not accomplished, but is not
unattainable in the future. The robot was able to navigate in a straight line and turn
accurately, thus providing the foundation for future work in this area.

13. Documentation

[1] http://www.altera.com/

[2] http://www.howstuffworks.com/mouse3.htm
[3] Ty Black, Sensor Report, IMDL

[4] Ty Black, Fina Report, IMDL

[5] http://www.motorolla.com

[6] http://www.mekatronics.com

[7] http://mil.ufl.edu

[8] http://www.acroname.com

14. Appendices
14.1. Avoid.c

/***

*

* MEKATRONIX Copyright 1998 *
* Title avoid.c *

* Programmer Michael Pusatera *

* Date June 30, 2002 *

* Version 1 *

* *

* Description *

* Avoid obstacles. *

R R R R b R e ek e b b e R R Rk ke

/

/**************************** |nC|UdES **********************************/

#include <tjpbase.h>

/************************ End of |nC|ud§ *******************************/

#define Left_servo 2

#define Right_servo 1

#define left 2

#defineright 1

#define random 0O

#define Forward 3500

#define Backward 2500
#defineStop O

#define FRONT _IR analog(1);

void turn(int);

EEL5666C Intelligent Machine Design Laboratory Page 30/56
Summer 2002 8/13/2002

void main(void)

/****************************** Maln ***********************************/

{
int i, irdr, irdl, irdf, bump;

init_servome();
init_clocktjp();
init_analog():;

while(BUMPER < 20);
servo(Left_servo, Backward);
servo(Right_servo, Forward);

while(1)
{
irdr = RIGHT_IR;
irdl = LEFT_IR;
irdf = FRONT _IR;

bump = BUMPER;
servo(Left_servo, Backward);
servo(Right_servo, Forward);
if(irdf > 125)
turn(random);
if(irdr > 125)
turn(left);
if(irdl > 125)
turn(right);

if(bump > 60)

Ilback up

servo(Left_servo, Forward);
servo(Right_servo, Backward);
turn(random);

}

/**************************** End Of Maln ******************************/

void turn(int dir)
Lt
inti;
unsigned rand;

rand = TCNT;

EEL5666C Intelligent Machine Design Laboratory Page 31/56

Summer 2002 8/13/2002
if(dir == Q) //front_ir turn random
{
if(rand & 0x0001)
dir = left; //randomly turn right or left
elsedir = right;
}

if(dir == 1) /lturn left
servo(Left_servo, Forward);
else
servo(Right_servo, Backward);

i=(rand % 1024);
if (i>250)

wait(i);
else wait(250);
return;

}

14.2. GoReturn.c

/***

*

* Title goreturn.c *

* Programmer Michael Pusatera *

* Date July 31, 2002 *

*Version 1 *

* *

* Description *

robot will go straight turn around and return
kkhkhkkkhkhkkhkhhkkhhhkkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhdhhkhdhhhkhhhkhhhkhdhhkhdhhkhdhhkhdhkhdhkhdhkhdkkdkxk,%x%x

/

/**************************** |nC|UdeS **********************************/

#include <tjpbase.h>

/************************ End of inCludes*******************************/

#define Left_servo 1
#define Right_servo 2
#define left 2
#defineright 1

#define random 0O

#define Forward 3700
#define Backward 2200
#define ForMin 3200
#define BackMin 2900

EEL5666C Intelligent Machine Design Laboratory
Summer 2002

#define MaxSpeed 4500

#define MinSpeed 1000
#defineStop O

#define FRONT _IR anaog(1);
#define d 2.62 //distance in inches
#define inch 285 //factor for inches
#definerad 3.75

#definepi 3.14

void getpos(void);
void turn(float);
void getmice(void);
void straight(int);

int ypos[1000], y2pos 1000], ydif[100], y2dif[1000];
int yinch[1000], y2inch[1000], angleg[100], dif[1000];
int leftal 1000], righta[1000], yturn[100], y2turn[100];
int i, yold, y2old;
int xold, x2old;
int xpos[100], x2pog 100];
int xinch[100], x2inch[100];
int xdif[100], x2dif[100];
int xa[100], x2a[100];
int irdr, irdl, irdf, bump;
int meccr, mecr2, xh, xI, xh2, x12, yh, yl, yh2, yI2;
int diff, diff2, done;
int x,y, X2, y2, oldy, oldy2;
int leftspeed, rightspeed, marker;
float thetay, thetax;

void main(void)

Page 32/56
8/13/2002

/****************************** Maln ***********************************/

{

marker = 0;

init_servome();

init_clocktjp();

init_analog();

|eftspeed=Backward;

rightspeed=Forward;

getmice();

wait(1000);
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);

i=0;

yold =0;

y2old = 0;

EEL5666C Intelligent Machine Design Laboratory Page 33/56
Summer 2002 8/13/2002

oldy =0;
oldy2 =0;
straight(36);

printf("out of 1st while\n");
servo(Left_servo, Stop);
servo(Right_servo, Stop);
leftspeed = Forward; //robot will turn in place
rightspeed = Forward;
wait(100);
xold = xpog[i-1];
x2old = x2pog[i-1];
turn(pi);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

wait(100);
|eftspeed=Backward;
rightspeed=Forward;

oldy = ypog[i-1];

oldy2 = y2pog[i-1];

servo(Left_servo, leftspeed);

servo(Right_servo, rightspeed);

straight(36);

//stop robot
servo(Left_servo, Stop);
servo(Right_servo, Stop);

/lwait for hook up to computer

while(BUMPER < 20);

while(BUMPER < 20);

printf("yposit y2posit leftspeed \t rightspeed \t angle\lt xpos\t x2posit dif\n");

for(i = 0; i<100; i++)

printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypodi], y2podi],

lefta[i], righta[i], angled[i], xpodi], x2pogi], dif[i]);

printf("oldy = %d oldy2 = %d\n", oldy, oldy2);

return ;

/**************************** End Of Maln ******************************/

void turn(float angle)

{

marker = 0;
while(marker = 1)

EEL5666C Intelligent Machine Design Laboratory Page 34/56
Summer 2002 8/13/2002

if(i >=1000)
=0
getmice();
getpos();
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);
Hprintf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypodi-1], y2pog[i-1],
xpog[i-1], x2pod[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

if((thetax >= (angle)) || (thetax <= (0 - (angle))))
marker = 1;
/lread datain
wait(10);

return;

}
void getpos()

{

ypod[i] =y;
y2pod[i] = y2;

xpogi] = x;
x2pogi] = x2;
xinch[i] = x / inch;
x2inch[i] = x2 / inch;
yinch[i] =y /inch;
y2inch[i] =y2/inch;
thetay = (y2 - y)/(inch*d);
thetax = ((x2 - x2old)+ (x-xold))/ (2*rad*inch);
angleg[i] = thetax;
ydif[i] =y - yold;
y2dif[i] =y2 - y20ld;
diffi] = ypod[i] - y2pod]i];
yold=y;
y2old = y2;

i++;

return ;

}
void getmice()

xh =*(unsigned char *) 0x7000;
xI = *(unsigned char *) 0x7000;
xh2 =*(unsigned char *) 0x7000;
xI2 =*(unsigned char *) 0x7000;

yh =*(unsigned char *) 0x7000;

EEL5666C Intelligent Machine Design Laboratory Page 35/56
Summer 2002 8/13/2002

yl = *(unsigned char *) 0x7000;
yh2 = *(unsigned char *) 0x7000;
yl2 = *(unsigned char *) 0x7000;
mccr = * (unsigned char *) 0x7000;
mccr2 = *(unsigned char *) 0x7000;
/Ishift datain x and y
X =xh;
x2 = xh2,
X=X<<§;
X2 =X2<<8§;
X=X +xl;
X2 =x2 + xlI2;
y=yh;
y2=yh2;
y=y<<§
y2=y2<<8§;
y=y+yl;
y2 =y2 +yl2,
return ;

}
void straight(int distance)

{
marker = 0;
while(marker 1= 1)
{
if(i >=1000)
i=0;
printf("in while\n");
/lread datain
getmice();
getpos();
printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypog[i-1], y2pos[i-1],
xpog[i-1], x2pog[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
diff = (ypog[i-1] - oldy) - (y2pog[i-1] - oldy?2);
diff2 = ydif[i-1] - y2dif[i-1]; //
if(diff > 0) {//on left
if(diff2 > 0) { //veering left more
if (leftspeed - (diff/4)) > MinSpeed)
leftspeed = leftspeed - (diff/4); //speed up left
else{
if ((rightspeed - (diff/4)) > ForMin)
rightspeed = rightspeed - (diff/4); //low down right
else {
leftspeed=Backward - (diff/4);
rightspeed=Forward;
}

EEL5666C Intelligent Machine Design Laboratory Page 36/56
Summer 2002 8/13/2002

}
}
else { /Iveering right--correcting
if((rightspeed + (diff/8)) < MaxSpeed)
rightspeed = rightspeed + (diff/8); //speed up right

else {
if((leftspeed + (diff/8)) < BackMin)
leftspeed = leftspeed + (diff/8); //ow down |eft
else {
leftspeed=Backward,;
rightspeed=Forward + (diff/8);
}
}
}
}
else { //on right
diff = - diff;

if(diff2 < 0) { //veering right more
if((rightspeed + (diff/4)) < MaxSpeed)
rightspeed = rightspeed + (diff/4); //speed up right

else
if ((Ieftspeed + (diff/4)) < BackMin)
leftspeed = leftspeed + (diff/4); //ow down left
ese
leftspeed=Backward,;
rightspeed=Forward + (diff/4);
}
}
}

else { /Iveering left--correcting
if ((Ieftspeed - (diff/8)) > MinSpeed)
leftspeed = leftspeed - (diff/8); //speed up left

else{
if((rightspeed - (diff/8)) > ForMin)
rightspeed = rightspeed - (diff/8); //low down right
else {
leftspeed=Backward - (diff/8);
rightspeed=Forward,;
}
}
}

}
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);
righta[i-1] = rightspeed;
lefta[i-1] = leftspeed;

EEL5666C Intelligent Machine Design Laboratory Page 37/56
Summer 2002 8/13/2002

wait(70);

done =((y2pogi-1]-oldy2)+(ypog[i-1]-oldy))/2;
if((done) >= (inch * distance))

marker = 1,

return ;

}

14.3. Square.c

/***

*

* Title square.c *

* Programmer Michael Pusatera *
* Date July 31, 2002 *

* Version 1 *

* *

* Description *
robot will map out a square

***/

/**************************** Includes**********************************/

#include <tjpbase.h>

/************************ End of inCludes*******************************/

#define Left_servo 1

#define Right_servo 2

#define left 2

#defineright 1

#define random 0O

#define Forward 3700

#define Backward 2200

#define ForMin 3200

#define BackMin 2900
#define MaxSpeed 4500

#define MinSpeed 1000
#defineStop O

#define FRONT _IR anaog(1);
#define d 2.62 //distance in inches
#define inch 285 //factor for inches
#definerad 3.0

#define pi 3.14

void getpos(void);
void turn(float);
void getmice(void);
void straight(int);

EEL5666C Intelligent Machine Design Laboratory
Summer 2002

int ypos[1000], y2pos 1000], ydif[100], y2dif[1000];
int yinch[1000], y2inch[1000], anglea[100], dif[1000];
int leftal 1000], righta[1000], yturn[100], y2turn[100];
int i, yold, y2old;
int xold, x2old;
int xpog 100], x2pog 100];
int xinch[100], x2inch[100];
int xdif[100], x2dif[100];
int xa[100], x2a[100];
int irdr, irdl, irdf, bump;
int mecr, mecr2, xh, xl, xh2, x12, yh, yl, yh2, yI2;
int diff, diff2, done;
int x,y, X2, y2, oldy, oldy2;
int leftspeed, rightspeed, marker;
float thetay, thetax;

void main(void)

Page 38/56
8/13/2002

/****************************** Maln ***********************************/

{

marker = 0

init_servome();

init_clocktjp();

init_analog();

leftspeed=Backward,;

rightspeed=Forward;

wait(1000);
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);

i=0;

yold = 0;

y2old = 0;

oldy =0;

oldy2 = 0;

straight(24);

printf("out of 1st while\n");
servo(Left_servo, Stop);
servo(Right_servo, Stop);
leftspeed = Forward; //robot will turn in place
rightspeed = Forward,;
wait(100);
turn(pi/2);

servo(Left_servo, Stop);
servo(Right_servo, Stop);

EEL5666C Intelligent Machine Design Laboratory

Summer 2002

oldy = ypog[i-1];
oldy2 = y2pog[i-1];
straight(24);

printf("out of 1st while\n");

servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward; //robot will turn in place
rightspeed = Forward;

wait(100);

turn(pi/2);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

oldy = ypos[i-1];
oldy2 = y2pog[i-1];
straight(24);

printf("out of 1st while\n");

servo(Left_servo, Stop);

servo(Right_servo, Stop);

leftspeed = Forward; //robot will turn in place
rightspeed = Forward,;

wait(100);

turn(pi/2);

servo(Left_servo, Stop);

servo(Right_servo, Stop);

oldy = ypog[i-1];
oldy2 = y2pog[i-1];
straight(24);

servo(Left_servo, Stop);
servo(Right_servo, Stop);

/lwait for hook up to computer
while(BUMPER < 20);
while(BUMPER < 20);

Page 39/56
8/13/2002

printf("yposit y2posit leftspeed \t rightspeed \t anglé\t xpos\t x2posit dif\n");

for(i = 0; i<100; i++)

printf("%d\t Y%ed\t %d\t %d\t Y%ed\t %\t %d\t Y%d\n”, ypodi], y2podi],

|efta[i], righta[i], angleg[i], xpod[i], x2pod[i], diffi]);
printf("oldy = %d oldy2 = %d\n", oldy, oldy?2);
return ;

}

EEL5666C Intelligent Machine Design Laboratory Page 40/56
Summer 2002 8/13/2002

/**************************** End Of Maln ******************************/
void turn(float angle)

marker = 0;

while(marker = 1)

if(i >=1000)
i =0
getmice();
getpos();
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);
Hprintf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypog[i-1], y2pog[i-1],
xpos[i-1], x2pog[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);

if((thetax >= (angle)) || (thetax <= (0 - (angle))))
marker = 1,
/lread datain
wait(30);

return;

}
void getpos()
{

ypodi] =;
y2pod[i] = y2;

xpog[i] = X;
x2pogi] = x2;
xinch[i] = x / inch;
x2inch[i] = x2/inch;
yinch[i] =y /inch;
y2inch[i] =y2/inch;
thetay = (y2 - y)/(inch*d);
thetax = (x2 + x)/ (2*rad*inch);
angleg[i] = thetax;
ydif[i] =y - yold;
y2dif[i] =y2 - y20ld;
diffi] = ypod]i] - y2podi];
yold =vy;
y2old = y2,

i++;

return ;

}
void getmice()

EEL5666C Intelligent Machine Design Laboratory Page 41/56
Summer 2002 8/13/2002

{
xh = *(unsigned char *) 0x7000;

xI =*(unsigned char *) 0x7000;
xh2 =*(unsigned char *) 0x7000;
xI2 =*(unsigned char *) 0x7000;

yh =*(unsigned char *) 0x7000;
yl = *(unsigned char *) 0x7000;
yh2 = *(unsigned char *) 0x7000;
yl2 =*(unsigned char *) 0x7000;
mccr = * (unsigned char *) 0x7000;
mccr2 = * (unsigned char *) 0x7000;
/Ishift datain x and y
X = xh;
X2 = xh2;
X=X<<§;
X2 =X2<<8;
X=X+xl;
X2 =x2 + xlI2;
y=yh
y2=yh2;
y=y<<8§;
y2=y2<<8§;
y=y+yl;
y2=y2 +yl2,

return ;

void straight(int distance)

{
marker = 0;
while(marker 1= 1)

if(i >=1000)
i=0;
printf("in while\n");
/lread datain
getmice();
getpos();
printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypogi-1], y2pog[i-1],
xpog[i-1], x2pog[i-1], angled[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
diff = ypog[i-1] - y2pog[i-1];
diff2 = ydif[i-1] - y2dif[i-1]; //
if(diff > Q) {//on left
if(diff2 > 0) { //veering left more
if (leftspeed - (diff/4)) > MinSpeed)
leftspeed = leftspeed - (diff/4); //speed up left
else {

EEL5666C Intelligent Machine Design Laboratory Page 42/56
Summer 2002 8/13/2002

if ((rightspeed - (diff/4)) > ForMin)
rightspeed = rightspeed - (diff/4); //slow
down right
else
leftspeed=Backward - (diff/4);
rightspeed=Forward;
}
}
}
else { /Iveering right--correcting
if((rightspeed + (diff/8)) < MaxSpeed)
rightspeed = rightspeed + (diff/8); //speed up right
ese
if ((Ieftspeed + (diff/8)) < BackMin)
leftspeed = leftspeed + (diff/8); //low down
left
else{
|eftspeed=Backward;
rightspeed=Forward + (diff/8);
}

}

}
else { //on right
diff = - diff;
if(diff2 < 0) { //veering right more
if((rightspeed + (diff/4)) < MaxSpeed)
rightspeed = rightspeed + (diff/4); //speed up right
else {
if((Ieftspeed + (diff/4)) < BackMin)
leftspeed = leftspeed + (diff/4); //low down
left
else {
leftspeed=Backward,;
rightspeed=Forward + (diff/4);
}
}

else { /Iveering left--correcting

if ((Ieftspeed - (diff/8)) > MinSpeed)

leftspeed = |eftspeed - (diff/8); //speed up left
else {

if ((rightspeed - (diff/8)) > ForMin)

rightspeed = rightspeed - (diff/8); //slow
down right
else {

EEL5666C Intelligent Machine Design Laboratory Page 43/56
Summer 2002 8/13/2002

leftspeed=Backward - (diff/8);
rightspeed=Forward;
}

}

}
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);
rightai-1] = rightspeed,;
leftali-1] = leftspeed;
wait(50);
done =((y2pogi-1]-oldy2)+(ypog[i-1]-oldy))/2;
if((done) >= (inch * distance))
marker = 1,

return ;

14.4. Sraight.c

/***

*

* Title straight.c *

* Programmer Michael Pusatera *
* Date July 31, 2002 *

*Version 1 *

* *

* Description *
robot will go straight for 4 feet

* *

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkkkkikkk%x%x

/

/**************************** Includes**********************************/

#include <tjpbase.h>

/************************ End Of inCludeS*******************************/

#define Left_servo 1
#define Right_servo 2
#define left 2
#defineright 1
#define random O
#define Forward 3400
#define Backward 2800
#define ForMin 3280

EEL5666C Intelligent Machine Design Laboratory
Summer 2002

#define BackMin 3120
#define MaxSpeed 3500

#define MinSpeed 2700
#defineStop O

#define FRONT _IR anaog(1);
#define d 2.62 //distance in inches
#define inch 72 //factor for inches
#definerad 3.75

#define pi 3.14

void getpos(void);
void getmice(void);
void straight(int);

int ypos[100], y2pos[100], ydif[100], y2dif[100];
int yinch[100], y2inch[100], anglea[100], dif[100];
int lefta[100], righta[100], yturn[100], y2turn[100];
int i, yold, y2old;

int xold, x2old;

int xpos[100], x2pog 100];

int xinch[100], x2inch[100];

int xdif[100], x2dif[100];

int xa[100], x2a[100];

int irdr, irdl, irdf, bump;

int mecr, mecr2, xh, xl, xh2, x12, yh, yl, yh2, yI2;
int diff, diff2, done;

int X, y, x2, y2, oldy, oldy2;

int leftspeed, rightspeed, marker;

float thetay, thetax;

void main(void)

Page 44/56
8/13/2002

/****************************** Maln ***********************************/

{

marker = 0;

init_servome();

init_clocktjp();

init_analog();

|eftspeed=Backward;

rightspeed=Forward;

getmice();

wait(1000);
servo(Left_servo, leftspeed);
servo(Right_servo, rightspeed);

i=0;

yold =0;

y2old = 0;

EEL5666C Intelligent Machine Design Laboratory Page 45/56
Summer 2002 8/13/2002

oldy =0;
oldy2 =0;
straight(48);

//stop robot

servo(L eft_servo, Stop);
servo(Right_servo, Stop);

/lwait for hook up to computer

while(BUMPER < 20);

while(BUMPER < 20);

printf("yposit y2posit leftspeed \t rightspeed \t anglelt xposit x2posit dif\n");

for(i = 0; i<100; i++)

printf("%d\t %ad\t %d\t %d\t %d\t %d\t %d\t %d\n", ypodi], y2podi], lefta[i],
righta[i], angled[i], xpod[i], x2podi], dif[i]);

return ;

}

/**************************** End Of Maln ******************************/

void getpos()
{

ypod[i] =;
y2pod[i] =y2;
xpog[i] = X;
x2pog[i] = X2;
xinch[i] = x / inch;
x2inch[i] = x2/inch;
yinch[i] =y /inch;
y2inch[i] =y2/ inch;
thetay = (y2 - y)/(inch*d);
thetax = ((x2 - x20ld)+ (x-xold))/ (2*rad*inch);
angleq[i] = thetax;
ydif[i] =y - yold,
y2dif[i] =y2 - y20ld;
dif[i] = ypod[i] - y2pod]i];
yold=y;
y2old = y2,

i++;

return ;

}
void getmice()

{

xh = *(unsigned char *) 0x7000;
Xl = *(unsigned char *) 0x7000;
xh2 =*(unsigned char *) 0x7000;
xI2 = *(unsigned char *) 0x7000;
yh=*(unsigned char *) 0x7000;
yl = *(unsigned char *) 0x7000;

EEL5666C Intelligent Machine Design Laboratory Page 46/56
Summer 2002 8/13/2002

yh2 = *(unsigned char *) 0x7000;
yl2 = *(unsigned char *) 0x7000;
mccr = *(unsigned char *) 0x7000;
mccr2 = * (unsigned char *) 0x7000;
//shift datain x and y
X = xh;
x2 = xh2;
X=X<<8§;
X2 =X2<<8;
X=X +Xl;
X2 =x2 + xI2;
y=yh;
y2=yh2;
y=y<<§;
y2=y2<<§;
y=y+yl
y2=y2+yl2;
X = X/4;
X2 = x2/4;
y =vyl4
y2 =y2/4;
return ;

void straight(int distance)

{
marker = 0;
while(marker 1= 1)
{
if(i >=1000)
i=0;
printf("in while\n");
/lread datain
getmice();
getpos();
printf("%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\n", ypog[i-1], y2pos[i-1],
xpog[i-1], x2pog[i-1], anglea[i-1], ydif[i-1], y2dif[i-1], dif[i-1]);
diff = (ypog[i-1] - oldy) - (y2pog[i-1] - oldy?2);
diff2 = ydif[i-1] - y2dif[i-1]; //
if(diff > Q) {//on left
if(diff2 > Q) { //veering left more
if ((Ieftspeed - (diff/3)) > MinSpeed)
leftspeed = leftspeed - (diff/3); //speed up left
else{
if((rightspeed - (diff/3)) > ForMin)
rightspeed = rightspeed - (diff/3); //low down right
else {

EEL5666C Intelligent Machine Design Laboratory Page 47/56
Summer 2002 8/13/2002

leftspeed=Backward - (diff/3);
rightspeed=Forward;
}

}

else { //veering right--correcting
if((rightspeed + (diff/5)) < MaxSpeed)
rightspeed = rightspeed + (diff/5); //speed up right

else {
if (leftspeed + (diff/5)) < BackMin)
leftspeed = leftspeed + (diff/5); //low down left
else {
leftspeed=Backward,;
rightspeed=Forward + (diff/5);
}
}
}
}
else { //on right
diff = - diff;

if(diff2 < Q) { //veering right more
if((rightspeed + (diff/3)) < MaxSpeed)
rightspeed = rightspeed + (diff/3); //speed up right

else{
if ((Ieftspeed + (diff/3)) < BackMin)
leftspeed = leftspeed + (diff/3); //dow down left
else{
|eftspeed=Backward;
rightspeed=Forward + (diff/3);
}
}
}

else { /Iveering left--correcting
if ((Ieftspeed - (diff/5)) > MinSpeed)
leftspeed = leftspeed - (diff/5); //speed up left

else {
if((rightspeed - (diff/5)) > ForMin)
rightspeed = rightspeed - (diff/5); //dlow down right
else {
leftspeed=Backward - (diff/5);
rightspeed=Forward;
}
}
}

}
servo(Left_servo, leftspeed);

EEL5666C Intelligent Machine Design Laboratory
Summer 2002

servo(Right_servo, rightspeed);

righta[i-1] = rightspeed;

lefta[i-1] = leftspeed;

wait(50);

done =((y2pogi-1]-oldy2)+(ypog[i-1]-oldy))/2;
if((done) >= (inch * distance))

marker = 1,

return ;

}
14.5. Mousel6.vhd[3]

--nmouse to talrik

--colum = x

--row = y

LI BRARY | EEE;
USE | EEE. STD LOG C _1164. al |l ;
USE | EEE. STD LOG C ARI TH. al | ;
USE | EEE. STD LOG C_UNSI GNED. al | ;

ENTI TY nmousel6 | S

PORT(cl ock_25Mhz, reset . IN std_l ogic;
SI GNAL npuse_dat a : INOUT std_I ogic;
SI GNAL npouse_cl k : I'NOUT std_I ogic;

SIGNAL | eft_button, right_button: OUT std_l ogic;

Page 48/56
8/13/2002

SI GNAL npouse_y : OUT std_Il ogi c_vector (15 DOANTO 0);
SI GNAL npuse_x : OUT std_Il ogi c_vector (15 DOANTO 0);
si gnal nouse_condition_register . out std_logic_vector(7

downto 0));

END nousel6;

ARCHI TECTURE behavi or OF nousel6 | S

TYPE STATE_TYPE I'S (I NH Bl T_TRANS, LOAD_COWMVAND, LOAD_COMVANDZ,

WAl T_OUTPUT_READY,
WAl T_CMD_ACK, | NPUT_PACKETS)

-- Signals for Mouse

SI GNAL mouse_state
state_type;

SIGNAL i nhibit_wait_ count
std_l ogi c_vector (10 DOANTO 0);

SI GNAL CHARI N, CHAROUT
std_l ogi c_vector (7 DOANTO 0);

SI GNAL new_y, new_Xx
std_l ogi c_vector (15 DOANTO 0);

SIGNAL vy, X
std_l ogi c_vector (15 DOANTO 0);

EEL5666C Intelligent Machine Design Laboratory Page 49/56
Summer 2002 8/13/2002

SI GNAL | NCNT, OUTCNT, nfSB_OUT
std_l ogi c_vector (3 DOANTO 0);

SI GNAL PACKET_COUNT
std_|l ogi c_vector (1 DOANTO 0);

SI GNAL SHI FTI'N
std_| ogi c_vector (8 DONNTO 0);

SI GNAL SHI FTOUT
std_l ogi c_vector (10 DOANTO 0);

SI GNAL PACKET_CHAR1, PACKET_CHAR2, PACKET_CHAR3

std_l ogi c_vector (7 DOANTO 0);

SI GNAL MOUSE_CLK_BUF, DATA READY, READ CHAR

: std_Il ogic;

SI GNAL i
i nt eger;

SI GNAL cursor, iready_set, break, toggle_next, output_ready,
send_char, send_data

. std_l ogic;

SI GNAL MOUSE_DATA_DI R, MOUSE_DATA_OUT, MOUSE_DATA_ BUF,
MOUSE_CLK DI R

: std_Il ogic;
SI GNAL MOUSE_CLK_FI LTER
std_|l ogic;

SIGNAL filter
std_|l ogi c_vector (7 DONNTO 0);

signal condition_register
std_l ogi c_vector (7 DONNTO 0);

BEG N
mouse_y <= y;

nouse_ X <= X;
nouse_condi ti on_register <

condition_register;

-- tri_state control logic for nmouse data and cl ock |ines
MOUSE_DATA <= 'Z' WHEN MOUSE_DATA DIR = '0' ELSE MOUSE_DATA_BUF;
MOUSE_CLK <= 'Z' WHEN MOUSE_CLK DIR = '0' ELSE MOUSE_CLK_ BUF;

-- state machine to send init comand and start recv

process.
PROCESS (reset, clock_25Mz)
BEG N
IF reset = '1" THEN

mouse_state <= | NH Bl T_TRANS;

i nhibit_wait_count <= conv_std_| ogic_vector(0, 11);

SEND_DATA <= '0';

ELSI F cl ock_25Mhz' EVENT AND cl ock_25Mhz = '1' THEN

CASE nouse_state | S

-- Muse powers up and sends self test codes, AA and 00 out

-- before board i s downl oaded

-- Pull clock line lowto inhibit any transm ssions from
nouse

-- Need at | east 60usec to stop a transm ssion in progress

-- Note: This is perhaps optional since mouse should not be
tranm tting

WHEN | NHI BI T_TRANS =>
inhibit_wait_count <= inhibit_wait_count + 1
IF inhibit_wait_count(10 DOANTO 9) = "11" THEN

EEL5666C Intelligent Machine Design Laboratory Page 50/56
Summer 2002 8/13/2002

mouse_state <= LOAD_COVMAND;
END | F;
-- Enable Stream ng Mbde Command, F4
charout <= "11110100";
-- Pull data low to signal data available to nouse
WHEN LOAD_COMVAND =>
SEND_DATA <= '1';
mouse_state <= LOAD_COVMANDZ;
WHEN LOAD_COMVAND2 =>
SEND DATA <= '1';
nouse_state <= WAl T_OUTPUT_READY
-- Wait for Mouse to Clock out all bits in command.
-- Command sent is F4, Enable Streanm ng Mode
-- This tells the nouse to start sending 3-byte packets
wi th movenment data
WHEN WAI T_OUTPUT_READY =>
SEND_DATA <= '0';
-- Qutput Ready signals that all data is clocked out of
shift register
| F OQUTPUT_READY='1'" THEN
nouse_state <= WAI T_CMVD_ACK;
ELSE
mouse_state <= WAl T_OUTPUT_READY
END | F;
-- Wit for Mouse to send back Command Acknow edge, FA
WHEN WAI T_CMD_ACK =>
SEND_DATA <= '0';
| F | READY_SET='1' THEN
nmouse_state <= | NPUT_PACKETS;
END | F;
-- Rel ease clock_25Mhz and data |ines and go into nouse

i nput node

-- Stay in this state and reci eve 3-byte nouse data packets
forever

-- Default rate is 100 packets per second

WHEN | NPUT_PACKETS =>
mouse_state <= | NPUT_PACKETS;
END CASE;
END | F;
END PROCESS;

W TH nouse_st ate SELECT
-- Mouse Data Tri-state control line: '"1'" FLEX Chip drives,
'0' =Mbuse Drives

MOUSE_DATA_DI R <= "0 WHEN | NHI Bl T_TRANS,
"o WHEN LOAD_COMVAND,

‘o WHEN LOAD_ COMVANDZ,

"l WHEN WAI T_OUTPUT_READY

"0 WHEN WAI T_CMD_ACK,

"o WHEN | NPUT_PACKETS;

-- Muse Clock Tri-state control line: '1' FLEX Chip drives,
'0' =Mbuse Drives
W TH nouse_st ate SELECT

MOUSE_CLK _DIR <= "1 WHEN | NHI Bl T_TRANS,
"l WHEN LOAD_COMVAND,
"l WHEN LOAD_ COMVANDZ,

"0 WHEN WAI T_OUTPUT_READY

EEL5666C Intelligent Machine Design Laboratory Page 51/56

Summer 2002 8/13/2002
o WHEN WAI T_CMD_ACK,
o WHEN | NPUT_PACKETS;

W TH nouse_state SELECT
-- Input to FLEX chip tri-state buffer nouse cl ock_25Wiz |ine

MOUSE_CLK BUF <= "0 WHEN | NHI BI T_TRANS,
"1 WHEN LOAD_COMVAND,
"1 WHEN LOAD_ COMVAND2,
"1 WHEN WAI T_QOUTPUT_READY,
"1 WHEN WAI T_CMD_ACK,
"1 WHEN | NPUT_PACKETS;
-- filter for mouse cl ock
PROCESS
BEG N

WAI T UNTIL cl ock_25Mhz' event and clock_25Mhz = "'1';
filter(7 DOANTO 1) <= filter(6 DOANTO 0);
filter(0) <= MOUSE CLK;
IF filter = "11111111" THEN
MOUSE CLK FILTER <= '1';
ELSIF filter = "00000000" THEN
MOUSE_CLK_FILTER <= '0';
END | F;
END PROCESS;

--This process sends serial data going to the nouse
SEND_UART:
PROCESS (send_data, Muse_clK filter)
BEG N
| F SEND DATA = '1' THEN
OUTCNT <= "0000";
SEND CHAR <= '1';
OUTPUT_READY <= '0';
-- Send out Start Bit(0) + Comand(F4) + Parity Bit(0) + Stop
Bit(1)
SHI FTOUT(8 DOWNTO 1) <= CHAROUT ;
-- START BIT
SHI FTOUT(0) <= '0';
-- COWPUTE ODD PARITY BIT
SHI FTQUT(9) <= not (charout(7) xor charout(6) xor
charout (5) xor
charout (4) xor Charout(3) xor charout(2) xor charout (1)
xor
charout (0));
-- STOP BIT
SHI FTOUT(10) <= '1';
-- Data Available Flag to Muse
-- Tells nouse to clock out conmand data (is also start bit)
MOUSE_DATA BUF <= '0';

ELSI F(MOUSE_CLK filter'event and MOUSE CLK filter="0") THEN
| F MOUSE_DATA_DI R="1'" THEN
-- SHI FT OUT NEXT SERI AL BI T
| F SEND CHAR = '1'" THEN
-- Loop through all bits in shift register
| F OQUTCNT <= "1001" THEN
OQUTCNT <= QUTCNT + 1;
-- Shift out next bit to nouse

EEL5666C Intelligent Machine Design Laboratory Page 52/56
Summer 2002 8/13/2002

SHI FTOUT(9 DOWNTO 0) <= SHI FTOUT(10 DOWNTO 1);
SHI FTOUT(10) <= '1';
MOUSE_DATA BUF <= SHI FTOUT(1);
OUTPUT_READY <= '0';

-- END OF CHARACTER

ELSE
SEND_CHAR <= '0';

-- Signal the character has been output
OUTPUT_READY <= '1';
OUTCNT <= "0000";

END | F;

END | F;
END | F;
END | F;
END PROCESS SEND _UART;

RECV_UART:
PROCESS(reset, nouse_clk _filter)
BEG N
| F RESET='1'" THEN
I NCNT <= "0000";
READ CHAR <= '0';
PACKET_COUNT <= "00";
LEFT_BUTTON <= '0';
Rl GHT_BUTTON <= '0';
CHARI N <= "00000000";

ELSI F MOUSE_CLK FILTER event and MOUSE CLK FILTER='"1" THEN
| F MOUSE_DATA DI R="0" THEN
| F MOUSE_DATA='0' AND READ CHAR='0Q' THEN
READ CHAR<= '1';
| READY_SET<= '0';
ELSE
-- SH FT IN NEXT SERIAL BIT
| F READ CHAR = '1' THEN
I F I NCNT < "1001" THEN
I NCNT <= I NCNT + 1;
SHI FTI N(7 DOANTO 0) <= SHI FTI N(8 DOAWNTO 1);
SHI FTI N(8) <= MOUSE_DATA,
| READY_SET <= '0';
-- END OF CHARACTER
ELSE
CHARI N <= SHI FTI N(7 DOWNTO 0) ;
READ_CHAR <= '0';
| READY_SET <= '1';
PACKET _COUNT <= PACKET_COUNT + 1;
-- PACKET_COUNT = "00" IS ACK COVIVAND
| F PACKET_COUNT = "00" THEN
-- Set Cursor to mddle of screen

-- | CHANGED THI S
X <= CONV_STD_LOG C VECTOR(O, 16);
y <= CONV_STD LOG C VECTOR(O, 16);
new x <= CONV_STD LOG C_VECTOR(O0, 16);
new y <= CONV_STD LOd C VECTOR(O, 16);

EEL5666C Intelligent Machine Design Laboratory Page 53/56
Summer 2002 8/13/2002

ELSI F PACKET _COUNT = "01" THEN
PACKET _CHARL <= SHI FTI N(7 DOWNTO 0)
y <= new._y;
X <= new x;
--END I F;

ELSI F PACKET_COUNT = "10" THEN
PACKET_CHAR2 <= SHI FTI N(7 DOWNTO 0):

ELSI F PACKET_COUNT = "11" THEN
PACKET_CHAR3 <= SHI FTI N(7 DOANTO 0);
END | F;
I NCNT <= conv_std_I| ogi c_vector (0, 4);
| F PACKET_COUNT = "11" THEN
PACKET _COUNT <= "01";
-- Packet Conplete, so process data in packet
-- Sign extend X AND Y two's conpl enment notion
val ues and
-- add to Current Cursor Address

-- Y Motion is Negative since up is a |ower X
addr ess

condition_regi ster <= PACKET_CHARL ;

newy <=y + (PACKET_CHAR3(7) &
PACKET_CHAR3(7) & PACKET_CHAR3(7) &
PACKET_CHAR3(7) & PACKET_CHAR3(7) &
PACKET_CHAR3(7) & PACKET_CHAR3(7) &
PACKET _CHAR3(7) & PACKET _CHAR3(7) &
PACKET _CHAR3) ;

new x <= x + (PACKET_CHAR2(7) &
PACKET_CHAR2(7) & PACKET_CHAR2(7) &
PACKET_CHAR2(7) & PACKET_CHAR2(7) &
PACKET_CHAR2(7) & PACKET_CHAR2(7) &
PACKET_CHAR2(7) & PACKET_CHAR2(7) &

PACKET_CHAR2) ;

LEFT_BUTTON <= PACKET_CHARL(O0):
RI GHT_BUTTON <= PACKET CHARL(1);
END | F;
END | F;
END | F;
END | F;
END | F;
END | F;
END PROCESS RECV_UART;

END behavi or;

14.6. Output Controller (memorymapwmice.vhd)
library ieee;
useieee.std logic _1164.al;

EEL5666C Intelligent Machine Design Laboratory Page 54/56
Summer 2002 8/13/2002

USE IEEE.STD_LOGIC_ARITH.al;

entity memorymapwmice is
port(cs ‘in std_logic;
clk_25MHz ‘instd_logic;

Y, X, ¥ _2,x 2 :IN std_logic_vector(15 DOWNTO 0);
cond, cond 2 :IN std logic vector(7 DOWNTO 0);
outbus -out std_logic_vector(7 downto 0)
);
end memorymapwmice ;
architecture structure of memorymapwmice is

signal buf - std_logic_vector(7 downto 0);
SIGNAL filter : std LOGIC vector(1 DOWNTO Q) ;
signd cs filter : std_logic;

TYPE ASMdtateType IS (init, XL, XL2, XH, XH2, MCCR, MCCR2, YH, YL, YH2,
YL2);
SIGNAL state : ASMstateType ;

begin
process (clk_25MH2z)
begin
if clk_25MHz'event and clk_25MHz="1" then
filter(0) <=cs;
filter(1) <=filter(0) ;
endif ;
end process ;

WITH filter select
cs filter <=
IOI WHEN IIOOII ,
"1' WHEN OTHERS;

PROCESS (cs filter)
begin
if cs filter'event AND cs filter ='1' then
case stateis
WHEN init =>
State <= XH,;
WHEN XH =>
state <= XL;
WHEN XL =>
State <= XH2;
WHEN XH2 =>
State <= XL2;
When XL2 =>

EEL5666C Intelligent Machine Design Laboratory
Summer 2002

state<=YH ;
WHEN YH =>
state<=YL;
WHEN YL =>
State <= YHZ2;
WHEN YH2 =>
Sate<=YL2;
WHEN YL2 =>
state <= MCCR,;
When MCCR=>
state <= MCCR2 ;
When MCCR2=>
state <= XH ;
END CASE ;
endif ;
end process ;
WITH cs select

outbus <= buf WHEN '0',
"772777777" WHEN OTHERS ;

WITH state select
buf <=
X(15 DOWNTO 8) WHEN XH
X(7 DOWNTO 0) WHEN XL ,
X_2(15 DOWNTO 8) WHEN XH2,
X_2(7DOWNTO 0) WHEN XL2,
y(15 DOWNTO 8) WHEN YH,
y(7 DOWNTO 0) WHEN YL,
y 2(15 DOWNTO 8) WHEN YH2,
y 2(7DOWNTO0) WHEN YL2,
cond(7 DOWNTO 0) WHEN MCCR,
cond 2(7 DOWNTO 0) WHEN MCCR2,
"00000000" WHEN others ;

end structure;

Page 55/56
8/13/2002

Page 56/56
8/13/2002

HIHISE] &
HOWEE BT) MEE
HAEE 4 T e ok
sLoEE_3ENKE LEPT_BUTES
L3 8] BEAHT _BUTTS .
Timlld
e E T [15. %)

FENERYAPLMISE

3]
LK ESRHI

PRELE_E[1E. . %]

EOUSE DOWRITI0N_AEEISTERTY. &)

Intelligent Machine Design Laboratory

Mouse Design

Summer 2002

EEL5666C
14.7.

[
ks
__.H_H“ ;

137 T2018.. @8
HIMFSELE T_2f18..8)
e BT T e i) BAHBET. B
HITLE LM naze okl leann_ar7. . o
L OEE EHHHE LEPE_BUTTH 147
—laEu RLGHT_BUTTH _—
ML _T[LE. . ¥ -
1L _LLLE. , ¥
BOUSE_0OESITISE_RDSISTERL?. . &) L2) e
e ™
—
-
Al =u..
g A _UM N
CR .
a A
& M _HT#E__
g B [

ouTwsE7. o e i)

___.U _.._...._u_._. n Fire .

