
 1

University of Florida
Department of Electrical and Computer Engineering

EEL5666
Intelligent Machines Design Laboratory

Morris
(Autonomous Pet Feeder)

Name: Joseph Stanley
Date: 8/8/02

TAs: TaeHoon Choi
Uriel Rodriguez

Instructor: A.A. Arroyo
Eric M. Schwartz

 2

Table of Contents

Abstract 3

Executive Summary 4

Introduction 5

Integrated System 6

Mobile Platform 8

Actuation 10

Sensors 12

Behaviors 18

Experimental Layout and Results 20

Conclusion 22

Documentation 23

Vendors 23

Appendix A. 24

 3

Abstract

Morris is the prototype for an autonomous service robot that will feed a pet at a scheduled
time of the day. Once activated, Morris will move away from his starting location, locate
a bowl, align himself properly, dispense the food, and return to wandering around. While
performing these tasks, Morris will avoid obstacles in his quest to dispense food.

 4

Executive Summary

Morris is the prototype for a totally autonomous service agent that will assist in the daily

activity in feeding a household pet. Using a variety of sensor systems and unique

platform design, Morris will navigate an area looking for a specialized homing beacon

that signifies a target food bowl. Morris will then align himself with the food bowl,

dispense food, and then back away and continue wandering.

The finalized design will eventually contain a timer system that will be easily adjusted to

automatically activate Morris at a specified time of day. During the off times, Morris will

be docked in a recharging station allowing him to stay fully charged, and awaiting the

next feeding time. These systems are not active as of yet, but will be integrated

eventually when time permits.

 5

Introduction

Every day, billions of people around the world have to wake up early or go out of their

way just to feed their pets. Well, maybe not everyone who owns a pet has to go out of his

or her way, but there are countless people that have a strict schedule as to when their pet

should be fed. But more importantly, there are also many people who don’t have the

ability to bend down every day to fill up the food bowl due to a disability. This is the true

purpose of Morris, to assist those who have a difficult time feeding their pets every day.

Once activated, Morris will track down a specially designed pet food bowl, all the while

navigating household obstacles (Furniture, walls, pets, humans, etc.). After aligning

himself appropriately with the bowl, food is dispensed by Morris through the bottom of

his chassis, falling into the bowl. In this paper I will discuss the design of Morris, go over

all the physical systems and behaviors currently in use by Morris, and then discuss my

thoughts about the final outcomes on Morris.

 6

Integrated System

Figure 1 is the overall system diagram. The heart of Morris is the MegaAVR-Dev board,

made by Progressive Resources LLC. Figure 2 is a picture of the MegaAVR-Dev. This

single board computer controls every sensor system on Morris; being the proximity IR

sensors, contact switches, three standard servos, and the IR detectors. The board also

contains the brains for Morris, the Atmel ATmega323 micro-controller, a very powerful

micro-controller with many optional features.

Overall System

3 Receivers 3 Emitters

Proximity IR Sensors Bump Contact Switches

3 Receivers

IR Detectors Contact Whisker

Sensor Suite

Left Motor Right Motor

Food Dispensor Door

Servo Suite

Main System Board
ATmega323 Controller

Power Supply
6 Batteries@1.2V

Figure 1

Figure 2

Two of the three servos are used for the movement of Morris, and will be hacked to

provide full 360° movement. Thus Morris will be able to move forward, move backward,

 7

turn left and right, and also be able to run in place. Three IR detector/emitter pairs will be

used for obstacle avoidance. Bump switches will be placed strategically around the

chassis to assist the IR sensors in obstacle avoidance when the IR sensors fail. The final

servo is used to control the door mechanism of the food dispenser. Finally, a set of 3 IR

detectors is used to track down the food bowl that has an IR beacon attached to it.

 8

Mobile Platform

The mobile platform used for Morris is a unique design that I have come up with. The

platform is constructed out of 1/8” aircraft plywood, cut on the IMDL T-tech machine

and designed in AutoCAD 2002. The platform itself resembles the shape of a “ T “ if

viewed from top-down. The estimated length (From the top of the “ T “ to the bottom) is

around 9”. The width of the “ T “ is around 12”. The storage compartment for the

dispenser is located in the front of the robot (Being the top of the “ T “), centered on the

top of the robot. Holes are made in the chassis on both the top and bottom, with the

dispenser door located inside the chassis surrounded by a funnel. The height of Morris

(Not counting the storage bin) was mainly determined by the height of the funnel inside,

being around 7”. The bottom of the chassis has a smaller hole cut out matching the radius

of the spout on the funnel. The electronics are housed inside of the robot on the back with

switches and access holes located on the top for easy access. The back of the chassis is

sealed off, with one removable panel on the side for reprogramming access to the serial

port. But the front is open and houses the IR sensors and servos. Figure 3 is an early

rough wire-frame of the skeleton of Morris (Notice the two large holes in the front, this

was made for the original design of two tanks, one for water and the other for food).

Figure 3

 9

The platform was designed to “run over” the target bowl and dispense food that way.

Thus, the platform had to be raised at least 2” off the ground in order to effectively pass

over the food bowl.

Although the platform is unique, it should be obvious that I am NOT a mechanical

designer by any means. The wheel mountings gave me the most problems out of

everything, being very unstable and causing the wheels to cave inward. However, the

platform does perform as it should, but too much weight and the wheels might cave in

entirely.

 10

Actuation

Morris requires two hacked servos for movement, and a standard servo to control the

dispenser door.

Mobility Servos

Morris uses two standard Futaba S3003 servos for movement. These servos were chosen

because they can be hacked to rotate 360° without the use of an H-bridge or motor driver

circuit. Given 5V, these servos can generate about 40oz- in in torque. Attached to these

servos are 2” lightweight aircraft wheels made out of foam. Although an odd choice for

wheels, they give Morris a very flexible chassis and the ability to climb over some wide,

small objects.

The servos were hacked using the hack from the Mekatronix web site

(www.mekatronix.com). The physical stop inside the output gear was cut away, and the

mechanical stop tab located on the output gear was cut away. After this, the servos were

calibrated using a simple program. Placing 0x15 on the output compare pins, the

potentiometers were then turned until the servos no longer moved. Anything higher than

0x15 causes forward rotation, anything lower causes reverse rotation. Each servo was

calibrated using a TCNT value of 0xFF, a frequency of 32kHz, and using standard PWM.

 11

Dispenser Door Servo

One, standard Futaba S3003 servo is used for the opening mechanism of Morris’s

dispenser door. This servo allows for precise angle control, allowing the door to open

slightly.

The door itself is made out of a square piece of aircraft plywood, a small hinge, a tiny

eyehook, and a tight spring. The door is mounted to the robot using the hinge. The

eyehook is screwed into the bottom of the door, and the spring is attached to the eyehook.

The other end of the spring is attached to one of the servo horn’s holes. The servo itself is

attached to the top of the chassis, placed far enough back until the spring is completely

tight. The tightness of the spring determines the maximum load you can carry, being able

to support more force.

The most difficult part in dealing with the servos is making sure they are hacked

appropriately and are properly calibrated. This will save you a huge headache later on if

you get this done early and as clean as possible. Also mounting the servos appropriately

were a huge challenge for me, due to my lack of mechanical know how.

 12

Sensors

Morris uses a variety of sensor systems in order to perform his behaviors to the highest

efficiency. The sensors systems that are used by Morris are IR proximity sensors for

obstacle avoidance; bump contact switches for object detection, a IR beacon/detection

system for finding a bowl, and contact whisker for bowl positioning and backup

avoidance.

IR Proximity Sensors

Three Sharp GP2D12 Proximity IR sensors are used for object avoidance. These are

mounted on the chassis in an appropriate manner as to prevent Morris from colliding with

any objects; one centered and the others facing 45 degree angles on both sides.

The GP2D12 IR sensors are a two-part device. One part of the device is an IR LED that

operates at 40Khz. When the IR light hits and object, the beam is bounced back and the

second part of the device, an IR detector, picks up the bounced signal. This detector is set

to filter out any noise by listening only for the 40Khz signal. Depending on the distance

from the sensors, the value that is sent as an analog output will vary. Using a threshold

value of around 70-85, Morris can avoid obstacles at a distance of about 4”. Anything

closer than 2” yields inaccurate values that cannot be used to determine a correct

distance. At 2” away a value of about 125-130 is produced, and at about ½” away, the

value is 90, even though it should be greater than 130.

 13

Bump Switches

When an object fails IR detection, a backup system must be employed. This backup

system is in the form of bump contact switches. These switches are located on the edges

of the chassis in strategic locations, particularly on the sides of Morris, the under-chassis,

and the front beside the IR proximity detectors. These switches are wired directly through

internal pull-ups to PORT B on the MegaAVR-Dev board. When a switch causes a pin to

go high, an appropriate turning behavior is produced.

IR Beacon System

The core feature of Morris it the ability for him to find the target bowl to dispense food

in. After some thinking, I figured the best approach to this would be to use a simple IR

beacon / detector system. After deciding on the course of action, I then sat down to figure

out how the system would be mounted on both the bowl and on Morris, and also how

many detectors/emitters I should use to be the most effective. Figure 5 is a sketch of the

final realization I decided on which would hopefully yield the most effective solution to

the problem at hand.

 14

Figure 5

As can be seen from figure 5, one IR LED emitter is mounted to the bowl via a

breadboard, which contains all the modulation circuitry required for the IR LED

(described later). This breadboard also serves as a means to elevate the IR LED slightly

so it can be detector by Morris, which is more elevated than the bowl alone. The only

limitation of this approach is the fact that the bowl must be placed near a wall, with the

LED facing perpendicular to the wall. By placing the bowl in this manner, Morris will

never travel “behind” the LED and yield the best results for acquiring the bowl.

In order to get the LED to modulate at the appropriate frequency, a 555-timer control

circuit is needed. Using a standard 555 timer, the circuit in Figure 6 is used to generate

the appropriate frequency of about 56.5kHz.

 15

Figure 2

The circuit is fairly simple. The timer is running in the astable mode of operation and has

a duty cycle of approximately 48.4%. The pot is used to change the frequency from

56.7kHz down to about 29.9kHz. This allows IR detectors at different frequencies to be

used if there are interference problems. This circuit was borrowed from Michael

Hattermann’s robot, STEVE.

To power the IR LED circuitry, I am using a simple 5V AC/DC adapter. This will keep

the beacon running at all times, and hopefully an outlet will be nearby. In the case where

one is not, 4 AA batteries will do the trick, or a 9V battery would do fine as well.

 16

Now that the bowl beacon has been setup, an appropriate detector system is needed on

Morris himself. As can be seen above from figure 1, I decided on using 3 IR-detectors

mounted on the front, left side, and right side of Morris. The detectors I am using are

LiteOn IR receivers, modulated at 56.5kHz. These detectors initially give out a digital

signal, but Michael Hattermann discovered a simple hack in order to get an analog signal

out of them. Figure 7 illustrates the hack, which was borrowed from Michael’s report.

Figure 7

Figure 3 is the inside of the IR can. In order to hack the IR module, first cut the traces to

the output pin, which is shown in step B. Then, solder a piece of wire connecting the

output pin to the appropriate pin shown in step C. After this hack is complete, the voltage

on the output pin is about 1.5V when no IR is detected to about 2.5V when IR is less than

an inch from the detector.

When no IR is detected from the emitter, the detectors output an ambient voltage of

around 1.52V, and when the IR is at its max, around 2.30V. The maximum effective

range I have achieved is around 12 feet, maybe even further. However, anything beyond

 17

5-6 feet and its hard to accurate find the source because of the 30 degree cone emitted

from the LED.

Which leads me to my most difficult and still prominent problem I have faced during the

course of the robot project. I have come to realize that using IR for a beacon type system

is NOT very accurate at all. Due to the large cone emitted from the IR LED, it is very

difficult for Morris to position himself correctly with the target food bowl. Apparently,

the strongest part of the 30-degree cone is not in its center, but the EDGES of the cone,

making it even more difficult for me to locate the source of the LED. With a little more

time ingenuity, it is possible to maybe triangulate the source by finding the 2 edges of the

cone and triangulating the center spot.

 18

Behaviors

Obstacle Avoidance

Morris implements obstacle avoidance using the IR sensors and bump switches. When an

IR sensor outputs a larger value than the threshold value, Morris will turn to avoid that

obstacle. The bump switches and contact whisker are used when the IR sensors fail to

detect an object in the robots path. This will cause Morris to stop, backup, and turn away

from the object before progressing forward.

Bowl Hunting

This is the primary behavior of Morris, and the one that most time is spent in. Morris will

wander a room waiting for his IR detectors to pick up a signal. Once a signa l has been

located, Morris will attempt to position himself with the bowl. If he approaches the bowl

at a bad angle, he will turn around and wander around until a better angle is found to

align him. This was implemented due to the inaccuracy of using IR as an accurate

positioning device.

Food Dispensing

Once the bowl has be found, Morris will align himself with the bowls signal and begin to

travel over the bowl. When the dispenser is located above the bowl, a contact switch on

the bottom of the chassis is used to let Morris know he is right above the bowl and to

open the dispenser door. The dispenser door will then open, and stay open until enough

food has been dispensed, and will then shut again.

 19

Endless Wandering

Once dispensing is complete, Morris will begin to wander aimlessly, ignoring the IR

signal coming from the bowl. This behavior will be used in the future to implement the

return to a base station to recharge and wait for the next feeding.

 20

Experimental Layout and Results

Experiment 1: Proximity IR Threshold

This experiment was necessary to find the threshold value for the IR proximity detectors.

The code irtest.c in appendix A was used to display the values taken from the IR

detectors, among other things. The readings from the IR detectors were read when my

hand was placed at several positions in front of the platform. It was determined that the

threshold value for the IR detectors should be 85, when an object is about 4” in front of

the robot.

Experiment 2: Servo Calibration Test

This experiment was necessary to find the values to stop and move the servo in a

specified direction. It was found that using a stop value of 0x15 and calibrating the servos

to that value, forward rotation is given by using any value greater than 0x15, and reverse

rotation can be found by using values lower than 0x15. I use 0x10 for reverse movement,

and 0x30 for forward movement.

Experiment 3: Beacon Proximity Value

This experiment proved to be the most difficult to perform due to the characteristics of

the IR LED. Using the code found in irtest.c in appendix A, the IR emitter was placed at

various places around and away from the robot and values were examined. A maximum

effectives range was found at around 12’, but the values were small at that range, around

82-83 (The ambient value is about 79-80). When an object is closer than 3’, a value

greater than 90 is given when the detector enters the emitter’s range, but the value

 21

reduces as the detector approaches the emitter’s center, and then rises again as it

approaches the opposite edge. Thus, the voltage output is higher when the detector is on

the edges of the LED’s output cone.

 22

Conclusion

In regards to my original plans, I did not accomplish all that I originally intended to do.

The timer and recharge behaviors were intended to be a key function to Morris’s overall

behavior, but due to the problems found with the IR detections and personal time

constraints, I did not have enough time to realize these two systems into Morris.

However, I am very pleased with what I have accomplished, being my first hands on

project that I have ever done in the field of electronics, micro controllers, robotics, and

mechanical design.

I was very pleased with how the door worked out for the food dispenser, and the entire

dispenser unit turned out to be a huge success from the start. This is probably the only

area that exceeded my expectations. On the other end of the spectrum, the IR detector

system and the platform itself are the two areas that need to be heavily improved in order

to be 100% effective.

Even though the class is over, I plan on continuing my work on Morris and adding all the

features that I originally wanted on him. I will perhaps use a sonar system as opposed to

an IR system for beacon detecting, and I will give Morris a huge facelift in terms of

platform design.

 23

Documentation
Thanks to
IMDL class: Instruction from Dr. Arroyo, TaeHoon Choi, Uriel Rodriguez, and Dr.
Schwartz.

Vendors

Cables and Connectors
2315 Berlin Turnpike
Newington, Ct. 06111
(860) 665-9904
Fax (860) 665-9993
www.cablesandconnectors.com

Mark III Robot Store
No Address Provided
www.junun.org/MarkIII/Store.jsp

Progressive Resources LLC
4105 Vincennes Road
Indianapolis, IN 46268
(317) 471-1577
FAX 471-1580
www.prllc.com

Radio Shack
3315 SW Archer Road
Gainesville, FL 32608
352-375-2426
www.radioshack.com

ServoCity
620 Industrial Blvd.
Winfield, KS. 67156
1-877-221-7071
www.servocity.com

 24

Appendix A

MAIN PROGRAM

#include <mega323.h>
#include <stdio.h>

#define ADC_VREF_TYPE 0x20

int ir_left,ir_right,ir_center,i,x,n; // Global Variables
int beacon_left,beacon_right,beacon_center;
int doorswitch;
int beacon_found = 0;
int task_complete = 0;

// Read the 8 most significant bits
// of the AD conversion result
unsigned char read_adc(unsigned char adc_input)
{
ADMUX=adc_input|ADC_VREF_TYPE;
// Start the AD conversion
ADCSR|=0x40;
// Wait for the AD conversion to complete
while ((ADCSR & 0x10)==0);
ADCSR|=0x10;
return ADCH;
}

void init()
{
// Input/Output Ports initialization
// Port A initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func0=In Func1=In Func2=In Func3=Out Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=0 State4=T State5=T State6=T State7=T
PORTB=0x00;
DDRB=0x08;

// Port C initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T

 25

PORTC=0xFF; // Disregard above comment, all pins are OUTPUTS
DDRC=0xFF;

// Port D initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=Out Func6=In Func7=Out
// State0=T State1=T State2=T State3=T State4=T State5=0 State6=T State7=0
PORTD=0x00;
DDRD=0xA0;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: 31.250 kHz
// Mode: Phase correct PWM top=FFh
// OC0 output: Non-Inverted PWM
TCCR0=0x64;
TCNT0=0xFF;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: 31.250 kHz
// Mode: Ph. correct PWM top=00FFh
// OC1A output: Non-Inv.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
TCCR1A=0x81;
TCCR1B=0x04;
TCNT1H=0x00;
TCNT1L=0x00;
OCR1AH=0x00;
OCR1AL=0xFF;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: 31.250 kHz
// Mode: Phase correct PWM top=FFh
// OC2 output: Non-Inverted PWM
TCCR2=0x66;
ASSR=0x00;
TCNT2=0xFF;
OCR2=0x00;

// External Interrupt(s) initialization

 26

// INT0: Off
// INT1: Off
// INT2: Off
GICR=0x00;
MCUCR=0x00;
MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: Off
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud rate: 9600
UCSRA=0x00;
UCSRB=0x08;
UBRRL=0x26;
UBRRH=0x00;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
// Analog Comparator Output: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC Clock frequency: 4000.000 kHz
// ADC Voltage Reference: AREF pin
// Only the 8 most significant bits of
// the AD conversion result are used
ADMUX=ADC_VREF_TYPE;
ADCSR=0x81;
}

void delay(int delay_loops) //Delay for a specified amount of time
{
 int n,i;
 for(n=0;n<delay_loops;n++)
 {
 for(i=0;i<60000;i++);
 }
}

 27

void read_doorswitch() // read the analog value of the doorswitch
{
 doorswitch = read_adc(4);
}

void read_beacon() // read the analog value of the beacon detectors
{
 beacon_center = read_adc(7);
 beacon_left = read_adc(5);
 beacon_right = read_adc(6);
}

void read_ir() // read the analog value of the proximity detectors
{
 ir_center = read_adc(0);
 ir_right = read_adc(1);
 ir_left = read_adc(2);
}

// MOVEMENT CODE CONTROL FOR SERVOS
void stop()
{
 OCR2 = 0x00;
 OCR0 = 0x00;
}

void go()
{
 OCR2 = 0x30;
 OCR0 = 0x10;
}

void back()
{
 OCR2 = 0x10;
 OCR0 = 0x30;
}

void right()
{
 OCR2 = 0x30;
 OCR0 = 0x30;
}

void left()

 28

{
 OCR2 = 0x10;
 OCR0 = 0x10;
}

void open_food_door() //Opens the dispensor door
{
 OCR1AL = 0x10;
 delay(3);
 OCR1AL = 0x00;
 delay(15);
 OCR1AL = 0x30;
 delay(5);
 OCR1AL = 0x00;
}

void beacon_track()
{
 while(beacon_found == 1)
 {
 PORTC.0 = 0;
 go();
 read_doorswitch();
 if(doorswitch > 100)
 {
 stop();
 delay(9);
 open_food_door();
 task_complete = 1;
 beacon_found = 0;
 PORTC.1 = 0;
 back();
 delay(19);
 left();
 delay(19);
 go();
 return;
 }
 read_ir();
 if(ir_left > 70 && ir_left < 200)
 {
 right();
 delay(19);
 go();
 beacon_found = 0;
 return;

 29

 }
 if(ir_right > 70 && ir_right <200)
 {
 left();
 delay(19);
 go();
 beacon_found = 0;
 return;
 }
 if(ir_center > 90 && ir_center < 200)
 {
 back();
 delay(20);
 right();
 delay(25);
 go();
 beacon_found = 0;
 return;
 }
 }
}

void found_left()
{
 delay(6);
 left();
 delay(20);
 go();
 beacon_found = 1;
 beacon_track();
}

void found_right()
{
 delay(6);
 right();
 delay(20);
 go();
 beacon_found = 1;
 beacon_track();
}

void search()
{
 x = 0;

 30

 PORTC.0 = 1;
 if(task_complete==0)
 {
 read_beacon();
 if(beacon_left>85)
 found_left();

 if(beacon_right>85)
 found_right();
 }
 read_ir();
 if(ir_left > 70 && ir_left < 200)
 {
 right();
 delay(20);
 go();
 }
 if(ir_right > 70 && ir_right <200)
 {
 left();
 delay(20);
 go();
 }
 if(ir_center > 70 && ir_center < 200)
 {
 back();
 delay(20);
 right();
 delay(25);
 go();
 }
 else
 go();

}

void main(void)
{

 init();
 while (1)
 {
 search();

 }
}

 31

IR/BEACON/DOOR TEST PROGRAM

void main()
{
init();
while(1)
{
read_ir();
printf("Center: %d\n",ir_center);
printf("Left: %d\n",ir_left);
printf("Right: %d\n",ir_right);
delay(15);
read_beacon();
printf("Be Center: %d\n",beacon_center);
printf("Be Left: %d\n",beacon_left);
printf("Be Right: %d\n",beacon_right);
delay(15);
read_doorswitch();
printf("Door: %d\n",doorswitch);
delay(15);
}
}

