

Final Report for Valet-bot

By David Wynacht

University of Florida
Electrical and Computer Engineering

IMDL, EEL 5666C
Summer 2003

 - 2 -

Table of Contents

Abstract... - 3 -
Executive Summary ... - 4 -
Introduction.. - 6 -
Integrated System .. - 7 -
Mobile Platform ... - 8 -
Special Platform ... - 10 -
Actuation... - 10 -
Sensors... - 11 -
Behaviors ... - 12 -
Experimental Layout and Results .. - 13 -
Conclusion .. - 15 -
Documentation... - 16 -
Appendices.. - 17 -

Appendix A ... - 17 -
The main program for object avoidance and color following.......................... - 17 -
Appendix B ... - 25 -
The code for the space finding and parking.. - 25 -
Appendix C ... - 30 -

The header for the servos.. - 30 -
The code for the servos. .. - 31 -

Appendix D ... - 33 -
The header for the LCD. .. - 33 -
The code for the LCD. .. - 34 -

Appendix E ... - 37 -
The PCB schematic. ... - 37 -
The PCB layout. .. - 38 -

Appendix F ... - 39 -
The AutoCAD board 1: ... - 39 -
The AutoCAD board 2: ... - 40 -

Appendix G ... - 41 -
The Parts list: ... - 41 -

 - 3 -

Abstract

 The topic of this paper is the conclusion of a project designed to use
computer vision to assist people in find parking spaces and parking the car for
them. This paper will show how this task was accomplished and the various
methods used to complete this task. In addition the various behaviors to both
test and demonstrate that robot is functional, such as color following and object
avoidance. The paper will discuss the use of IR and bump to understand the
world around the robot as well as using a CMU cam as the computer vision
portion of the project. The platform and its consideration are also discussed
below. Also, the future of were this robot can be improved upon is include. This
system, although is not portable to a real car, is the first step in to a journey
where parking frustrations maybe a thing of the past. As well as, a lot small
fender benders could be voided.

 - 4 -

Executive Summary

The purpose of the robot is to find a “Parking space” and park in that space. The

robot also has two other behaviors, one of which is follow a color object around, and the

other is to avoid object as the robot moves forward.

Small description of the robot; in order to do avoidance “bump” sensors and IR

sensors are used to detect the objects around the robot. Computer vision is used to find

the parking space via color detection. If the camera can see the color of the garage wall

then there is no car there. Parking is handled via preprogrammed movement. The

processor that controls it all is the Atmel Mega 128 found on the LetAtWork board. This

board is used as the heart of the robot.

Special Sensor description is such; the sensor is the CMU Cam. The CMU cam

will be used to find the parking space using color detection. The CMU module has,

microcontroller, power regulation, serial communication port via TTL or RS232 at 115k

baud, and a color camera. Integration of the sensor delta with the mounting, rotation,

and a clear field of view. This was accomplished by placing the camera on the top of the

robot connected to a servo.

The sensor data is in an ASCII string that contains various data about the tracked

object. For this project # of pixels is used to see if an object is being tracked or not.

While the mx value I can tell if the tracked color is to the right, left, or center of the

vehicle.

Future adaptation with the current platform design can be used for many more

behaviors. Line following or light following can be implemented with no change to the

 - 5 -

board and minimal change to the platform. Other Color related behaviors can be added

with external change to the system. To improve the reliability of the camera lights might

be added to the outside of the camera enclosure. This would send a more uniform light

and perhaps more consistent values as the robot changes venue.

 All in all the robot meets the goals set out for it, all that remains is to clean

up the few loose end left at the end of the semester. The simplistic nature of the robot

design and code made of a successful robot with plenty of room to grow.

 - 6 -

Introduction

 Have you ever been in a parking lot with no time to get where your going, and

find that parking lot filled? Have you ever thought that having an extra pair of eyes

searching for that elusive spot? No this isn’t a metaphor, this is a real situation that at

some point we all face. Well it’s not a pair of eye’s but it can look. It’s my robot, trying

to make the impossible seem possible.

 The main idea of my robot is to find a parking space and park in that space for the

robot owner, an automated Valet if you will. So some of the tasks the robot needs to

accomplish are to find an available space, save that space. The robot will traverse the

parking lot searching for a space to park in. The parking space will be identified by using

computer vision. Parking will be handled by more traditional sensors. The robot will also

have the traditional object avoidance and then it will follow colored objects. If a human

needs to direct the car where to go the this function will suffice.

 The remaining text will provide the insight on how this robot accomplished its

tasks. First we’ll look at how the system is put together, then will look at the structure of

the robot. Next, we’ll look at accessories need to demonstrate the robots abilities, then a

look at the moving parts of the robot and how it gets around. From there we’ll examine

how the robot sees it’s world, and then move in to how the robot interacts with our world.

Lastly, we’ll look at how the robot preformed and maybe what we can do to improve the

robot. That should cover all the operations and goings on of the robot.

 - 7 -

Integrated System

 There will be may integrated systems on the robot. Of course, integrating object

avoidance with the other behaviors is one. Also, integrating the CMU cam with the main

processor was one of the most challenging tasks. Also the platform with the computer

hardware was a new experience.

 Starting with the frame or platform, this had to serve the project for all aspects of

its operation. The main concerns were finding a balance between the wheels and support

bolt; placement of the CMU cam and dealing with its movement; and creating a car like

structure that allowed for the behaviors like object avoidance. Mostly, the platform was

kept very simple except for the bumpers. Though they were not overly complicated they

were the hardest thing to properly incorporate.

 The control system was structured around the LetAtwork II module. This is a

single processor design (excluding the vision process), that kept the foot print small and

organized. Creating a PCB board helped reduce the errors in the system as well as keep

the system orderly. See appendixes G & H for the PCB layout and schematic The

processor handled all of the servo, bump, LCD, input, communications, and program

execution.

 The vision system was handled complete by the CMU cam, which housed the

only other processor. Simple commands were relay via serial communication and then

processed data was feed back to the main processor via the same serial link.

 - 8 -

 An LCD was used as output and user interaction, along with the bump switches.

The bump switches allow the user to choose which program they would like to execute.

This simple setup can be used for all kinds of user menus or program selection.

 The integrated systems were implemented as shown in the following diagram:

Mobile Platform

 The platform was made out of balsa wood with some wood glue. Most of the

pieces either fit by friction or had a lock system in place. The shape was more of a car

shape, a circle elongated with front and back bumpers and straight sides. The profile

 - 9 -

looked much like any car. The inside was mostly hallow which allowed for more room

for electronics. The bulk of the weight rested on the bottom piece which was supported

by two servos with wheels and on 5/16 bolt. This allowed the general structure and

design to be simplistic. The pieces had a interlocking design so very little gluing was

needed. For the bottom piece two bars were used to lock the bottom on. These bars

attached the side and gravity coupled with friction kept the bottom secure. The rest held

together by friction forces. See appendixes I & J for the AutoCAD layout.

 The platform was finished off by spray painting the about three coats of red paint

on the external surfaces. The internal surfaces were sprayed with an ultra flat black

which turned out to be conducted with resistance in the range from 100kOs. to 1MegaO

depending on the distance. This did cause some problems with the bump

switches, so the bump switches needed to be isolated from the paint. The

external surfaces were also sprayed with a clear coat to add a glossy look. The

bumpers and wheel hubs were painted silver to give a chrome look and also to

match the bolt support and some of the screw that were visible. This gave a nice

appearance to the robot, kind of sports car look.

 Things to watch out for on the next platform construction are cutting out a notch

for the servo wires so you don’t have to take the servo apart to place or remove the servo

from the robot. Having a specific battery placement system, and make the external port a

little more accessible, for example UART0 should have been a little close to the edge of

the robot. Also, make a holder for the robot when you are working on the internal

components this was undue stress will not be exerted on sensitive parts. Just a few things

to keep in mind the next time around.

 - 10 -

Special Platform

 A second platform was constructed for the purpose to act as a parking garage.

This was constructed out of partial board the size of a sheet of plywood. This was sawed

in half and one of the halves was sawed in thirds. The thirds were attached to the other

half in a perpendicular fashion to give the walls of the garage. The walls were attached

using some nails, wood glue and masking tape. The floor of the garage was spray painted

white and the inside of the side were painted blue. The blue was found to show up better

with the CMUcam. For the purpose of the demonstration cardboard boxes were used to

simulate other cars. The platform served it’s purpose well.

Actuation

The actuation consists of 3 servos. Two servos are used to move the robot around

and one servo for the camera. The camera servo is used to look to the right and left of the

robot. The two servos for movement are hack for continuous rotation. The third servo is

unhacked and only needs to turn 180 degrees. Most cars have four motors for locomotion

and one to steer the car. This excludes the window motors and the solenoids to start the

car and unlock doors, etc. In my design I have chosen to use only two wheels for both

motion and direction. This differential system is simpler to implement in the time

provided. Locomotion and rotating the camera is the only actua tion needed to complete

the goals of the system. See appendixes C & D for the servo code.

 - 11 -

Sensors

 Valet-bot has an array of six bump switches, three IR rangers, and a CMU cam.

The sensors are used to “see” object in front and to the side of the robot, feel anything

that contacts the front and back of the robot, and to find a vacant parking spot.

 The tactile sensor are “bump” switches connected to the external interrupt pins of

the microprocessor via a pull down network. Each bump switch has its own interrupt

associated with it. The bump switches also double as a buttons to select which program

to execute.

 There are two type of vision sensors, the first of which is the IR rangers. There

were two GD2P120 and one GD2P12. The 120’s are short range detectors with a range

of about 2 to 24 inches. The 12 is a long range from about 5 to 48 inches. The 12 was

set in the center of the robot to look for objects directly in front of the robot. The 120’s

were mounted on the front side edges of the robot on about a 30 degree angle from the

side edge. This would allow the sensors to see both what’s next to the robot but also

what is in the front but off to the side of the robot. The combination of the angle and the

short range allow the robot to get in to tight space like a parking space. The data that the

IR rangers send is an analog voltage level indicate the distance of the reflecting object.

This is connect to the A/D port so the data can be converted to integers and thus be

manipulated in the program.

 The last sensor is the CMUcam color detecting and tracking sensor. The

CMUcam is mounted on the end of a servo at the top of the robot. This allows the robot

 - 12 -

to look around. The CMUcam is controlled and sends data serially. The data is in the

form of ASCII characters, and in several formats. I chose the M packet format because

this format gave me the center of a color blob in the x coordinate and how large the color

blob was. These are the value that the program looks at to determine were it needs to go

or if there is a parking space open. I have made a more detail analysis of the CMUcam

and how I used it with Valet-bot titled “Sensor for Valet-bot”

Behaviors

 The robot has four main behaviors that dictate it’s existence. The first behavior

is to avoid objects in it’s environment. The robot will follow a colored object around

demonstrating that the camera can be controlled and it’s data used to direct the robot.

Next the robot will find parking spaces using computer vision. After the robot locates a

space the robot will park in that space. All of these behaviors should combined to create

a complete robot that will serve it’s function as a valet.

 The first behavior object avoidance uses the IR rangers and the bump switches to

interpret its environment. It will always try to go forward until either an IR sensor

detects something too close to the robot or a bump sensor is triggered. If a bump sensor

is tripped it operate on an external interrupt so not matter what the robot is doing it will

react to the bump appropriately. However, the IR sensors are connected to the analog to

digital converter; because of this the IR sensor must be scanned continually to see if

something is close by. If something is detected via the IR system the robot will veer

away from the detected object.

 - 13 -

 The second behavior is tracking and following a color object. This behavior starts

out by setting up the camera and then waiting for the colo r to come before it. When the

color is spotted (found by the pixel value above 0) then the robot looks at the center point

and determines if it need to go left right or forwards. If the robot losses the tracked color

then the robot stops and waits for it to again pass in front of it.

 The next behavior is finding a parking space. This is accomplished by starting at

the beginning of the parking lot then the robot turns the camera to the right and takes

values from the camera if it detect the color blue then in parks in that spot. If it does not

find the color then it looks to theleft and again takes readings to determine if the color is

present. If it is present then it will park in that location, if not then it will go forward to

the next space; currently a specific distance; and again start the procedure all over again.

This will loop until the robot finds a space, or the user resets or powers off the robot.

 The last behavior is the parking behavior, once the robot finds a space the robot

must the turn into that spot and park. This is accomplished by determining which side

the found spot is on and the turning in pace toward that spot. After the turn the robot

moves forward for a predetermined time. Currently the robot does not care were the

other cars are in the parking lot. So, it will just park in the first available spot.

Experimental Layout and Results

 The layout was simple provide an environment that the robot can function in and

see if the robot will perform the tasks assigned to it. The actual testing occurred in the

special platform described above. A parking scenario was setup and the robot was let

 - 14 -

loose. It failed about ninety percent of the time with small periods were the robot

preformed as expected. Most of the error seems to come from two places one was the

variable lighting condition and the other was from heat build up. After the heat build up

was discovered then robot was allowed to cool and functionality returned but at a reduce

performance. In the end it did find a parking space and then park in that space, it also

followed a color object though the last performance was much diminished compared to

previous trials. The one thing that the robot does well is avoid objects. It is not afraid to

get close to things it seems to feel that it can take on anything.

 - 15 -

Conclusion

The robot will perform the tasks it was designed to do. The performance can be

improved however. Object avoidance is just fine and needs nothing changed at this time.

Color following could use a better camera to find the color. Finding a parking space only

needs a fee improvements basically have a better idea of where the spaces are, and get a

better camera for detecting colors. The parking which it does just fine needs to be more

complicated to have a more intelligent approach. Data from the IR sensors should be

used in conjunction with data from the camera. Some other improvements that are

needed are better controlled lighting conditions and more control over the cameras

calibration features.

 There are some improvements that I have been meaning to get to added to

the robot. The first one is the blink, braking and headlight system, I have the capabilities

on the PCB board. Also line following or light follow can easily be added to the robot,

the hardware is already in place for that to work. The last would probably get a different

camera system..

The grand conclusion is that this is the single largest learning experience I have

had at his University. This is an experience that I not only take professional knowledge

away but also personal knowledge as well.

 - 16 -

Documentation

LetAtWorkII with Atmel Mega128

Akida - http://www.opticompo.com/emb/atwork_en.html

CMUcam

Seattle Robotics - http://www.seattlerobotics.com/cmucam.htm

Sharp GP2D120

Mark III - http://www.junun.org/MarkIII/Info.jsp?item=37

Sharp GP2D12

Mark III - http://www.junun.org/MarkIII/Info.jsp?item=9

GWS Standard Servo

Mark III - http://www.junun.org/MarkIII/Info.jsp?item=18

16x2 LCD

Mark III - http://www.junun.org/MarkIII/Info.jsp?item=35

 - 17 -

Appendices

Appendix A
The main program for object avoidance and color following.
/**

** Valet-bot (a.k.a. SpaceSaver-bot) Program **
** By David Wynacht **
** IMDL EEL 5666C, Summer 2003, **
** University of Florida **

This program was produced by David Wynacht
© Copyright 2003

Project : Valet-Bot
Version : 1
Date : 8/7/2003
Author : David Wynacht
Company : University of Florida,
 Electrical & Computer Engineering
 IMDL EEL 5666C - Summer 2003
Comments:

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
**8*/

#include <inttypes.h>
#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "servo.h"
#include "servo.c"
#include "lcd.h"
#include "lcd.c"

volatile uint16_t IR_center;

 - 18 -

volatile uint16_t IR_left;
volatile uint16_t IR_right;
volatile int go=0;
volatile char camdata;
volatile char camstr[30];
volatile int pack=0;
volatile int indx=29;
volatile unsigned char
data0[3],data1[3],data2[3],data3[3],data4[3],data5[3],data6[3],data7[3];
volatile int mx,my,x1,y1,x2,y2,pix,conf;

SIGNAL(SIG_UART1_RECV)
{
 camdata=UDR1;
 if(pack==0)
 {
 if(camdata=='M')
 {
 pack=1;
 indx=29;
 int j;
 for(j=0;j<=30;j++){
 camstr[j]=0;}
 camstr[indx--]=camdata;
 }
 }
 else
 {
 if(camdata=='\r')
 {
 pack=0;
 }
 else
 {
 camstr[indx--]=camdata;
 }
 }

 sei();
}

SIGNAL(SIG_INTERRUPT0)
{
 cli();
 servo_delay(1000);
 if(go==1){

 - 19 -

 done=1;
 while(done==1){
 servo_set(0,-25);
 }
 servo_delay(1000);}
 else{
 go=1;
 }
 sei();
}

SIGNAL(SIG_INTERRUPT1)
{
 cli();
 servo_delay(100);
 if(go==1){
 done=1;
 while(done==1){
 servo_set(25,-25);
 }
 servo_delay(1000);}
 else{
 go=2;}
 sei();
}

SIGNAL(SIG_INTERRUPT4)
{
 servo_delay(100);
 if(go==1){
 done=1;
 while(done==1){
 servo_set(25,0);
 }
 servo_delay(1000);}
 sei();
}

SIGNAL(SIG_INTERRUPT5)
{
 servo_delay(100);
 if(go==1){
 done=1;
 while(done==1){
 servo_set(0,25);
 }

 - 20 -

 servo_delay(1000);}
 sei();
}

SIGNAL(SIG_INTERRUPT6)
{
 servo_delay(100);
 if(go==1){
 done=1;
 while(done==1){
 UDR0=0x32;
 servo_set(-25,25);
 }
 servo_delay(1000);}
 sei();
}

SIGNAL(SIG_INTERRUPT7)
{
 servo_delay(100);
 if(go==1){
 done=1;
 while(done==1){
 servo_set(-25,0);
 }
 servo_delay(1000);}
 sei();
}

 void cmucomm(char *s)
 {
 while (*s){
 UDR1=*s++;
 servo_delay(400);}
 }

void init_cmucam(void)
{ UBRR1L=0x08;
 UCSR1B=0x98;
 UCSR1C=0x06;
 //cmucomm("\rTC 80 170 90 170 90 170\r");
 cmucomm("\rTW\r");
}

void int_sensors(void)
{

 - 21 -

 //See pages 242-245
 ACSR=0x80;
 ADMUX=0x43; //Selects voltage range and channel
 ADCSRA=0x80; //Enables A/D, Starts Conversion, Selects Free Running
Conversion
}

void get_sensors(void)
{
 ADMUX=0x42;
 ADCSRA=0xE0;
 servo_delay(2);
 IR_center= ADC;
 ADMUX=0x40;//41
 ADCSRA=0xE0;
 servo_delay(2);
 IR_left= ADC;
 ADMUX=0x41;//43
 ADCSRA=0xE0;
 servo_delay(2);
 IR_right= ADC;
}

int main(void)
{
 cli();
 int_sensors();
 DDRD=(DDRD && 0xfc);
 DDRE=(DDRE && 0x0f);
 servo_delay(100);
 EIMSK=0xF3;
 EICRA=0x00;
 EICRB=0x00;
 lcd_set_ddr();
 lcd_init();
 sei();
 lcd_send_str("Waiting for");
 lcd_send_command(0xc0);
 lcd_send_str("input.");
 while(go==0)
 {;}
 if(go==1)
 {
 lcd_send_command(0x00);
 lcd_send_command(0x01);
 lcd_send_str("Object Avoid.");

 - 22 -

 lcd_send_command(0xc0);
 lcd_send_str("Init . . ");
 servo_init();
 lcd_send_str("Ready.");
 }
 while(go==1)
 {

 get_sensors();
 if(IR_center > 150)
 {
 servo_set(-25,25);
 }
 else
 {
 if (IR_left > 70 && IR_right >70)
 {
 servo_set(-25,25);
 }
 else
 {
 if (IR_left >70)
 {
 servo_set(25,25);
 }
 else
 {
 if (IR_right >70)
 {
 servo_set(-25,-25);
 }
 else
 {
 servo_set(25,-25);
 }
 }
 }
 }
 };
 if(go==2)
 {
 lcd_send_command(0x00);
 lcd_send_command(0x01);
 lcd_send_str("Color Follow");
 lcd_send_command(0xc0);
 lcd_send_str("Init . . ");

 - 23 -

 init_cmucam();
 servo_init();
 lcd_send_str("Ready.");
 }
 while(go==2)
 {
 int l=27;
 int x=0;
 while(camstr[l]!=' ' && l>=0)
 {
 data0[x++]=camstr[l--];
 }
 if (x==1) {mx= (data0[0]-48);}
 if (x==2) {mx= (((data0[0]-48)*10)+(data0[1]-48));}
 if (x==3) {mx= (((data0[0]-48)*100)+((data0[1]-48)*10)+(data0[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {
 data1[x++]=camstr[l--];
 }
 //if (x==1) {my= (data1[0]-48);}
 //if (x==2) {my= (((data1[0]-48)*10)+(data1[1]-48));}
 //if (x==3) {my= (((data1[0]-48)*100)+((data1[1]-48)*10)+(data1[2]-
48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data2[x++]=camstr[l--];}
 //if (x==1) {x1= (data2[0]-48);}
 //if (x==2) {x1= (((data2[0]-48)*10)+(data2[1]-48));}
 //if (x==3) {x1= (((data2[0]-48)*100)+((data2[1]-48)*10)+(data2[2]-
48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data3[x++]=camstr[l--];}
 //if (x==1) {y1= (data3[0]-48);}
 //if (x==2) {y1= (((data3[0]-48)*10)+(data3[1]-48));}
 //if (x==3) {y1= (((data3[0]-48)*100)+((data3[1]-48)*10)+(data3[2]-
48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data4[x++]=camstr[l--];}
 //if (x==1) {x2= (data4[0]-48);}

 - 24 -

 //if (x==2) {x2= (((data4[0]-48)*10)+(data4[1]-48));}
 //if (x==3) {x2= (((data4[0]-48)*100)+((data4[1]-48)*10)+(data4[2]-
48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data5[x++]=camstr[l--];}
 //if (x==1) {y2= (data5[0]-48);}
 //if (x==2) {y2= (((data5[0]-48)*10)+(data5[1]-48));}
 //if (x==3) {y2= (((data5[0]-48)*100)+((data5[1]-48)*10)+(data5[2]-
48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data6[x++]=camstr[l--];}
 if (x==1) {pix= (data6[0]-48);}
 if (x==2) {pix= (((data6[0]-48)*10)+(data6[1]-48));}
 if (x==3) {pix= (((data6[0]-48)*100)+((data6[1]-48)*10)+(data6[2]-48));}

 //x=0;
 //l=l-1;
 //while(camstr[l]!=' '&& l>=0)
 //{data7[x++]=camstr[l--];}
 //if (x==1) {conf= (data7[0]-48);}
 //if (x==2) {conf= (((data7[0]-48)*10)+(data7[1]-48));}
 //if (x==3) {conf= (((data7[0]-48)*100)+((data7[1]-48)*10)+(data7[2]-
48));}

 if(pix>0)
 {
 if(mx<=50 && mx>=30){servo_set(25,-25); /*UDR0='c';*/}
 else
 {
 if(mx>50){servo_set(25,0); /*UDR0='r';*/}
 if(mx<30){servo_set(0,-25); /*UDR0='l';*/}
 }
 }
 else
 {
 servo_set(0,0);
 }
 }
 return 1;
}

 - 25 -

Appendix B
The code for the space finding and parking.
/***
This program was produced by David Wynacht
© Copyright 2003

Project : Parking Code
Version : 1
Date : 5/31/2003
Author : David Wynacht
Company : IMDL
Comments: This is the program that the robot uses to park.

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "lcd.h" //Max Billingsly with some change by me.
#include "lcd.c"
#include "servo.h"
#include "servo.c"
volatile char camdata;
volatile char camstr[30];
volatile int pack=0;
volatile int indx=29;
volatile unsigned char
data0[3],data1[3],data2[3],data3[3],data4[3],data5[3],data6[3],data7[3];
volatile int mx,my,x1,y1,x2,y2,pix,conf;
SIGNAL(SIG_UART1_RECV)
{
 camdata=UDR1;
 if(pack==0)
 {
 if(camdata=='M')
 {
 pack=1;

 - 26 -

 indx=29;
 int j;
 for(j=0;j<=30;j++){
 camstr[j]=0;}
 camstr[indx--]=camdata;
 }
 }
 else
 {
 if(camdata=='\r')
 {
 pack=0;
 }
 else
 {
 camstr[indx--]=camdata;
 }
 }

 sei();
}
void cmucomm(char *s)
 {
 while (*s){
 UDR1=*s++;
 servo_delay(400);}
 }
void init_cmucam(void)
{ UBRR1L=0x08;
 UCSR1B=0x98;
 UCSR1C=0x06;
 cmucomm("\rCR 19 32\r");//Turns off the auto gain.
 cmucomm("\rTW\r");
 //cmucomm("\rTC 80 170 90 170 90 170\r"); //Looks for either blue or white
can't remember which.
 }

void main(void){
 lcd_set_ddr();
 lcd_init();
 servo_setcam(80);
 servo_delay(2000);
 servo_setcam(0);
 servo_delay(2000);
 servo_setcam(-80);

 - 27 -

 lcd_send_str("Init . . ");
 init_cmucam();
 servo_init();
 lcd_send_str("Ready.");
 int odd=0;
 sei();
while(1)
{ int f=0;

 int l=27;
 int x=0;
 while(camstr[l]!=' ' && l>=0)
 {data0[x++]=camstr[l--];}
 if (x==1) {mx= (data0[0]-48);}
 if (x==2) {mx= (((data0[0]-48)*10)+(data0[1]-48));}
 if (x==3) {mx= (((data0[0]-48)*100)+((data0[1]-48)*10)+(data0[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data1[x++]=camstr[l--];}
 //if (x==1) {my= (data1[0]-48);}
 //if (x==2) {my= (((data1[0]-48)*10)+(data1[1]-48));}
 //if (x==3) {my= (((data1[0]-48)*100)+((data1[1]-48)*10)+(data1[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data2[x++]=camstr[l--];}
 //if (x==1) {x1= (data2[0]-48);}
 //if (x==2) {x1= (((data2[0]-48)*10)+(data2[1]-48));}
 //if (x==3) {x1= (((data2[0]-48)*100)+((data2[1]-48)*10)+(data2[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data3[x++]=camstr[l--];}
 //if (x==1) {y1= (data3[0]-48);}
 //if (x==2) {y1= (((data3[0]-48)*10)+(data3[1]-48));}
 //if (x==3) {y1= (((data3[0]-48)*100)+((data3[1]-48)*10)+(data3[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data4[x++]=camstr[l--];}
 //if (x==1) {x2= (data4[0]-48);}
 //if (x==2) {x2= (((data4[0]-48)*10)+(data4[1]-48));}
 //if (x==3) {x2= (((data4[0]-48)*100)+((data4[1]-48)*10)+(data4[2]-48));}
 x=0;

 - 28 -

 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data5[x++]=camstr[l--];}
 //if (x==1) {y2= (data5[0]-48);}
 //if (x==2) {y2= (((data5[0]-48)*10)+(data5[1]-48));}
 //if (x==3) {y2= (((data5[0]-48)*100)+((data5[1]-48)*10)+(data5[2]-48));}
 x=0;
 l=l-1;
 while(camstr[l]!=' '&& l>=0)
 {data6[x++]=camstr[l--];}
 if (x==1) {pix= (data6[0]-48);}
 if (x==2) {pix= (((data6[0]-48)*10)+(data6[1]-48));}
 if (x==3) {pix= (((data6[0]-48)*100)+((data6[1]-48)*10)+(data6[2]-48));}

 //x=0;
 //l=l-1;
 //while(camstr[l]!=' '&& l>=0)
 //{data7[x++]=camstr[l--];}
 //if (x==1) {conf= (data7[0]-48);}
 //if (x==2) {conf= (((data7[0]-48)*10)+(data7[1]-48));}
 //if (x==3) {conf= (((data7[0]-48)*100)+((data7[1]-48)*10)+(data7[2]-48));}

 lcd_send_command(0x00);
 lcd_send_command(0x01);
 lcd_send_str("PIX: ");
 lcd_send_str(data6);

 //servo_delay(100);

 //if(pix>0){
 //if(mx<=50 && mx>=30){servo_set(25,-25); /*UDR0='c';*/}
 //else{
 //if(mx>50){servo_set(25,0); /*UDR0='r';*/}
 //if(mx<30){servo_set(0,-25); /*UDR0='l';*/}
 //}}
 //else{
 //servo_set(0,0);
 //}
 int k;
 if(pix>0 && odd==1)
 {
 for(k=0;k<5000;k++){
 servo_set(10,10);}
 for(k=0;k<9000;k++){
 servo_set(10,-10);}
 servo_setcam(0);

 - 29 -

 while(1){servo_set(0,0);}
 }else{
 if(pix>0 && odd==0){
 for(k=0;k<5000;k++){
 servo_set(-10,-10);}
 for(k=0;k<9000;k++){
 servo_set(10,-10);}
 servo_setcam(0);
 while(1){servo_set(0,0);}
 }else{
 if(odd==1){
 servo_setcam(80);
 servo_delay(3000);
 int g;
 for(g=0;g<5000;g++){
 servo_set(10,-10);}
 for(f=0;f<5000;f++){
 servo_set(0,0);}
 odd=0;}
 else{
 servo_setcam(-80);
 servo_delay(3000);
 odd=1;}}}

}
return 1;
}

 - 30 -

Appendix C
The header for the servos.

/***
This program was produced by
David Wynacht
© Copyright 2003

Project : Servo
Version : 1
Date : 5/31/2003
Author : David Wynacht
Company : IMDL
Comments:

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/

//#ifndef servo_H
//#define servo_H
#include <avr/io.h>
#include <inttypes.h>
void servo_delay(int len);
void servo_delayms(int len);
void servo_init(void);
void servo_set(signed int left, signed int right);
void serv0_setcam(signed int center);

//#endif

 - 31 -

The code for the servos.
/***
This program was produced by David Wynacht
© Copyright 2003

Project : Servo
Version : 1
Date : 5/31/2003
Author : David Wynacht
Company : IMDL
Comments:

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/

#include <inttypes.h>
#include <avr/io.h>
#include <stdio.h>
volatile int done=0;
void servo_delayms(int len){
 while(len)
 {//increments of 10 micro seconds
 len--;
 int k;
 for(k=0;k<16;k++)//1597
 asm("nop");
 }
}
void servo_delay(int len){
 while(len)
 {//increments of 10 micro seconds
 len--;
 int k;
 for(k=0;k<1567;k++)//1597
 asm("nop");
 }
}
void servo_init(void)

 - 32 -

{
 // Timer/Counter 1 initialization
 // Clock source: System Clock
 // Clock value: Timer 1 Scaled by 1/8
 // Mode: PhPWM top=20000
 // OC1A output: Con.
 //Timer counter control Reg
 TCCR1A=0xAA; //(1010 0010)
 TCCR1B=0x12; //(0001 0010)

 //Output compare reg 1a A14
 //high byte set duty cycle
 //low byte 220=5%ccw 9D0=10%cw 5DC=7.5%stop
 //input capture reg 1
 ICR1H=0x4E; //sets period using the top equation
 ICR1L=0x20;
 OCR1A=0x05d2;
 OCR1B=0X05dc;
 OCR1C=0x05dc;
 DDRB=0xe0;
}
void servo_set(signed int left, signed int right)
{
 //int j=100;
 uint16_t new_left;
 uint16_t new_right;
 new_left=1490 + (10*left);
 new_right=1500 + (10*right);
 if(((OCR1A < .9*new_left)||(OCR1A > 1.1*new_left))||((OCR1B <
.9*new_right)||(OCR1B > 1.1*new_right)))
 {
 OCR1A=(9.9*OCR1A + .1*new_left)/10;
 OCR1B=(9.9*OCR1B + .1*new_right)/10;
 }
 else
 {
 OCR1A=new_left;
 OCR1B=new_right;
 done=0;
 }
}
void servo_setcam(signed int center)
{
OCR1C=1500 + (10*center);
}

 - 33 -

Appendix D
The header for the LCD.

/*
 * lcd.h
 *
 * Author: Max Billingsley
 * Adapted by: David Wynacht
 */

#define LCD_PORT PORTA
#define LCD_DDR DDRA

#define ENABLE 0x40

 /* function prototypes */

 void lcd_set_ddr(void);
 void lcd_init(void);
 void lcd_delay(void);
 void lcd_send_str(char *s);
 void lcd_send_byte(uint8_t val);
 void lcd_send_command(uint8_t val);

 - 34 -

The code for the LCD.

/*
 * lcd.c
 *
 * Author: Max Billingsley
 * Adapted by: David Wynacht
 */

 /*
 * LCD_PORT0 - DB4
 * LCD_PORT1 - DB5
 * LCD_PORT2 - DB6
 * LCD_PORT3 - DB7
 * LCD_PORT4 - RS
 * LCD_PORT5 - r/w
 * LCD_PORT6 - EN
 *
 * RS: Register Select:
 *
 * 0 - Command Register
 * 1 - Data Register
 *
 */

 #include <inttypes.h>
 #include <avr/io.h>

 #include "lcd.h"

 /* entry point */

 void lcd_init(void)
 {
 lcd_send_command(0x43);
 lcd_send_command(0x43);
 lcd_send_command(0x43);
 lcd_send_command(0x42);
 lcd_send_command(0x42);
 lcd_send_command(0x48);
 lcd_send_command(0x40);
 lcd_send_command(0x0f);
 lcd_send_command(0x00);

 - 35 -

 lcd_send_command(0x01);
 }

 void lcd_set_ddr(void)
 {
 LCD_DDR = 0xff;
 }

 void lcd_delay(void)
 {
 uint16_t time1;

 for (time1 = 0; time1 < 2000; time1++);
 }

 void lcd_send_str(char *s)
 {
 while (*s) lcd_send_byte(*s++);
 }

 void lcd_send_byte(uint8_t val)
 {
 uint8_t temp = val;

 val >>= 4;
 val |= 0x10; /* set data mode */
 LCD_PORT = val;

 lcd_delay();

 LCD_PORT |= ENABLE;
 LCD_PORT &= ~ENABLE;

 temp &= 0x0f;
 temp |= 0x10; /* set data mode */
 LCD_PORT = temp;

 lcd_delay();

 LCD_PORT |= ENABLE;
 LCD_PORT &= ~ENABLE;

 lcd_delay();
 }

 void lcd_send_command(uint8_t val)

 - 36 -

 {
 uint8_t temp = val;

 val >>= 4;
 LCD_PORT = val;

 lcd_delay();

 LCD_PORT |= ENABLE;
 LCD_PORT &= ~ENABLE;

 temp &= 0x0f;
 LCD_PORT = temp;

 lcd_delay();

 LCD_PORT |= ENABLE;
 LCD_PORT &= ~ENABLE;

 lcd_delay();
 }

 - 37 -

Appendix E
The PCB schematic.

 - 38 -

The PCB layout.

 - 39 -

Appendix F
The AutoCAD board 1:

 - 40 -

The AutoCAD board 2:

 - 41 -

Appendix G
The Parts list:

1 LetAtWork II Module – Contains a Atmel Mega128 running at 16MHz

Available from www.akida.com for $69.

1 PCB board – Custom made and cut out at IMDL.

2 11x17 sheets of balsa wood with AutoCAD designed cut out at IMDL

7 Cans of spray paint, 1 red, 1 silver, 1 blue, 1 clear coat, 1 black, and 2

white from Wal-Mart for $2.95 each.

1 Sheet of pressed board size of plywood sheet from Lowe’s for $ 5.99.

1 CMUcam from Seattle Robotics for $109 assembled and tested.

3 GWS standard servos from Mark III for $10.50 each.

2 4.6” wheels from All Electronics for $1.50 each

2 16x2 LCD with LED backlight using Hitachi HD44780U LCD Controller
 one was damaged and is now the “ground effect” light. The other is the

user display. From Mark III for $8.50 each

2 Sharp GP2D120 IR rangers for close range, from Mark III for $8.25.

1 Sharp GP2D12 IR Ranger for long range, from Mark III for $8.25.

Many Female headers provided by IMDL

Many Male headers provided by IMDL

1 SPST switch provided by IMDL - power disconnect

1 Push button switch provided IMDL – Reset switch

1 2’ long Ribbon Cable section provided by IMDL

A lot of Hot Glue mainly black but some clear provided by IMDL

5 .01µF Capacitors provided by IMDL

1 15O resistor provided by IMDL

1 10kohm sip resistor provided by IMDL

 - 42 -

6 “bump switches” provided by IMDL

Some wood glue provided by Shuguang Feng

Some Super glue provided by Seth Lakritz

Many 4/40 screws and nuts provided by IMDL

1 set of 5/16 bot, 2 nuts, and one end cap from Lowe’s under $2.

3 Voltage regulators 5V 1A output.

A lot of Solder provided by IMDL

A lot of help, support, and laughs from friends, family, REUers and MIL members.

A lot of patience, loss of sleep, frustration, blood, sweat, and tears, appreciation.

