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 Abstract:

2-Inch Worm is a robot designed to scale trees and telephone poles.  The robot design is

inspired by the movement of centipedes, and achieves motion by utilizing multiple sets of

legs that move independently to slowly crawl its way upwards.  While climbing, 2-Inch

Worm will also monitor its height, and after climbing as high as possible and returning

down it will report how high it was able to climb.



Executive Summary

2-Inch Worm is an autonomous climbing robot designed to scale trees, poles, and other

cylindrical surfaces.  The robot is required to monitor its environment as best as possible,

and be aware when it is no longer safe to climb.  Upon completion of a climb, the robot

will report the maximum height obtained by using a downward-facing sonar device.

Movement is achieved by using 3 identical segments, each involving a servo, gear, and

rack, as well as another servo and matching pincer mechanism. The pincer is used to grip

the trunk, and the rack and gear mechanism is used to drive the pincers up and down the

body of the robot, as well as hoist the robot up the tree.  A sonar device mounted on the

bottom of the robot monitors the height, and IR sensors located on the head facing up and

on the belly facing the trunk monitor the robot’s alignment and watch for approaching

obstacles.  

The mechanical aspect of this robot is much more complex than the electrical or software

components, and as such the successful completion of a functional body took the majority

of time spent.  The functionality of the sensors is elementary, and is easily incorporated

into the design after the mechanical design functions successfully.

While the completed robot climbs successfully, its stability on the trunk is very fragile,

and  must  be  monitored  closely  to  avoid  an  emotionally  and  monetarily  devastating

tumble.   The  successful  scaling  of  a  post  demonstrates  the  proof-of-concept  for  this

climber design.



2 Introduction

Mobile robots come in many varieties relative to the environment in which they are to

operate.   From airborne,  to  watercraft,  to  ground-based,  each environment  allows for

many different methods of mobility.  Ground-based robots employ methods of motion

such as wheels, tracks, legs, even pistons/jumping mechanisms.  However, there is one

class of robots that isn’t exactly ground-based, yet cannot be considered airborne either.

Robots  that  are  intended  to  climb  vertical  surfaces  present  unique  challenges  to  the

mechanics of movement, and to maintaining stability.

The  problem  of  constructing  a  robot  for  vertical,  flight-less  mobility  is  challenging

because a surface on which to move cannot be taken for granted.  Ground-based robots

are stable due to the pull of gravity (as long as they are constructed sensibly), whereas

gravity creates a very annoying problem for climbing robots.  In addition to the constant

pull of gravity, applying lateral force on the surface being climbed will have the effect of

pushing the robot backwards.  The need to maintain a constant, strong grip on the vertical

surface limits maneuverability and presents a challenging mechanical problem.  Lastly,

the environment in which climbing robots operate leaves a small margin of survival in the

face of a slip or other failure.

The purpose of this project is to construct a robot which can climb real trees of varying

sizes and types.  In order to accomplish this  goal, the robot will  have to provide the

following  abilities;  (1)  be  able  to  move  up,  as  well  as  down the  tree,  (2)  detect

approaching limbs, knots, and forks in the tree, (3) recognize when it cannot successfully

climb any higher on the tree, and not try to, (4) be able to adjust the grip for a range of



trunk diameters,  (5)  keep track of  its  current  height,  as  well  as  the maximum height

obtained.  Since the robot should pass branches if possible, the robot will not be able to

encircle the tree and thus must be able to cling on to the side.  

Presented  in  this  paper  is  2-Inch  Worm,  a  robot  designed  to  climb  trees.   Soon  a

conceptual description of the robot and how it will accomplish the specified requirements

will be given.  Following the conceptual walk-through, a technical description of all body

parts, motors, sensors, and circuits is provided.  Lastly, the operation and performance of

the completed robot will be discussed, along with concluding remarks about the project

and suggestions for future work or improvements.

3 Integrated System

2-Inch Worm is a robot, designed with the shape and movement of a centipede in mind.

The robot will  be constructed of multiple  segments,  each one an exact  replica of the

others.  Weight is distributed as evenly as possible, and an attempt is made to keep the

weight minimal.  The frame is constructed out of ¼”-thick project wood (it only makes

sense to have a tree climb a tree), and to minimize weight the segments are kept as small

as permitted by required motor, battery, and circuit-size.   Each segment consists of a

small platform that can slide parallel to the body, and each segment operates one pair of

aluminum  pincers  that  all  work  together  to  attach  and  move  the  robot.   The

microcontroller board and power circuitry is mounted on the back of 2-Inch Worm, with a

sonar sensor on the tail facing downward to monitor its height.  



2-Inch Worm is named such because of the range of motion available to each segment,

resulting in the robot moving 2 inches at a time.  The pincers are controlled by two servo

motors; one motor is to drive the mounted, hinged pinchers up and down a track, and the

other controls the opening and closing of the pincers.  Since every body segment is nearly

identical,  each segment  simply needs  to be able to  lift  its  own weight;  slightly more

power is used as a safety factor.  Body segments are fixed together using metal rods that

run the entire length of the body, which also provide a ‘track’ for the pincers to slide up

and down on.

Movement is achieved in a two-phase fashion.  Legs are all adjusted one pair at a time

during the first phase, and then the robot is driven up a small amount by combining all

segment motors for the second phase.  Since the movement is not continuous, keeping the

climbing speed from being painfully slow is quite a challenge.  The robot also detects

forks in the tree as well as impassable knots and branches.  Upon reaching a barrier of

some sort, the robot reverses and proceeds to climb back to its original height.

To minimize the size of any individual segment and keep them all consistent, only the

main  microcontroller  board  is  mounted  on  the  head.   Small,  individual  circuits  for

receiving  signals  from the  “brain”  and  controlling  the  motors  are  mounted  on  each

segment.  All segments are connected by a chain of wires and headers.  Programming of

the  robot  is  very  simple  relative  to  the  mechanics  of  the  design.   The  behavior  is

comprised  mainly  of  a  repeating  forward  or  reverse  movement  routine,  the  sonar

monitoring, and the reaction to IR sensors (which just triggers the reversal of movement).



The robot is very mechanically complex; as such, the body parts are all designed using

AutoCAD and significant care is taken to obtain high-quality, custom parts.  The most

challenging of requirements is also the most fundamental, to attach to and climb up and

down  a  tree.   Obstacle  detection  and  height  monitoring  are  trivial  compared  to  the

challenge of  defying gravity.   Using  the  right  balance  of  a  weight/power tradeoff  of

actuators and a creative mechanical design, the 2-Inch Worm attains each of the goals set

forth and looks suave while doing it. 

4 Mobile Platform

This section will describe and discuss the robot’s body design.  The unique operating

environment of 2-Inch Worm leads to an uncommon body shape, and each of the features

of the body are designed as such for a specific  purpose.   First  the design process  is

described with an emphasis on addressing each of the inherent challenges of the robot,

followed by a discussion of the actual implementation of the body frame.

4.1 Platform Design

The robot is intended to ‘cling’ onto the side of a tree, as opposed to wrap around it or

encircle the trunk.  The challenges associated with such an approach include things such

as a need to achieve sufficient lateral force against the tree to maintain grip, keep weight

as well  as  power consumption to a minimum, as well  as provide sufficient room for

movement while minimizing the size and distance from the tree.  Every surface of the

body is utilized, making the handling of the robot awkward.  The platform has two basic

parts, the main body and small, movable segments; all parts are made of ¼”-inch thick

pine board.   



The main body is basically a long, flat piece of wood constructed to house all circuitry

and batteries on one side, and to facilitate the motors and actuation on the other side.

Since the farther the robot sits away from the tree, the more force it will exert on the point

of grip, this flat design makes optimum use of a single plane for everything.  Figure 3.1

below shows the design of the main body segment.

1  I N C H  x  1  I N C H

R a ck s

T O P  V I E W F R O N T  V I E W

M o t o r - si d e

C i r c u i t - si d e

Figure 3.1 - Main body diagram



The dotted lines seen along the length of the body represent where the two steel rods will

be running.  On the right side of the body, each of the three segments has an elevated

block so that a rack (as in rack and pinion) may be mounted at the right height.  To

minimize weight, it can be seen that sections of each segment which did not need to have

something attached were cut out leaving the three trapezoid-shaped gaps on the left side.

For  further  weight  reduction,  many  small  holes  were  cut  into  every  surface  where

possible; care was taken to not cut out too much so that the strength of the chassis was

jeopardized.  

In addition to the main body section discussed above, there are also 3 small platforms that

slide up and down the rods, also providing a mobile platform for the motors.  Figure 3.2

shows the design of one of these platforms, though all three are identical.  

1 inch
x

1 inch

NOT TO SCALETop pieceSide piece (x2)

Figure 3.2 - One of three small platforms

Each of the small segments glides along the two metal rods.  The rods provide a track for

linear movement, as well as providing stability to keep the motor and gear which will go

on it in line with the rack (and unable to pull away from it).   



4.2 Platform Implementation

The platform was cut out of ¼”-thick pine wood.  Wood glue was used to attach the rack

blocks  and support  plates  (also  made out  of  the  same pine)  for  the  metal  rods,  and

provided a more-than-sufficiently strong bond to create a very rigid chassis.  The racks

themselves started as a 2’-long piece, out of which three 3” lengths were cut.  To attach

the racks to the elevated rack blocks, a mixed epoxy proved to create a very strong bond

and keeps the racks permanently in place very nicely.  The bare body piece is shown

below in Figure 3.3, followed by a picture of the fully assembled robot in Figure 3.4,

including the visible circuitry mounted on the back of the robot.

Figure 3.3 - Main chassis



Figure 3.4 - Fully assembled platform

One big problem with this body design is in fact the rigidity of the whole body.  Ideally,

each segment would be hinged together so that the body could flex, thus adapting to small

curves.  However, it was soon discovered that the only way to have the segments hinged

was to ensure the hinges were powered or controlled with motors.  If not, imagine for

example what would happen when the top segment opened its pincers; with no grip on

the tree,  and a free-moving hinge, the segment would fall  backwards quickly and the

robot  would  be  seriously jeopardized.   The  rigid  connection  with  other  segments  is

required in order to provide support to a segment which is adjusting its grip.  This does

impose a requirement to ensure the robot is traveling parallel to the tree at all times since

it  cannot  flex,  but  this  is  an  easier  (or  at  least  more  practical)  task  to  achieve  than

powered, controlled hinges between segments.



5 Actuation

By far  the  most  complex  part  of  this  project  was  the  design,  and  furthermore  the

implementation of the mechanisms for movement.  The actuation design of 2-Inch Worm

is a completely original idea, not inspired or adopted from another robot.  Movement is

achieved by the cooperation of two kinds of motors, one that drives the robot up and

down the tree, and the other that tightens or loosens the grip on the tree.  Presented in this

section  is  a  description  of  each  individual  section,  followed  by  a  discussion  of  the

complete motor assembly.

5.1 Segment Movement

The three small platforms that slide up and down the rods are driven by a high-torque

servo  motor  capable  of  133 oz-in  of  torque.   The  most  critical  measurement  for  the

placement of all other parts is the size of the gear used to push up and down the rack.

Considering that the servo is capable of approximately 180˚ rotation, and 2 inches is the

desired  range  of  movement,  the  required  gear  diameter  is  easily  calculated  with  the

equation:

2 inches = π x (gear diameter) / 2

gear diameter = 1.27 inches

The required value falls very close to the common diameter of 1 ¼” inches, so that size

was chosen.  With this known, the height of the metal rods from the main body piece

could be determined.  The servo motor is laid flat on the platform, with the shaft pointing

just over the edge.  Figure 4.1 shows the servo and gear assembly for lateral movement;

there are two motors shown, the bottom one with the large gear facing out is the segment



motor.  Observing the rod holes at the bottom, one can see how the platform sits right in

line with the rack.

Figure 4.1 - Segment motor and gear assembly

Friction did not turn out to be a problem with the platform sliding up and down the rods.

Considering the motor torque (133 oz-in), and the gear radius of 5/8”, the force in pounds

can be calculated by:

(133 oz in)*(1 lb/16 oz)/(5/8 in) = 13.3 lb!!

Obviously there is sufficient power in any one segment, let alone all 3 together to hoist

the body of the robot.   Also,  the requirements for motion only demand two possible

motor positions, either all the way clock-wise, or all the way counter-clockwise.  Since

the servo is driven by PWM, programming the servo control was extremely easy.  A pair

of functions named ‘segment()’ and ‘all_segments()’ are used, though they simply set the

timer to certain values for each of the channels depending on the chosen segment and



position.  Since there is no way to know when the motor completes a movement, each

function also has a delay associated with it that simply waits a specified amount of time

before executing any further instructions to give the motor time to complete.  The tuning

of these exact delays came from actual experimentation during design, and were picked to

provide the smoothest motion possible.

5.2 Pincer Mechanism

The most difficult mechanism in the entire project was the design of the pincers.  There

are many small details that required significant brainstorming to decide on, such as the

optimum length and shape of the pincer arms, how to attach all of the components in a

secure fashion, as well as just the general exact dimensions of all the parts so that they

would all line up.  A custom pincer design was chosen over a purchased pincer to be able

to minimize the required space, and fit the mechanism cleanly onto the already space-

limited  platform.   All  components  of  the  pincer  mechanism were  constructed  out  of

¼”-thick  aluminum,  with  the  exception  of  the  shafts  which  are  simply 3/8”  wooden

dowels.

In order to power the pincers with only one motor, the two arms were fixed to parallel

shafts and interlocked with gears so that rotating one shaft would force the other to rotate

as  well.   Using an even number  of  gears  results  in  the  desired opposite  direction of

rotation so that a squeezing motion is achieved.  The motor to power the pincers is laid on

top of the motor driving the segment, and a custom mounting plate is used to support the

shafts at the correct height to line up with the pincer servo.  The same high torque servo

as used for the segment is also used for each pincer motor, meaning that all 6 motors are

identical.  The figure below shows the pincers as seen from a front-view:



Figure 4.2 - Pincer mechanism

Similar to the segment motors, the pincers are always at one of two positions,  open or

closed.  Similar simple functions to those used for the segment motors were created for

the pincer motors as well.  The last aspect of the pincer design which is very important is

the use of the “feet”, which can be seen as the aluminum arcs at the ends of the pincer

arms.  The design decided on was optimized for scaling a rounded trunk, and the metal

feet themselves are padded with a rubber lining to help provide friction at the point of

contact.  The feet are tightened around the end of the pincer arms, holding them in place

at any desired angle within the feet’s  limited range of motion.   With  more time and

money, other variations of feet could be designed and substituted due to the modular

design of the pincers, such as feet with sharp teeth to dig into the surface being climbed,

or spring-supported feet that automatically adjust to the shape of the trunk being scaled.



5.3 Complete Motor-Pincer-Segment Assembly

The  complete  segment  assembly  is  simply  the  combination  of  both  mechanisms

previously described.  The motors are stacked one on top of the other, and held in place

using two small  steel  plates and bolts  on either side to tighten it  down and hold the

motors securely.  Cardboard shims were placed between the motors and mounting plates

as necessary to adjust the positions of various parts so they would line up, though this was

done minimally.  Each segment is fairly heavy, due in large part to the weight of the gears

as well as motors and metal pincer arms and feet.  A close-up of the completed assembly

is shown in Figure 4.3, including the sandwich plates used to secure the motors:

Figure 4.3 - Complete segment assembly

6 Sensors

To support the required sensory capabilities of 2-Inch Worm, the designer has chosen the

classic IR sensors, as well as a sonar device.  Each sensor type plays a specific role in the

operation of the robot, highlighted in this section.



6.1 IR Sensors

The infrared sensors selected for 2-Inch Worm are Sharp’s GP2D12.  This sensor is very

small (approx. 1½” × ½”), and provides object detection up to a theoretical limit of 80 cm

away.   However  since  2-Inch  Worm will  be  operating  outdoors  during  the  day,  the

detection  capabilities  of  any  IR  device  is  likely  to  be  diminished  somewhat  due  to

ambient sunlight.  The Sharp GP2D12 interfaces very conveniently with the MAVRIC-II

board which controls the robot, making this product a wise choice for IR sensing.  The IR

sensors will be used to monitor the distance of the robot body from the tree trunk, as well

as (hopefully) assist in detecting approaching branches and other obstacles. 

6.1.1 IR – Physical Setup

The GP2D12 sensor is interfaced with only 3 wires; (1) power, (2) ground, and (3) signal.

The  power  and  ground  wires  connect  directly  to  the  auxiliary  power  supply  of  the

MAVRIC-II board, and the signal line is fed directly to an ADC input channel on the

board.  A total of 3 IR sensors are present in the system, providing distance monitoring

from various points on the robot.

Two of the sensors are mounted on the “bottom” (the side facing the tree, not the ground)

of the robot, one at the head and one at the tail.  These two sensors monitor the distance

of the robot body from the tree trunk, and provide the ability to recognize if the robot is

not moving in a stable path along the side of the tree.  In addition to ensuring that the

readings  each  fall  within  a  certain  acceptable  range,  the  two  readings  will  also  be

compared with one another.  If for example, the head sensor reads a significantly larger



distance than the tail sensor, it would indicate that the robot is not moving in a stable path

along the tree and will likely lose its grip if it continues to climb.

The third IR sensor is mounted on the nose of the robot facing upwards, and is intended

to  assist  in  detection  of  approaching  branches  or  other  protrusions.   This  sensor  is

complimented by bump sensors and whiskers (discussed later) as it is believed that the

sunlight  combined with  the thin-ness  of  many branches  may cause  this  sensor  to  be

ineffective.

6.1.2 IR – Software Implementation

The software that interprets and controls the IR detection is very simple and straight-

forward.  The ultimate purpose of the IR detection is to ensure that it is safe to continue to

climb.  Since motion of the robot is not continuous, the software takes advantage of that

fact by using the period in between movements to take sensor readings.  Receiving IR

data is done with simple conditionals that compare the IR readings to various thresholds.

Depending on the outcome of these comparisons, the robot decides if it is safe to continue

climbing or if it should begin descending.

The actual C functions used to control the ADC and take readings from various channels

are provided from the MAVRIC-II board vendor (BDMicro).  These procedures include

ADC initialization and configuration,  and channel reading.   As mentioned above,  the

sensors are checked each time the robot moves to a new position.  By using simple if-

statements the actions of the robot are controlled accordingly.



6.2 Sonar Sensor

The sonar sensor used by 2-Inch Worm is the Devantech SRF08 Ultrasonic Range Finder.

This device emits high-frequency audio signals and measures the first 17 echoes received,

with distances up to approximately 6 meters.  The sonar sensor is to be used solely to

measure the height of the robot at any given time.

6.2.1 Sonar – Physical Setup

The sonar device is located on the tail of the robot, facing straight down.  Since the robot

will (ideally) always be oriented in approximately the same direction, the sensor may be

directly attached to the frame of the robot.  Interfacing the sonar device to the MAVRIC-

II board is extremely simple, with only 4 lines that may be connected directly to the board

without any additional circuitry.  The device operates with the I2C bus protocol, and thus

only requires a power and ground line, plus the two I2C signals (clock and data).  Power

and ground may be drawn from the auxiliary power supplies of the board, and the two

I2C  lines  have  dedicated  pins  on  port  B  of  the  ATmega128.   The  diagram  below

illustrates how the SRF08 is wired to the MAVRIC-II, taken from www.bdmicro.com:

Figure 5.1 - SRF08 interface to the MAVRIC-II board



6.2.2 Sonar – Software Implementation

Like the GP2D12 IR sensor software, basic C functions were obtained from BDMicro.

While  these  functions  include  basic  operations  such  as  various  I2C bus  controls  and

SRF08 pinging and reading, a higher-level function has been written that makes use of

these basics to provide a single function call to return the robot height in feet.  The device

itself stores 17 range readings for each ping, so all of these values must be read, and the

range corresponding to  the ground determined from all  of  these readings.   Since the

possibility exists that at certain points a tree trunk may lean, a small degree of error will

have to be tolerated as the sonar may be pointed at an angle to the ground.

The highest-level function that returns the robot height in feet is composed of three basic

parts.  First, the sonar simply emits a single ping and pauses for 100 ms.  After these 100

ms elapse, the second phase reads each of the 17 ranges from the SRF08 device memory

and stores it in an array.  Finally, this array is searched to determine the correct range to

ground.  The search method is simply by selecting the last echo received, which would

correspond to the ground. 

The device can return range readings in inches, centimeters, or microseconds, so the inch-

configuration was chosen to make an easy conversion to feet before returning the single

value.   Like the IR sensors, the sonar will  take readings in between each movement.

Once the robot has decided through the other sensors that it should begin descending, the

sonar will take one last reading and record this as the maximum height obtained.  The

body of the robot is 1½’ long, so this is added to the final reading as the official height

reached.



7 Behaviors

The behaviors of 2-Inch Worm are relatively simple, consisting of a climbing sequence,

and reaction to periodic sensor measurements.  The main challenge of this project was

getting a robot to climb something period, so to help make that goal more feasible the

behavior was chosen to be very simple on purpose.  Essentially 2-Inch Worm will start

wherever it is placed on a tree, then begin to climb up.  As soon as it is deemed unsafe to

continue climbing up, for example if a branch or bend in the tree is approaching or if the

robot is no longer parallel with the trunk for whatever reason, the robot will stop and

measure how high it is.  Then it will reverse direction and climb back down the trunk to

its original height, and display how high it climbed.

Let  us  first  consider  the  sequence  to  climb  up.   Recall  that  each  segment  has  an

independently operated pair of pincers for grip, and 2” of linear movement.  From the

starting stationary position, all three pairs of pincers are closed, and all three segments are

down.  From this position, the bottom segment goes first an opens its pincers, moves its

segment to the  up position, then closes it pincers on the trunk again.  Next the middle

segment repeats this pattern, followed by the top segment.  Notice that each time any one

segment lets go of its grip, the other two segments are maintaining their grip so that the

body is supported.  Once all three segments are in the  up position and all pincers are

again  closed, the final movement is for all three segment motors to move to the  down

position.  Since the pincers are still closed around the trunk, the result is to drive the large

body piece upwards.  From here, the process may be repeated.  In order to climb down,

the sequence is very similar.  The process starts with all segments in the up position, and

the segments are individually adjusted to the down position.  Then the body is moved



down 2 inches by leaving the pincers closed and driving the segments to the up position

at the same time.  

Using the functions defined in the appendix,  the following pseudo-code demonstrates

how the  climbing  (upwards,  in  this  example)  is  actually implemented  in  the  robot’s

software:

ALL_PINCERS(CLOSED); // just to be sure they’re all closed
ALL_SEGMENTS(DOWN);

PINCER(LOWER,OPEN);
SEGMENT(LOWER,UP);
PINCER(LOWER,CLOSED);
PINCER(MIDDLE,OPEN);
SEGMENT(MIDDLE,UP);
PINCER(MIDDLE,CLOSED); 
PINCER(UPPER,OPEN);
SEGMENT(UPPER,UP);
PINCER(UPPER,CLOSED);

To control the direction change, the sensors are all scanned in between iterations of the

above loop.  If the sonar reports that the robot did not successfully move upwards (such

as the height reading being the same or close to the previously measured height), or if the

IR  sensors  detect  that  the  robot  is  not  parallel  to  the  trunk  or  there  is  an  object

approaching, the robot will  complete its  last  height measurement and then attempt to

climb back down.  However, if the robot detects that it is not parallel to the trunk, it will

simply close all of its pincers and stay put.  This is semi-dangerous, as the operator would

need to be aware of this and remove the robot before it runs out of power and falls.  This

is also true of when the robot completes it’s climb successfully, as it will simply sit at its

original height until it is removed.  The pseudo-code below illustrates the sensor scan



algorithm that  is  completed periodically.  The overall  goal  is  to set  a variable  called

ok_to_continue at either ‘0’ (safe to keep climbing up) or some positive value as an error

code.  

(global variable ‘altitude’ holds current height)
ok_to_continue = 0
A = read_sonar();
ir1 = read_IR(top); // IR distances in cm
ir2 = read_IR(bottom);
ir3 = read_IR(head);

if (A <= altitude) ok_to_continue = 1;
altitude = height;

if (ir1 < ir2 – 1) OR (ir1 > ir2 + 1) ok_to_continue = 2;
if (ir3 <= 10) ok_to_continue = 3;

return ok_to_continue;

The final software structure that defines the operation of the robot is as follows.  The

pseudo-code above resides in a function named ‘sensors()’, and the climbing algorithms

for ascending and descending are represented as functions ‘climb_up()’ and ‘climb_down

(),’ respectively.  

place robot on tree;

altitude = read_sonar();
all_clear = 0;

while (all_clear == 0){
climb_up(); // complete one iteration of climb sequence
all_clear = sensors();

}
max_height = read_sonar(); // can’t go higher, take reading

while (altitude > start_height){
climb_down();
altitude = read_sonar();

}



send_to_LCD(max_height);

8 Experimental Layout and Results

Presented in this section is experimental data obtained from testing the operation of the

IR and sonar sensors.  For each sensor, a description of the experimental setup is offered

followed  by  graphs  illustrating  the  results  obtained  from  these  initial  sensor  tests.

Following the sensor experiments is a brief description of the test procedures employed

while getting the robot to actually climb.

8.1 IR Sensor

To test the IR sensor, these first tests were run indoors by holding an obstacle at various

distances from the sensor, and recording the voltage returned.  The initial tests were run

indoors so that the board could remain attached to the workstation used to program and

debug the robot.  The performance of the sensors will have to be also tested outdoors,

although these tests have yet to be performed.  The purpose of this initial test is to simply

verify and validate the functionality of both the device itself and the software functions

used  to  control  the  microcontroller  and  sensor.   Figure  2  illustrates  the  voltage  vs.

distance relationship of the sensor.  The points indicate actual measured values, and are

accompanied by a blue trend line.
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Figure 7.1 - Voltage vs. Distance relationship of the GP2D12

8.2 Sonar Sensor

One test was run for the sonar device, to simply verify operation and to get an idea for the

typical error in measurement.   For the verification test,  the SRF08 device was aimed

across an empty room and a target was moved to various positions/distances.  The device

is very accurate, so it is seen that the range returned matches the actual target distance

almost exactly as shown in Figure 3.  The average error in readings was approximately 1

to 2 inches.  One surprising result from this test was the amount of errant echoes recorded

by the device.  It was at times difficult to determine which reading corresponded to the

target, especially as the target got farther and farther away.  The tests only go out to 10

feet, although the sonar should be able to read farther.  Empty space limitations kept the

tests from being performed on longer target distances.
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Figure 7.2 - Sonar operation verification and validation

8.3 Climbing Experiments

Experimentation  for  getting  the  robot  to  climb  was  actually  relatively  simple.   As

mentioned  in  the  introduction,  the  operation  of  the  robot  is  very binary;  either  it  is

working perfectly or it is falling to the ground.  Also, the simplicity of its objective makes

simply getting it to climb sufficient.  Three steps were taken in getting the robot to climb

successfully, (1) get the robot to hold on to the trunk by itself, stationary, (2) getting the

robot to hold on to the tree and move all segments from up to down positions and vice

versa, and (3) get the robot to complete the segment adjusting sequence.  With all three of

these operations working, the robot will successfully be able to climb.

For the sake of practicality, a ‘post’ was used during design as opposed to an actual tree

(a post can sit indoors right by your workbench).  The post is constructed of a 4” PVC

pipe, 5’ tall and planted in a pot filled with cement.  The PVC pipe was then sprayed with



general-purpose spray-on rubber coating to help increase friction over the smooth PVC

surface.  

 The first two objectives, getting the robot to hang on as well as hoist the chassis up and

down, worked flawlessly on the first try.  However, the adjustment of the legs at first did

not work, as each time a pincer would let go the opening would jar the robot and the other

two pincers holding on did not have enough grip to keep the robot perfectly still.  The

result was that the robot would lose its alignment with the tree, and if it continued to

climb it would walk itself off the post.  Additionally, once all motors were being used, the

power supply began to get extremely hot.  

The first remedy for both problems was beefing up the power supply.  Initially a single

voltage  regulator  and  heat  sink  powering  all  6  motors,  this  was  changed  to  be  two

independent voltage regulators powered by separate sets of batteries (for double current

delivery).  Each regulator powered three motors, and the pincer motors which draw by far

the most current were staggered across the two regulators as best as possible.  Since each

regulator is identical, it does not matter which motors are powered by which regulator.

This doubled current delivery, which enabled the power to stay strong during maximum

effort, as well as helped cooling by splitting the power as evenly as possible between two

heat sinks.  

9 Conclusion

The design and construction of 2-Inch Worm was a phenomenal learning experience, and

saw for the most part success towards the goals being pursued.  While it never was shown



to be capable of handling any arbitrary tree, it certainly did accomplish the difficult task

of scaling a vertical surface.  Likely the most limiting part of the design is either the

delicate balance required to maintain operation, or also the limited range of diameters that

2-Inch Worm can hold on to, no larger than 6”.  It is very easy for the robot to slip or

loose its grip, and such a mistake would spell disaster if not watched closely.  

 The designer is a computer engineering graduate student, so the success of the body and

pincer design itself was a very satisfying accomplishment.  Careful planning was required

to get the exact dimensions of many of the parts correct so that everything would line up,

and the pure design of the platform-rail system and pincer mechanism was a resounding

success.  Likely the only thing that might be done differently if the project was to be done

over, would be to pay more attention to the strength, as well as power consumption of the

pincers.  Techniques such as gearing down the servo, or adding a return spring to the

pincers themselves could help add strength to the robot’s grip.  The weight of the robot

was higher than desired, though aside from using weaker nylon gears (the gears were by

far the heaviest part of the robot) it is still unknown how weight could be further reduced

as the size is already minimal.  

The  conceptual  design  and  operation  of  the  robot,  in  addition  to  the  success  as

demonstrated in the lab is a perfect proof-of-concept for this robot.  For other designers of

climbing robots, one general rule of thumb I would recommend in designing their robots

is to go with the philosophy of ‘overkill’ when designing the gripping mechanism.  A

strong grip is of vital importance to climbing robots, for being able to sustain the hold for



a long period of time, as well as provide stability as the other parts of the robot perform

their operations.  

The project as a whole was a success and a great experience.  I have gained a new hobby

as well as a whole new set of skills as a result of this project.  The robot performed nearly

up to its full expectations, and the idea was clearly shown to be an effective method of

scaling vertical surfaces.  The limitations of this design are easily overcome with more

time and money, and future designers could adopt the lessons learned from this effort to

build a new generation of capable and robust tree-climbing robots.
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11 Appendices – Source Code

MAIN.C – 

// Chris Conger
// EEL5666C - Intelligent Machine Design Lab
// Pentapede source code

#include <stdio.h>
#include <stdlib.h>
#include <avr/io.h>
#include <avr/delay.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <inttypes.h>

#include "adc.h"
#include "i2c.h"
#include "srf08.h"
#include "mono.h"

volatile uint16_t ms_count;
volatile uint16_t altitude,start_height;

/*************************** LCD FUNCTIONS *****************************
 */
void init_display(){

}

void send_to_LCD(char dummy[32]){
int a;
for(a=0; dummy[a]!='\0'; a++){

PORTA = dummy[a]; // send data 1 character at a time
}

}

void command(){
PORTC = 0x20; // port C = 0x10xxxx
PORTC = 0x00; // port C = 0x00xxxx

}

void data(){
PORTC = 0xA0; // port C = 1x10xxxx
PORTC = 0x80; // port C = 1x00xxxx

}

/************************** MOTOR FUNCTIONS ****************************
 */
 void motor_init(){

ICR1 = 0x0271; // gives 20 ms wavelength.  (SETS TOP value FOR MODE 8)
ICR3 = 0x0271; // gives 20 ms wavelength.  (SETS TOP value FOR MODE 8)

TCCR1A = 0xFC; // enables OC1A, OC1B, and OC1C for set on upcount 
//   and  clear  on

downcount. also, sets part of mode 8.
TCCR3A = 0xFC; // enables OC3A, OC3B, and OC3C for set on upcount and 

// clear on downcount.
also, sets part of mode 8.

TCCR1B = 0x14; //sets part of mode 8, and sets prescaler to 256.
TCCR3B = 0x14; //sets part of mode 8, and sets prescaler to 256.

TCNT1 = 0x0000; //sets TCNT to zero just in case it isn't already.



TCNT3 = 0x0000; //sets TCNT to zero just in case it isn't already.

DDRB = 0xE0; //sets ports to outputs.(OC1A ,B, C)
DDRE = 0x38; //sets ports to outputs.(OC3A, B, C)

 }
 
void all_pincers(int oc, int time){

if (oc == OPEN){
MPNCL = POPN;
MPNCM = POPN;
MPNCU = POPN;

} else if (oc == CLOSED){
MPNCL = PCLS;
MPNCM = PCLS;
MPNCU = PCLS;

}
sleep_for(time);

}

void pincer(int oc, int pinc, int time){
if (pinc == LOW){

if (oc == OPEN) MPNCL = POPN;
else if (oc == CLOSED) MPNCL = PCLS;

} else if (pinc == MID){
if (oc == OPEN) MPNCM = POPN;
else if (oc == CLOSED) MPNCM = PCLS;

} else if (pinc == UPR){
if (oc == OPEN) MPNCU = POPN;
else if (oc == CLOSED) MPNCU = PCLS;

}
sleep_for(time);

}

void all_segments(int dir, int time){
if (dir == UP){

MBODL = SUP;
MBODM = SUP;
MBODU = SUP;

} else if (dir == DOWN) {
MBODL = SDWN;
MBODM = SDWN;
MBODU = SDWN;

}
sleep_for(time);

}

void segment(int dir, int seg, int time){
if (dir == UP){

if (seg == LOW) MBODL = SUP;
else if (seg == MID)  MBODM = SUP;
else if (seg == UPR) MBODU = SUP;

} else if (dir == DOWN) {
if (seg == LOW) MBODL = SDWN;
else if (seg == MID) MBODM = SDWN;
else if (seg == UPR) MBODU = SDWN;

}
sleep_for(time);

}

void climb_up(){ // each 2-inch step takes ~9 seconds
all_segments(DOWN,8192); // drive robot 2 inches up surface

pincer(OPEN,LOW,512); // adjust lower segment
segment(UP,LOW,2000);
pincer(CLOSED,LOW,4000);

pincer(OPEN,MID,512); // adjust middle segment
segment(UP,MID,2000);



pincer(CLOSED,MID,4000);

pincer(OPEN,UPR,512); // adjust upper segment
segment(UP,UPR,2000);
pincer(CLOSED,UPR,4000);

}

void climb_down(){ // each 2-inch step takes ~9 seconds
all_segments(UP,8192); // descend 2 inches 

pincer(OPEN,UPR,512); // adjust upper segment
segment(DOWN,UPR,1536);
pincer(CLOSED,UPR,1536);

pincer(OPEN,MID,512); // adjust middle segment
segment(DOWN,MID,1536);
pincer(CLOSED,MID,1536);

pincer(OPEN,LOW,512); // adjust lower segment
segment(DOWN,LOW,1536);
pincer(CLOSED,LOW,1536);

}

/************************* SENSOR FUNCTIONS ***************************
 */
uint16_t read_IR(int sensor_num){

uint16_t reading = 0;

if(sensor_num == IRNOSE){
PORTF = 0x80;

// Port F, bit 7 (MSB)
} else if (sensor_num == IRLFRONT){

PORTF = 0x40;
// Port F, bit 6
} else if (sensor_num == IRRFRONT){

PORTF = 0x20;
// Port F, bit 5
}
return reading;

}

uint16_t read_sonar(){
uint16_t reading = 0;
uint16_t range = 0;
uint16_t read_array[17];
int8_t a,b;

b = srf08_ping(0x00, RANGE_IN); // ping and pause
sleep_for(8192);

for(a=0; a<17; a++){ // read all data registers
b = srf08_range(0x70, a, &reading);
if (b == 0) read_array[a] = reading;
else  read_array[a] = 0xff;
b = 0xff;

}
range = read_array[0];
return range;

}

uint16_t ok_to_climb(){
uint16_t OK = 0;
uint16_t height,ir_up,ir_top,ir_bottom;

ir_up = 0; // take all IR readings
ir_top = 0;
ir_bottom = 0;



height = read_sonar(); //  check  height,  be  sure  its  higher  than  last
reading

if(height <= altitude) OK = 1;
altitude = height;

return OK; // return '0' if OK to continue, return 1-3 if problem encountered
}

/********************* MISCELLANEOUS FUNCTIONS ************************
 *
 void init_timer(){ // taken from example code at www.bdmicro.com

 TIFR |= BV(OCIE0)|BV(TOIE0);
 TIMSK |= BV(OCIE0);
 TIMSK &= ~BV(TOIE0);
 ASSR |= BV(AS0);
 TCNT0 = 0;
 OCR0 = 32;
 TCCR0 = BV(WGM01)|BV(CS00);
 while(ASSR & 0x07);
 TIFR |= BV(OCIE0)|BV(TOIE0);

 }*/
 
 
 void sleep_for(uint16_t ms){ // taken from example code at www.bdmicro.com

/* TCNT0 = 0;
 ms_count = 0;
 while(ms_count != ms);*/
 long int t;
 for(t=0;t<(((long int)ms)*1024);t++)

 ;
 }
 
 
 void setup(){

 
 
//start_height = read_sonar(); // get initial height reading
//altitude = start_height;

all_segments(UP,2048); // initialize with all segments up, pincers
open

all_pincers(OPEN,15000);

pincer(CLOSED,LOW,8000);
pincer(CLOSED,MID,8000);
pincer(CLOSED,UPR,20000);

 }
 
 
 
 SIGNAL(SIG_OVERFLOW3){

 TCNT3 = 0;
 TCCR3C |= BV(FOC3A);

}

 
/*************************** MAIN FUNCTION ****************************
 */
int main(void)
{

uint8_t READY;
uint16_t all_clear;
DDRC = 0xff; DDRA = 0xff; DDRF = 0x00;
READY = 0;

sei(); /*init_timer();*/ adc_init(); /*init_display();*/ motor_init();

TWSR &= ~0x03; // set I2C bit rate generator to 100 kb/s
TWBR = 28; 
TWCR |= BV(TWEN);



setup(); // place robot on tree

all_clear = 0;
while(all_clear == 0){ //  climb  up,  until  sensors  say  to

stop
climb_up();
//all_clear = ok_to_climb();

}

// RECORD MAXIMUM HEIGHT HERE

while(altitude > start_height){
climb_down();
altitude = read_sonar();

}

while(1) // don't ever reach the end of main()
;

}

ADC.C – see BDMicro.com
SRF08.C - see BDMicro.com
I2C.C - see BDMicro.com


