University of Florida

Department of ECE

EEL 5666

CABBY

First Report

Robert Fennell

5/27/04

Table of Contents

Abstract…………………………………………………………………………………....3

Executive Summary…………………………………………………………………….…3

Introduction………………………………………………………………………….…….4
Integrated System…………………………………………………………………….……4
Mobile Platform…………………………………………………………………………...5
Actuation…………………………………………………………………………………..6
Sensors…………………………………………………………………………………….6
Behaviors………………………………………………………………………………….9
Experimental Layout and Results………………………………………………………..10
Conclusion……………………………………………………………………………….11
Documentation………………………………………………………………………..….11
Appendices………………………………………………………………………..……...12
Abstract
Cabby is a autonomous cab robot. The robot will be able to follow a street (black line) and go to the desired location vocally told to it. It will be able to also recognize green and red lights and act accordingly. Cabby will have collision and anti collision sensors.

[image: image1.jpg]
Executive Summary

Cabby
will be voice activated using a sensory direct chip. Once Cabby has the desired destination stored in its memory bank it will travel to its destination. To follow the black line Cabby uses two Humatsu IRs. The output of the IRs are hooked up to a comparator circuit who takes the analog signal and makes it digital. On the way to the destination Cabby my run into specific obstacles. Obstacles may be detected by bump switches that are pull down or by sharp IRs. If a bump switch is triggered Cabby alerts the user that there has been an accident and waits for the police. If an object is spotted ahead of Cabby, it will stop if the object is to close. It will than wait until the object moves further away. Cabby can also detect stop and go signs. It uses it CMUcam to detect color. Cabby tells where the desired destination by reading tabs. Different number of tabs signify different addresses. Once Cabby arrives at his destination he asks the passenger for the next instructions.
Introduction

With the highways and streets becoming more crowded than ever, driving has become far more dangerous. Cabby takes the danger of driving out of your hand and puts it in the engineers. The objective of this project is to demonstrate the future of driving. Cabby will be a total autonomous cab who can only receive directions verbally. The purpose of the paper is to go in depth on how Cabby works. The paper will look at Cabby’s circuit connections, sensors, actuation, and programs.

Integrated System

Cabbu uses a 12V battery. The battery supplies enough AHrs for this project. The only set back is that it takes overnight to recharge. The 12v is supplied directly to two 5V voltage regulators , circuit shown below.

[image: image2.jpg]
One regulator is used for the servos the other for every other sensor. The STK500 board was used for Cabby. The STK500 may have been overkill, but the two serial port connections were very useful. TheATmega 32 was was the processor used. The Atmega 32 was sufficient but there were times where life would have been easier if I had an additional 16bit counter. Every sensor output or input is tied to a pin of the Atmega. Excpet for the CMUcam who uses serial communication. Below is the hardware flow chart of Cabby..

[image: image3]
Mobile Platform
The platform of Cabby is not very important. The most important aspects of the platform is where to mount the CMUcam and the line tracking sensor. The CMUcam is mounted on the top of Cabby’s body. Here it can take pictures uninhibited. The Humatsus are mounted very low to ground, such that I could not get my little finger between it and the floor. This is crucial for successful line tracking. Cabby’s platform was milled out and designed in Autocad. It is a basic two wheel bot. I decided this due to simplicity. Cabby uses two circular wooden balls for balance. It was also important to mount the servos toward the back of the platform for line tracking reasons.
Actuation
Two high torque Futaba servos provided all the actuation for Cabby. In order to use the servos as motors they were hacked to be able to rotate them 360 degrees. The two servos provided sufficient power and speed. Each servo drained about 0.7 mA during stall time. This took up considerable power and required the servos to have their own 5V regulator.
The servos were manipulated by using pulse width modulation. The code can be seen in the back of the report.

Sensors

Bump Switches
Bump switches were used to tell Cabby if it has been in an accident. The switches were pull down switches connected in parallel to the same interrupt pin. The interrupt was falling edge triggered. When the bump switches are activated the LCD screen displays the word ”Crash”. Cabby then stops and waits for the police.

Sharp IR
The sharp infrared sensor was used to detect if an object is in front of Cabby. The output of the IR is an signal. This signal is fed to an analog port of the microprocessor, where the voltage level is converted into a digital number. This digital number is then compared in code to a set threshold. If the number is less than, than Cabby continues line tracking. If the number is greater than Cabby will stop line tracking and wait for the number to be less than the threshold.

Humatsu IR
The Humatsu IRs are used for line tracking and tab sensing. Each of the sensors has a comparator circuit built in order to take the analog signal and convert it to a digital signal. The comparator circuit can be seen below.
[image: image4.jpg]
R2 is actually a potentiometer that can be calibrated inorder for the circuit to go high when a black line appears below it. Rdata is the input of the IR sensor. Two of the Humatsu are mounted beneath the Cabby and are used for line tracking, which can be seen on the next page. If the right sensor sees black and the left sensor sees white Cabby will turn left. If the left sensor sees black and the right sensor sees white Cabby will turn right. If both sensors see black cabby will go straight. If both sensors see white Cabby will do its previous turn instruction until it finds the line or it times out. The other Humatsu is hooked up to an rising edge triggered interrupt. When the interrupt is triggered Cabby increments the tab count and waits for a desinated amount of time to find the next tab. If another Tab is not found, Cabby looks at tab count and to see where it is. This system is surprisingly reliable and works pretty well.

[image: image5.jpg]
Voice Activation
The voice direct chip is supplied with a 5V supply. The sensors has three levels of recognition. To make recognition easier the voice chip looses accuracy. Right now I have set the chip to the hardest recognition setting, this is the most accurate. I met change this setting due to the environment Cabby will be used in. The voice direct chip works by hitting a switch which prompts the user to program words into its memory bank. Then the user can hit a switch for recognition, which the chip will try to match a word with the previous programmed words. When a word is successfully matched the voice direct will output 5V for one second for the specifically programmed word. Voice recognition will be used to tell Cabby specifically where to go. Cabby will pull the recognition pin to ground for about 20 ms. This will prompt the user to say a word. The user will than say either pink or orange. Cabby will recognize the word and take them to the matching house. The sensory chip can recognize 15 words or phrases. Each word or phrase must be under 3.2s. In order to get more successful recognition the words should vary in sound and syllables. Also back round noise should be kept to a minimum.

CMUcam
Cabby uses a CMUcam to sense color. The micorproccessor communicates with the camera through serial communication at a 33800 baud rate. Ascii charactyers are sent to the camre to tell it what actions to run. It is important that the camera is calibrated and reset before any picture is taken. Cabby uses the CMUcam instruction to get mean. This returns red, green, blue, and their deviation values to the micro-p. Thei deviation numbers are then compared to each other. What ever deviation value is the greatest the camera recognizes it as the color. The problem with the CMUcam is that it requires a lot of light. A bright room was not sufficient enough for Cabby to run with any kind of accuracy. Therefore high intensity lights were purchased to light whatever object is being taken a picture of. The CMUcam could also be hooked up to a computer. This let me focus the camera and the lights inorder to receive the brightest sharpest picture possible.
Behaviors

Cabby will first start driving only when told. It will have a few words that it will be able to recognize and correspond accordingly. Cabby will have a set distance that it will sense in front of it. When something is to close in front of it, Cabby will stop and wait for the object to move. When Cabby’s bump sensors are detected, the robot will stop and wait for the police. When the color sensor is activated it will read wither the sign is red or green. If the sign is green the robot will proceed with its purpose. If the sign is red Cabby will stop and wait till the signal turns green. On the next page is the total behavior flow chart of Cabby. Simple sensors are programmed to develop a complicated behavioral robot.

[image: image6]
Experimental Layout and Results

There has not been much structure data keeping of experiments. For the most parts it has been, se if something works and if it doesn’t than tweak it. The Tab sensing took much of this theory. It took painstaking hours to get the right distance and delays for the tab readings to be accurate. I came to the conclusion in the end it would have been much better and probably cooler if a just used a bar scanner. The voice activation took little experimenting. The only thing that was changed from the original is that I used to have blue as one of the colors. The voice chip could not recognize the word so I had to substitute it with the word ‘pink’. The CMUcam was tested by taking pictures with the computer. From this initial testing I Concluded that bright lights were needed to have the CMUcam take a picture that displayed a color other than red. This for the most part was all the experimenting I did.
Conclusion

This class was a great experience for me. I learned a lot about robotics and microprocessors. I also was able to relive the errors I made in uP. Cabby went fairly well and did not offer to many problems. One of the main problems I had is that I supplied a +12V to my board instead of a -12V. Both voltages work but the +12V requires some crazy grounding schemes. Also that the STK500 board comes default with a JTAG setting on. This take up portB and nothing will work on it. Both these problems could have been avoided by reading the STK500 manual.
This class is definitely best taken with a light class load, I could only imagine the stress I class like this would cause to a loaded class schedule. For my final thought about the project I would have used protel more. If I would have used protel my robot would have far less wires dangling around; which means far less thing to go wrong. It also would look much more appealing.
Documentations

1. Bryan Arkins LCD macro.

2. Jeff Cohens CMUcam coding

3. William Dubels linetracking circuit and knowledge
Appendices
Appendix A. Price List
	Quantity
	Item
	Cost ($)

	2
	Wheel
	6

	2
	Futaba Servos
	21

	1
	Sharp IR
	8

	2
	Bump Switch
	3

	8
	White LEDS
	15

	2
	DB9 male connectors
	3

	3
	Bread Boards
	8

	1
	Battery
	15

	1
	Charger
	7

	
	Screws
	3

	1
	STK 500
	75

	1
	Atmega 32
	10

	1
	CMUcam
	120

	3
	Humatsu IR
	12

	3
	Heat Fins
	6

	
	Total
	$312

Appendix B. Source Code

.include "m32def.inc"

.CSEG

;********************
;* Reset Vector *
;********************
.ORG $00

RJMP
Reset

.ORG INT0addr

RJMP Int0Rout

.ORG INT1addr

RJMP Int1Rout

;**************
;* Macros *
;**************
;Prints Letters to LCD display
.macro letter

LDI
LCDReg,@0

OUT
LCD_PORT,LCDReg

SBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

LDI
LCDReg,@1

OUT
LCD_PORT,LCDReg

SBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

.endmacro

;Executes Commands on LCD
.macro command

LDI
LCDReg,@0

OUT
LCD_PORT,LCDReg

CBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

LDI
LCDReg,@1

OUT
LCD_PORT,LCDReg

CBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

.endmacro

;*****************
;* Constants *
;*****************
.EQU
RSERVO_H
=OCR1BH

.EQU
RSERVO_L
=OCR1BL

.EQU
LSERVO_H
=OCR1AH

.EQU
LSERVO_L
=OCR1AL

.EQU
CR

=$0D

;Ports
.EQU
LCD_PORT

=PortB

;==
.DEF
Temp

=r16

; Temporary Reg 1
.DEF
Temp2

=r17

; Temporary Reg 2
.DEF
Temp3

=r18

; Temporary Reg3
.DEF
PrevIR

=r19

; Previous IR reading
.DEF
Delay1

=r20

; Delay Reg 1
.DEF
Delay2

=r21

; Delay Reg 2
.DEF
SubDelay1
=r22

; Used in delay subroutine
.DEF
SubDelay2
=r23

; Used in delay subroutine
.DEF
Delay3

=r24

; Delay2 used in subroutine Reg
.DEF
LCDReg

=r25

;**********START***********
.ORG
$070

Reset:

TabCnt: .DB 0

TabTime: .DB 0

Word:

.DB 0

Sign:

.DB
0

Two:

.DB
0

ColorFlag:
.DB
0

RGB_VALUE:
.DB 0

S1:

.DB 0

S2:

.DB 0

R_VALUE:
.DB 0

G_VALUE:
.DB 0

B_VALUE:
.DB 0

Rdev:

.DB 0

Gdev:

.DB 0

Bdev:

.DB 0

S9:

.DB 0

;************
;* Main *
;************

LDI
Temp,low(RAMEND)
; Set stackptr to ram end

OUT
SPL,Temp

LDI
Temp,high(RAMEND)
; Set stackptr to ram end

OUT
SPH,Temp

RCALL
PortInit

RCALL
LCDInit

RCALL
INTInit

RCALL
ADInit

RCALL
UARTinit

Restart:

CLR

Temp

; Ensures variables are clear on reset

STS

TabCnt,Temp

STS

TabTime,Temp

STS

Word,Temp

STS

Sign,Temp

STS

Two,Temp

STS

ColorFlag,Temp

RCALL
SayWhat

RCALL
PWMinit

LDI

Delay1, 125 ; Delays for how often to poll position

LDI

Delay2, 125

RCALL
LineTrack

JMP

Restart

;******************
;* Port Setup *
;******************
PortInit:

LDI
Temp, 0b00110010

OUT
DDRD,Temp
 ; pin5= OC1A output (Left Wheel)

 ; pin4= OC1B output (Right Wheel)

 ; pin7= IR input (Left)

 ; pin6= IR input (Right)

 ; pin2= Bump switch int0

 ; pin3= Tabs int1

 ; pin1= Tx

 ; pin0= Rx

SER

Temp

OUT

DDRB, Temp

OUT

DDRC,Temp

OUT
PORTB,Temp

CLR
Temp

OUT
DDRA, Temp
;PORTA as input

RET

;**************************
;* LCD Initialization *
;**************************
;** PC0 = DB4 (LCD pin7)
;** PC1 = DB5 (LCD pin8)
;** PC2 = DB6 (LCD pin9)
;** PC3 = DB7 (LCD pin10)
;** PC4 = E (LCD pin6)
;** PC5 = RS (LCD pin4)
;** GND = VSS (LCD pin1)
;** GND = R/W (LCD pin5)
;** VTG = VDD (LCD pin2)
LCDInit:

;Power-On 15ms Delay

RCALL
Delay5ms

RCALL
Delay5ms

RCALL
Delay5ms

;Begin 4-Bit Enable

LDI
Temp, 3

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

RCALL
Latch

RCALL
Delay5ms

RCALL
Latch

RCALL
Delay5ms

LDI

Temp, 2

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

;Begin 2-Line Enable

RCALL
Latch

RCALL
Delay5ms

LDI

Temp, 8

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

;Display on, Cursor on, Blink on

LDI

Temp, 0

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

LDI

Temp, 15

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

;Clear screen, cursor home

LDI

Temp, 0

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

LDI

Temp, 1

OUT
LCD_PORT,Temp

RCALL
Latch

RCALL
Delay5ms

;Initialization Complete

RET

;***********************
;* Interrupt Setup *
;***********************
INTInit:

LDI Temp,0b00001111

OUT MCUCR,Temp

;Set INT0 to rising edge

;Set INT1 to rising edge

LDI Temp,0b11000000

OUT GICR,Temp

;Enable INT0,1
RET

;****************
;* AD Setup *
;****************
ADinit:

LDI Temp, 0b11100000

OUT ADMUX, Temp

LDI Temp, 0b11100110

OUT ADCSR, Temp

RET

;******************
;* UART Setup *
;******************
UARTinit:

LDI

Temp,12

; Selects baud rate (8 LSBs) 38.4k bps

OUT

UBRRL,Temp

; Clock=8MHz

LDI

Temp,0b00000000

; Bit7 = 0

Must be 0 when writing to UBRRH

; Bits6,5,4 = 0,0,0

Reserved

; Bits3,2,1,0 = 0,0,0,0

Selects baud rate (4 MSBs)

OUT

UBRRH,Temp

LDI

Temp,0b10000110

; Bit7 = 1

Selects proper register

; Bit6 = 0

Asynchronous mode

; Bits5,4 = 0,0
Parity disabled

; Bit3 = 0

Select 1 stop-bit

; Bits2,1 = 1,1
Select 8-bit frame

; Bit0 = 0

Clock polarity....set to 0 if asynchronous

OUT

UCSRC,Temp

LDI

Temp,0b00011000

; Bit7 = 0
Rx complete interrupt disable

; Bit6 = 0
Tx complete interrupt disable

; Bit5 = 0
Data register empty interrupt disable

; Bit4 = 1
Rx enable

; Bit3 = 1
Tx enable

; Bit2 = 0
Select 8-bit frame

; Bit1 = 0
Rx 9th bit disabled

; Bit0 = 0
Tx 9th bit disabled

OUT

UCSRB,Temp

RET

;***
;* Will not start until a word is said *
;***
SayWhat:

CLI

CBI

PortC,4

;Latches machine to say 'say word'

RCALL
WordDelay

SBI

PortC,4

; =============================
; delay loop generator
; 12000000 cycles:
; -----------------------------
; delaying 11999976 cycles:
 LDI
Temp,$3E

WGLOOP000:

LDI
Temp2,$FD

WGLOOP111:

LDI
Temp3,$FE

WGLOOP222:

SBIC
PinA,7

RJMP
Word1

SBIC
PinA,6

RJMP
Word2

DEC
Temp3

 BRNE
WGLOOP222

 DEC
Temp2

 BRNE
WGLOOP111

 DEC
Temp

 BRNE
WGLOOP000

; -----------------------------
; delaying 24 cycles:

LDI
Temp,$08

WGLOOP333:

DEC
Temp

BRNE
WGLOOP333

; =============================
rjmp SayWhat

Word1:

LDI

Temp,1

STS

Word,Temp

SEI

RET

Word2:

LDI

Temp,2

;
sts

TWO,temp3

STS

Word,Temp

SEI

Ret

;*****************
;* PWM Setup *
;*****************
PWMInit:

LDI
Temp,0b11110000

OUT
TCCR1A,Temp

LDI
Temp,0b00010011

OUT
TCCR1B, Temp

; Sets Top

LDI
Temp,0x04

LDI

Temp2,0xE2

OUT
ICR1H,Temp

OUT
ICR1L,Temp2

; Sets Pulse On Period

LDI
Temp,0x04

LDI
Temp2, 0x84

OUT
RSERVO_H,Temp

OUT
LSERVO_H,Temp

OUT
RSERVO_L,Temp2

OUT
LSERVO_L,Temp2

; Start TCNT's at $00

LDI
Temp, 0

OUT
TCNT1H, Temp

OUT
TCNT1L, Temp

RET

;********************
;* Camera Setup *
;********************
Calibrate:

SBI

PortC,0

; Turn on white LEDs for picture

RCALL
Delay250ms

LDI

Temp,'R'

; Reset camera

RCALL
Send

LDI

Temp,'S'

RCALL
Send

LDI

Temp,CR

RCALL
Send

RCALL
Delay1s

LDI

Temp,'P'

; Enable polling mode

RCALL
Send

LDI

Temp,'M'

RCALL
Send

LDI

Temp,' '

RCALL
Send

LDI

Temp,'1'

RCALL
Send

LDI

Temp,CR

RCALL
Send

RCALL
Delay250ms

LDI

Temp,'R'

; Enable raw data output

RCALL
Send

; Disable 'ACK'/'NAK' responses

LDI

Temp,'M'

RCALL
Send

LDI

Temp,' '

RCALL
Send

LDI

Temp,'3'

RCALL
Send

LDI

Temp,CR

RCALL
Send

RCALL
Delay250ms

RET

;******************
;* Line Track *
;******************
; High if black or nothing
; Low if White
LineTrack:

;Check Right Sensor

LDS

Temp,TabTime

INC

Temp

CPI

Temp,10

BREQ
Tab

STS

TabTime,Temp

RCALL
Delay

IN

Temp, ADCH

CPI

Temp, 0b01010000

BRLO
NoObstacle

RCALL
BLOCK

RCALL
Obstacle

NoObstacle:

SBIC
PinD,6

RJMP
RightSeesBlack

;Right Sensor sees White

;Check Left Sensor

SBIC
PinD,7

RJMP
TurnLeft

;Left sees White

RJMP
OffTrack

RightSeesBlack:

;Check Left Sensor

SBIC
PinD,7

RJMP
Straight

;Left sees White

RJMP
TurnRight

TurnLeft:

; Sets Pulse On Period

LDI
Temp, 0x04

LDI Temp2,0x90

LDI Temp3, 0x82

;81

OUT RSERVO_H,Temp

OUT LSERVO_H,Temp

OUT RSERVO_L,Temp2

OUT LSERVO_L,Temp3

CLR PrevIR

RJMP LineTrack

TurnRight:

; Sets Pulse On Period

LDI
Temp, 0x04

LDI Temp2,0x89

LDI Temp3, 0x7D

OUT RSERVO_H,Temp

OUT LSERVO_H,Temp

OUT RSERVO_L,Temp2

OUT LSERVO_L,Temp3

CLR PrevIR

RJMP LineTrack

Straight:

; Sets Pulse On Period

LDI
Temp, 0x04

LDI Temp2,0x89

LDI Temp3, 0x80

OUT RSERVO_H,Temp

OUT LSERVO_H,Temp

OUT RSERVO_L,Temp2

OUT LSERVO_L,Temp3

CLR PrevIR

RJMP LineTrack

Offtrack:

INC

PrevIR

CPI

PrevIR,0xFF

BRNE
LineTrack

CLR

PrevIR

RCALL
Obstacle

;**********COmpares TABCNT*********************
TAB:

LDS

Temp,TABCNT

DEC

Temp

CPI

Temp,3

BREQ
THREE

CPI

Temp,2

BREQ
TOO

CPI

Temp,1

BREQ
ONE

DEBUG:

CPI
Temp,3

BREQ
LED3

LDS

temp3,word
;ADDED

CP

Temp,temp3

BREQ
ItsIt

CLR
Temp

CLR

Temp2

STS
TABCNT,Temp

STS

TABtime,Temp2

RJMP
LineTrack

ONE:

letter
3,1

rjmp
DEBUG

TOO:

Letter
3,2

RJMP
DEBUG

THREE:

Letter
3,3

RJMP
DEBUG

;***
LED3:

SBI

portC,0

LDI

Temp,$01

STS

Sign,Temp

CLR

Temp

;clears both tabcnt and tabtime

STS
TABCNT,Temp

STS
TABtime,Temp

RJMP
LineTrack

;**********Tab_Matches_Destination********************
ItsIt:

LDI
Temp,0b00000000
; Disconnect PWM

OUT
TCCR1A,Temp

RCALL
ClearLCD

letter
4,4

letter
6,5

letter
7,3

letter
7,4

letter
6,9

letter
6,14

letter
6,1

letter
7,4

letter
6,9

letter
6,15

letter
6,14

RET

;******************************
BLOCK:

RCALL
ClearLCD

letter
5,2

letter
6,15

letter
6,1

letter
6,4

letter
10,0

letter
4,2

letter
6,12

letter
6,15

letter
6,3

letter
6,11

RET

;******************
;* Tab IR Int *
;******************
INT1rout:

Letter
3,7

LDS

Temp,Sign

CPI

Temp,1

BREQ
Picture

LDS

Temp,TabCnt

LDS

Temp2,TabTime

INC
Temp

CLR
Temp2

STS
TabCnt,Temp

STS

TabTime,Temp2

;** Causes robot to drift left during interrupt

LDI

Temp, 0x04

LDI
Temp2,0x88

LDI
Temp3, 0x81

OUT
RSERVO_H,Temp

OUT
LSERVO_H,Temp

OUT
RSERVO_L,Temp2

OUT
LSERVO_L,Temp3

;***This loop ensures the robot is off of the tab***

LDI

Delay1, $FF ; Delays for how often to poll position

LDI

Delay2, $FF

LDI

Temp2,
6

MOV
SubDelay1,Delay1

MOV
SubDelay2,Delay2

Looop:

NOP

NOP

NOP

NOP

NOP

NOP

DEC
SubDelay1

BRNE
Looop

MOV
SubDelay1,Delay1

DEC
SubDelay2

BRNE
Looop

MOV

subdelay1,delay1

MOV

subdelay2, delay2

DEC
Temp2

BRNE
Looop

;***

RETI

Picture:

LDI
Temp,0b00000000
; Disconnect PWM

OUT
TCCR1A,Temp

please:

RCALL
Calibrate

; Initializes CMUcam

RCALL
EmptyBuff

; Clears out UART receive buffer

RCALL
GetMean

LDS

Temp,ColorFlag

CPI

Temp,4

; 4 = red

BREQ
Please

CLR

Temp

STS

Sign,Temp

STS

TabCnt,Temp

LDI
Temp,0b11110000
 ; Turn on wheels

OUT
TCCR1A,Temp

LDI

Temp, 0x04

LDI
Temp2,0x89

LDI
Temp3, 0x80

OUT
RSERVO_H,Temp

OUT
LSERVO_H,Temp

OUT
RSERVO_L,Temp2

OUT
LSERVO_L,Temp3

RCALL
Delay250ms

RCall
Delay250ms

RETI

;***********************
;* Bump Switch Int *
;***********************
INT0rout:

RCALL
ClearLCD

letter
4,3

letter
7,2

letter
6,1

letter
7,3

letter
6,8

RCALL
Obstacle

RETI

;*****************
;* Shut Down *
;*****************
Obstacle:

LDI
Temp,0b00000000
; Disconnect PWM

OUT
TCCR1A,Temp

ShutDown:

RJMP
ShutDown

;****************
;* Receive1 *
;****************
Receive1:

SBIS
UCSRA,RXC

RJMP
Receive1

IN

Temp,UDR

STS

S1,Temp

RET

;****************
;* Receive2 *
;****************
Receive2:

SBIS
UCSRA,RXC

RJMP
Receive2

IN

Temp,UDR

STS

S2,Temp

RET

;***************
;* Receive3 *
;***************
Receive3:

SBIS
UCSRA,RXC

RJMP
Receive3

IN

Temp,UDR

STS

R_VALUE,Temp

RET

;****************
;* Receive4 *
;****************
Receive4:

SBIS
UCSRA,RXC

RJMP
Receive4

IN

Temp,UDR

STS

G_VALUE,Temp

RET

;****************
;* Receive5 *
;****************
Receive5:

SBIS
UCSRA,RXC

RJMP
Receive5

IN

Temp,UDR

STS

B_VALUE,Temp

RET

;****************
;* Receive6 *
;****************
Receive6:

SBIS
UCSRA,RXC

RJMP
Receive6

IN

Temp,UDR

STS

Rdev,Temp

RET

;****************
;* Receive7 *
;****************
Receive7:

SBIS
UCSRA,RXC

RJMP
Receive7

IN

Temp,UDR

STS

Gdev,Temp

RET

;****************
;* Receive8 *
;****************
Receive8:

SBIS
UCSRA,RXC

RJMP
Receive8

IN

Temp,UDR

STS

Bdev,Temp

RET

;****************
;* Receive9 *
;****************
Receive9:

SBIS
UCSRA,RXC

RJMP
Receive9

IN

Temp,UDR

STS

S9,Temp

RET

;****************
;* Get Mean *
;****************
GetMean:

LDI

Temp,'G'

; Get mean values

RCALL
Send

LDI

Temp,'M'

RCALL
Send

LDI

Temp,CR

RCALL
Send

RCALL
Receive1

; 255 (decimal)

RCALL
Receive2

; 'S'

RCALL
Receive3

; Red

RCALL
Receive4

; Green

RCALL
Receive5

; Blue

RCALL
Receive6

; Rdev

RCALL
Receive7

; Gdev

RCALL
Receive8

; Bdev

RCALL
Receive9

; ':'

CBI

Portc,0

; Turn off white LEDs for picture

RCALL
Delay1s

; Check if can was red

LDS

Temp,Rdev

LDS

Temp2,Gdev

LDS

Temp3,Bdev

CP

Temp,Temp2

BRGE
NotGreen

RJMP
NotRed

NotGreen:

CP

Temp,Temp3

BRGE
FoundRed

RJMP
FoundBlue

NotRed:

CP

Temp2,Temp3

BRGE
FoundGreen

RJMP
FoundBlue

FoundRed:

RCALL
ClearLCD

letter
5,2

letter
6,5

letter
6,4

RCALL
Delay250ms

SBI

Portc,0

; Strobe White LEDs

RCALL
Delay250ms

CBI

Portc,0

RCALL
Delay250ms

SBI

Portc,0

; Strobe White LEDs

RCALL
Delay250ms

CBI

Portc,0

RCALL
Delay250ms

SBI

Portc,0

; Strobe White LEDs

RCALL
Delay250ms

CBI

Portc,0

RCALL
Delay1s

RCALL
Delay1s

RCALL
Delay1s

RCALL
Delay1s

LDI

Temp,4

sts

ColorFlag,temp

RET

FoundGreen:

SBI

PortC,0

RCALL
ClearLCD

letter
4,7

letter
7,2

letter
6,5

letter
6,5

letter
6,14

CLR
temp

STS

ColorFlag,temp

CBI

PortC,0

RET

FoundBlue:

CBI

PortC,0

CLR
temp

STS

ColorFlag,temp

CBI

PortC,0

RET

;************
;* Send *
;************
Send:

SBIS
UCSRA,UDRE

RJMP
Send

OUT

UDR,Temp

RET

;******************************
;* Emptys out UART Buffer *
;******************************
EmptyBuff:

SBIS
UCSRA,RXC

RET

IN

Temp,UDR

RJMP
EmptyBuff

;***
;* Controlls how often the line track IRs poll *
;***
Delay:

MOV
SubDelay1,Delay1

MOV
SubDelay2,Delay2

Delay_Loop:

NOP

NOP

NOP

NOP

NOP

NOP

DEC
SubDelay1

BRNE
Delay_Loop

MOV
SubDelay1,Delay1

DEC
SubDelay2

BRNE
Delay_Loop

RET

;******************
;* 1sec Delay *
;******************
Delay1s:

; =============================
; 8000000 cycles:
; -----------------------------
; delaying 7999992 cycles:

LDI
Delay1, $48

WGLoOOP0:

LDI

Delay2, $BC

WGLoOOP1:

LDI

Delay3, $C4

WGLoOOP2:

DEC

Delay3

BRNE
WGLoOOP2

DEC
Delay2

BRNE
WGLoOOP1

DEC
Delay1

BRNE
WGLoOOP0

; -----------------------------
; delaying 6 cycles:

LDI
Delay1, $02

WGLoOOP3:

DEC
Delay1

BRNE
WGLoOOP3

; -----------------------------
; delaying 2 cycles:

NOP

NOP
; =============================

RET

;*********************
;* 250msec Delay *
;*********************
Delay250ms:

; =============================
; 1000000 cycles:
; -----------------------------
; delaying 999999 cycles:

LDI
Delay1,$09

WGLOOP00:

LDI
Delay2,$BC

WGLOOP11:

LDI
Delay3,$C4

WGLOOP22:

DEC
Delay3

BRNE
WGLOOP22

DEC
Delay2

BRNE
WGLOOP11

DEC
Delay1

BRNE
WGLOOP00

; -----------------------------
; delaying 1 cycle:

NOP
; =============================
RET

;*************************************
;* Used for the voice chip Delay *
;*************************************
WordDelay:

; =============================
; delay loop generator
; 500000 cycles:
; -----------------------------
; delaying 499995 cycles:

LDI Temp, $0F

WordDelay0:

LDI Temp2, $37

WordDelay1:

LDI Temp3, $C9

WordDelay2:

DEC Temp3

BRNE WordDelay2

DEC Temp2

BRNE WordDelay1

DEC Temp

BRNE WordDelay0

; -----------------------------
; delaying 3 cycles:

LDI Temp, $01

WordDelay3:

DEC Temp

BRNE WordDelay3

; -----------------------------
; delaying 2 cycles:

NOP

NOP
; =============================

RET

;****************
;* Delay 5ms *
;****************
Delay5ms:

; =============================
; delay loop generator
; 40000 cycles:
; -----------------------------
; delaying 39999 cycles:

LDI Delay1,$43

LoopD:

LDI Delay2,$C6

LoopE:

DEC Delay2

BRNE LoopE

DEC Delay1

BRNE LoopD

; -----------------------------
; delaying 1 cycle:

NOP
; =============================

RET

;************
;* Latch *
;************
;Used to Make A Falling Edge
Latch:

SBI

LCD_PORT,4

; set E=1

CBI
LCD_PORT,4

; set E=0

RET

;*****************
;* Clear LCD *
;*****************
ClearLCD:

LDI

LCDReg,0

OUT
LCD_PORT,LCDReg

CBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

LDI
LCDReg,1

OUT
LCD_PORT,LCDReg

CBI
LCD_PORT,5

RCALL
Latch

RCALL
Delay5ms

RET

5V Reg

12V Battery

CMUcam

Bump Switches

Humatsu IRs

Sharp IRs

Voice Activation

 Servos

LCD

uP

Start:

Ask passenger desired destination

Poll for answer

Response not recognized

elsee

Line Track

Check Bump Switch

ON

Stop

OFF

Check AD

If to Close

Stop

Check location

If desired location

ELSE

If Sign

Take Picture

GREEN

RED

PAGE
5

