UNIVERSITY OF FLORIDA

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEL 5666C
INTELLIGENT MACHINES DESIGN LAB

Final Report
Date: 08/10/04
Student Name: Robert Lee
TAs: William Dubel
Max Koessick
Instructors: A.A. Arroyo

E. Schwartz

Subject

IL.
II1.

IV.

VL
VIL
VIIL

IX.

XI.

XIL

TABLE OF CONTENTS

Abstract

Executive Summary

Introduction

Integrated System

a. Figure 1.1

Mobile Platform

a. Figure 1.2a

b. Figure 1.2b

Actuation

Sensors

Behaviors

Experimental Layout and Results

a. Table 1.1

b. Table 1.2

c. Figure 1.3

Conclusions

Documentation

Appendices

a. Code

I ABSTRACT

2 of

10

11

12

12

12

13

13

14

14

II.

The importance of having a good robot design is whether or not it can be
practically feasible, while at the same time resourceful. In the course of
determining basic functions for my robot, first, I had to figure out all of the
possible limitations that could obstruct my goals. However, the biggest
constraints for most peoples’ projects always seem to arrive in the forms of time,
energy and/or money; three of which I have neither of. Therefore, reusing old
parts and implementing pre-built parts seemed the most cost/time effective
method.

The idea of a “Fire-fighting” robot, with the capability of intelligent decision-
making, sparked an interest in me as early as a year ago. Over the course of this
summer semester, my goal is to make this “idea” a practical reality. Many
attempts have been previously made upon this similar concept, and I plan to
conduct improvements where I see fit. My overall goal is to basically develop a
more flexible model that will conduct the same old routines in a more effective
manner.

EXECUTIVE SUMMARY

3 of

II1.

Over the summer (2004), I was part of the IMDL group, directed by Drs. Eric
Schwartz and Antonio Arroyo. I was actually able to design and create an
autonomously moving and “fire-detecting” robot that doused flames (...or
anything in its path). Throughout the summer, I encountered plenty of setbacks
and suffered from quite a few “explosions” (human-error of course). But, that
was all done in the process of learning and at a price ($$$). Additionally, I got the
chance to interface several different hardware platforms, and integrated them into
one package. Prior to this experiment, an application of this type seemed a little
difficult. Now, however, I feel I should and will improve upon this design in the
months ahead. Overall, my robot design functioned “mediocre”. I think it
basically did the job, but nothing else. There was room for several improvements
to be made. First and foremost, was the lack of power and calibration from my
“driving” motors. They were simply not designed for the purpose I had in mind.
Second, the chassis could not provide enough cabinet space for all of the
necessary components to work “error-free”. After these two, there were several
others to follow. In contrast, there were actually some positive things that came
out of this whole project. First, my programming code is pretty much universal,
and I had the opportunity to create some very efficient and useful functions
(assembly language). These can be used in future applications and/or versions of
this project. Also, I got the opportunity to learn about PICs. Actually, these
microprocessors are incredible, and I highly recommend becoming familiar in

their broad range of uses, and their simple register space and instruction set.

INTRODUCTION

4 of

A problem that exists to this day is that people directly interact with fires in the
process of extinguishing them. A large number of injuries and fatalities occur
every year because of this interaction. A solution to this problem is to allow an
intelligent robot to complete this risky task for them. However, due to practical
reasons and particular time constraints (being a student and employed), I will be
limited to a less flexible robot (in terms of its intelligence and ability to navigate

through “rough” environments).

My “Fire-fighting” robot is dubbed “FLAME”; an acronym that stands for: Fire
Locator And Mechanical Extinguisher. The very nature of this robot is pretty
much self-explanatory. It will roam around a small-sized arena and avoid
obstructions in its path, while simultaneously reading its environment for an open
flame. If and when an open flame has been detected, it will try to align itself so an
extinguishing mechanism can be activated. Then, (business as usual) the robot

will continue its search for another flame.

In the course of reading this report, I definitely plan to inform the viewer of the
details in my designing of this autonomous “Fire-fighting” robot. The report is
broken down into several sections regarding the required hardware and software
(code) and experimental results that concluded. A “walk-through” of the steps
and building process will be fully provided to allow for easy duplication and/or
upgrading for future projects. Specifically, these steps include sections from:

Integrated System, Mobile Platform, Actuation, Sensors, Behaviors, and

5 of

Iv.

Experimental Layout/Results. Most likely though, this report will only serve one
purpose: as a reference to the “work-arounds” for many of the problems I

encountered throughout the experiment.

INTEGRATED SYSTEM

The system consists of a set number of routines or patterns to carry out the tasks
of a simple “Fire-fighting” robot. Figure 1.1 shows a general flowchart of the
entire procedure. A run-through of the procedure illustrates a maximum of seven
decision-making blocks to test different types of sensors and drive motors.
Depending on each of their outcomes, different parameters will be set. As a
result, the robot should be able to accomplish its task, and continue in an endless

loop cycle.

Figure 1.1

6 of

Hardware
I'nitializations

"FO RW ARD"
LeftMotor = FW B
RightMotor = FW D.

Read Sensors

Decode
Information

Bum p
Detected?

Pyro
Detected?

W ait for Timeout

"TURN LE

FT/RIGHT"
LoeftMotor= RE

VUEW D .

RightMotor= FW D JREV.

Clear O bstruction
(ehosen distance)

"REVERSE"
LeftMotor =REV
RightMotor = REV.

"TURN LEFT"

LeftMotor = REV.
RightMotor = FW D.

le ft-side

"FORW ARD"
LeftMotor =

right-side

"TURN RIGHT"

LeftMotor = FW D.
RightMotor = REV.

FW D.
RightMotor = FW D.

Toargetw ithin
Range (IR)

yes

"STO P"
LeftMotor =0 FF
RightMotor =0 FF

Activate
Extinguisher

De-activate
Extinguisher

MOBILE PLATFORM

Reposition
Vehicle

7 of

n

0

The chassis to “FLAME” has been built several times, through the use of the T-
tek machine and CAD software. The framework is built from 1/8" inch wood,
and the motors, wheels and tracks can be mounted easily. The entire chassis is
actually quite small, and the guts of it are packed (stuffed) with wires. Basically,
it could have been slightly larger to aid better debugging/testing. At the end of the
semester (3" build), the chassis cabinet had all sorts of wires dangling and
interfering with each other. It did not look very cosmetic at all! Figures 1.2a and

1.2b below, will give you the dimensions of the chassis.

Figure 1.2a

Micdldle Section Top Section

4.0

L]
O

2.4

7.8°

7.0”

3.1

A

50"

Figure 1.2b

8 of

VI.

Sicdle View
S 0

() O

ACTUATION

F.L.A.M.E.’s internals consist of a many components: the chassis,
microcontroller, battery packs, water reservoir and crank. The chassis will have
two tracks for mobility (similar to a tank’s design). Two motors mounted in the
rear will control both tracks independently (to allow for all possible movement).
These motors will drive two wheels, and those wheels will drive their
corresponding tracks. Stationary wheels (placed slightly lower than the “driving
wheels”’) should make clean traction with the surface. The microcontroller and
battery packs are physically located on the rear or the top to prevent water
damage. The water reservoir and crank are fitted to the center of the chassis
(located more towards the front). Three IR cans were mounted on the front. The

risk of water damage to electrical components must definitely be considered.

The majority of my design has probably been in implementing control over the
motors. Originally software control in the microcontroller’s memory would make
it possible to move the chassis, via Pulse Width Modulation. However, after

several motors were stripped due to current overloads, that design had to be

9 of

VII.

scrapped. Basically, the H-Bridge (originally intended for use with these motors),
had to be supplied with at least (10V to 12V) for those chips (LMD18200) to even
operate. A duty cycle could reduce the voltage requirement on the load.

However, the problem was not that the voltage could not be stepped-down. The
problem stemmed from the current that was generating from my power source.

As aresult, an alternate “relay” system (not recommended) was improvised.

Each motor would be connected to a bus-line, where several relay outputs would
be fed into. Voltages on those relays were actually +3.0V (fast-forward), +1.5V
(slow-forward) and -1.5V (slow-reverse). Then, it was basically up to software to
set/clear the necessary port-C bits to enable directions and speeds. Speeds were
basically preset, and only the power-sources could change them. Also, it would
probably be good to include a transition delay period to allow any relays to be shut

down before turning on any others (power-source collision).

SENSORS

The main sensor in detecting fire in a small room will be a “Pyro-Electric” sensor.
Hamamatsu’s “UVTron” is a recommended choice for this purpose. It comes
complete with a bulb and a processor board for filtering pulses. I got the idea to
use this device from a previous students’ “Fire-fighting” robot design. For
application purposes, an interrupt system will sample and record the number of
pulses generated during a period of time (Timer-0). If the number of pulses
exceeds the desired level, then a special register bit will be set (cleared if pulses

generated is insufficient).

10

VIII.

IX.

The only other sensors in my system are the IR cans (Sharp GP2Y0A02YK).
These must be configured with the A/D subsystem on Port-A of my processor.
The analog values can be recorded once the initializations (delay-time needed) are
complete. Then, it is just up to software to enable/disable channels to read from.
In my particular design, I am using three IR cans. Therefore, in code I must set

the correct configuration (for each channel) before reading from any of them.

BEHAVIORS

The central “initial” behavior for my “Fire-fighting” robot is to circle a path while
detecting fire. Then, when a fire has been detected, it should maneuver itself
toward the target (repositioning in the case of going off-course). Finally, when
the target has reached certain proximity, the robot should come to a halt and the
extinguishing system should take over. The robot can accomplish this by setting
or clearing flags in memory with an interrupt system. Significant overhead can be
reduced from this method by limiting the bulk of the code to subroutines from
“main()”. A particular register in memory (Pyro-bit0) was actually used for my
fire detection process. Setting or clearing this register-bit communicates an
“on/off” state, which will allow selected subroutines to be called-up. The entire
code (roughly 1500 including several unused functions) can be viewed in the

Appendix of this report.

EXPERIMENTAL LAYOUT AND RESULTS

11

Typical interface data for my pyro-sensor (Hamamatsu UV Tron) consists of a set
number of pulses, given the proximity of an open flame to the sensor. For
example, a higher number of pulses suggest an open flame is nearer to the sensor,
and a lower number for a farther distance. Actual data is given below for this
device (Table 1.1). Note that the actual number of counted pulses will depend on
the Timer-0 delay time (threshold). The IRs (Sharp GP2Y0A02YK) operated
differently than the pyro-sensor, in that the interrupt system was not relied upon.
The IRs utilized the A/D subsystem (input capture) and gave the proximity of an
object relative to a magnitude. For example, a higher magnitude represented a
“closer” object, and a small magnitude for a “farther” object. This information is
available in Table 1.2. Note that a linear representation of (magnitude vs.
distance) varies, and may become unstable at very close proximities (resulting in a

non-linear curve). This can be viewed in Figure 1.3.

Table 1.1
Degrees UVTron Timer-0 Proximity
from Center (# pulses) Delay time
0 12 1.0s 10”
+/- 45 12 1.0s 10”
+/- 90 11 1.0s 10~
0 12 1.0s 24”
+/- 45 11 1.0s 24”
+/- 90 8 1.0s 24”
0 12 1.0s 72”
+/- 45 11 1.0s 72”

12

+/- 90 7 1.0s 727

Table 1.2
Distance (cm) Voltage (V) Hex value
2 0.70 h’7C
10 2.60 h’209’
20 1.40 h’1A7
40 0.75 h’97°
80 0.50 h’5F°
Figure 1.3
3
25 /A
2
/ —— Analog
1.5 Voltage vs.
1 / Distance
o5 I
0 T T T T T
0 2 10 20 40 80
CONCLUSIONS

Over the course of this semester I have reached two conclusions. One is that my
robot did work. Second is that there is much needed room for improvement.
Much of my problems resulted from incompatibilities with parts. The motors on

my vehicle could definitely be upgraded. They were just not acceptable in order

13

XI.

XII.

to provide a sustained and accurate means of mobility. On the other end, there

was some careless human-error that could have saved me some extra money in the

long run. Iburned quite a few PIC chips, simply by connecting ports incorrectly.

A good bit of advice is to spend some extra time just reviewing a circuit. It will

save time and money in the long run. On a different note, future work on this

application is a most likely consideration. I think that in the spring of 2005, I

could have a much better design functioning to show off at the next media day for

IMDL.

DOCUMENTATION

Programming and Customizing PICmicro Microcontrollers. Predko, Mike.

Edition. McGraw-Hill. ¢.2001.

Online Website: <http://www.microchip.com> . “PIC (16f877/16f877a)

documentation and code examples”.

APPENDICES

Code for this experiment (below):

« 3 3k 3t s s s st sfe e sfe sk s s sk sk sk st st st s sfeshesfe ke sk s ke sk s sk st st st sfe sk shesfesheske sk sk sk sk st st st st sk st sheskeskeske sk ik skok skeoskoskskokok
s

;PROG: "FLAME.asm"
;VERSION: 1.0
;AUTHOR: Robert Lee
;DATE: 08/09/04
;Function:

This code will provide drivers + a set routine for "FLAME ver.1.0".
IRs, an LCD, 1.5-3V motors, and pyro-sensor are included to allow
for a "fire-fighting" robot design. Presently, the code only

14

2nd

allows minimal functioning. Limitations to the design are "mostly"
in the motors and small chassis design. This robot will search for
candle-light, manuever toward the target and then extinguish it
with a water-cannon. Then, it will just idle and wait for "reset".

;Modifications:

; This code is remodified from the original. The original

; had PWM channels enabled, and was optimized for "heavier-duty"
; motors. The present motors in this design (version 1.0), has

; very little tolerance for the current requirements of the

; h-bridge previously fitted. However, in this software design

; relays have been implemented to provide "set" movements.

R ~ (+3.0V,+1.5V).

« 3k 3k ok sk st s st shesfeske sk sk sk sk sk sk sk st sk sk steskeske skl sk sk sk sk sk st sk sk sk sk skeskesk sk sk skosk stk stk skeskoskoskoskok kol siok skok skokokoskoksk
>

#include <f877a.inc> ; processor specific variable definitions

@EEEEEEEEEEEEEEEEEEEEEOREEREEEEEEEEEEEEREEREEEE
CEEEEEEEEEEEEEEEEREEREEOREEREEEREELEEEEEREEREEREE

Z*****VARIABLES*****

TIME H: EQU h"20' ;Timer-0 delay counter (high byte)

TIME _L: EQU h'21' ;Timer-0 delay counter (low byte)
PULSE_H: EQU h'22' ;pyro's pulses (high byte ~ "spill register")
PULSE L: EQU h'23' ;pyro's pulses (low byte)

PYRO: EQU h'24' ;pyro-sensor flag (set=on;clear=off)
TEMP1: EQU h'25' ;

COUNTI: EQU h'26' ;delay-counter value #1

COUNT2: EQU h27' ;delay-counter value #2

COUNTS3: EQU h"28' ;delay-counter value #3

ON: EQU h29' ;display-bit(on) to limit display overhead
OFF: EQU h2A' ;display-bit(off) to limit display overhead
TEMP_H: EQU h'2B' ;

TEMP L: EQU h2C' ;

NUM: EQU h"2D' ;used with "WRITE_ NUM_WORD"
TEMP2: EQU h"2E' ;

AD_COUNTO: EQU h'2F' ;

AD H: EQU h'30' ;A/D value (high byte) ~ used with "WRITE_AD"
AD L: EQU h'31' ;A/D value (low byte) ~ used with "WRITE_AD"
TEMP3: EQU h'32' ;

AD_H_TEMP: EQU h'33' ;A/D value (high byte) ~

AD_L TEMP: EQU h'34' ;A/D value (low byte) ~

AD_BITO: EQU h'35' stest bits for all 3 AD_channels
AD_BITI: EQU h'36' R

AD BIT2: EQU h'37' ;

AD_COUNTI: EQU h'38' ;

AD_COUNT2: EQU h'39' R

PY_COUNT: EQU h'3A' ;

AD TEMP: EQU h'3B' ;

AD L TEMP2: EQU h'3C' ;

@EEEEEEEEEEEEEEEEEEEEEOREEREEEEEEEEEEEEREWEREEEE
CEEEEEEEOEEEEEEEEREEAEEAREEREEEREELEEEEEREEREREE

z*****CONSTANTS*****

TIME _INIT: EQU d'100' ;Timer-0 delay value (both high/low regs)
P_MIN: EQU d2' ;minimum # pulses to set pyro-bit
PY_INIT: EQU d'100'

AD_TMP: EQU ds'

;Motor/Relay "Bit Values":

R 30: EQU 0 ;+3.0V-forward

L 30: EQU 1 ;+3.0V-forward

R _15: EQU 2 ;+1.5V-forward

L _15: EQU 3 ;+1.5V-forward

;R _NI15: EQU 4 ;-1.5V-reverse ;"NOT IMPLEMENTED IN THIS
VERSION 1.0 SOFTWARE"

;L NI1S: EQU 5 ;-1.5V-reverse

15

>
Sk ok ok ok sk ok
,* MAIN * * * % % %

s

MAIN:

;Initializations:

org
goto

org
goto

org

call
call
call
call
call

h'0'
MAIN

h'4'
ISR

h's'

MOTOR_INIT
LCD_INIT
AD_INIT
TIMER_INIT
INTR_INIT

;"RESET VECTOR"

;"INTERRUPT VECTOR"

;"START OF USER-CODE"

;enable Port_C relay control
;enable data-writes to LCD
;enable I/R cans

;enable 'Timer-0' subsystem
;enable global interrupts

;Q@ORAEEEEVWEEAEEWEAEEEREEEREVEEEEAEEAREVEEAEEREAEE@®
REORAEEEREWEEAREMEREACEAREACEREAEEREAEEREAERAREREAEE@®

START:

CHK1:

PY1:

DEBUGI:

RESPONSE 0:

NEXT SEQUENCE"

RESPONSE _1:

call
call
call
call

btfsc
goto
goto

call

call
call
btfsc
goto

call
call
btfsc
goto

call
call
btfsc
goto

goto

call
call
call
btfsc
goto

goto

call
call
call
call
call
btfsc

SPLASH_VER
DELAY 1SEC
CLEAR_HOME
RIGHT 1

PYRO,0
PY1
CHK1

FORWARD 2

AD_CHO
ADO_READ FAR
AD BIT0,0
RESPONSE 0

AD _CHI
ADI_READ
AD _BITI,0
RESPONSE _1

AD_CH2
AD2_READ
AD BIT2,0
RESPONSE 2

DEBUGI

FORWARD 1
AD_CHO
ADO_READ
AD_BIT0,0
DEBUG2

DEBUGI

RIGHT 1
DELAY_TICK
STOP

AD_CHO
ADO_READ FAR
AD_BIT0,0

16

;display general information
;initialize system for pyro-detection
;check pyro-bit for response

;branch when set
;do-nothing if clear

;manuever toward target (once detected)

;check "center-IR" for object

;check "left-IR" for object

;check "right-IR" for object

;continuous "checking" loop

;Bingo! "FOUND TARGET -> PROCEED TO

;Try Again "KEEP ALLIGNING"

RESPONSE 2:

DEBUG2:

DMMMMMMMIMNNINININNINN)))
IDMMMMMMIMNMINIMIMNNIN)))
IDMMIMMDIMMMNIMMNNNIN))

here: goto

goto
goto

call
call
call
call
call
btfsc
goto
goto

call
call
call
goto

here

DEBUG! ;Bingo! "REPEAT ALLIGNMENT PHASE"

RESPONSE 1 ;Try Again "KEEP ALLIGNING"
LEFT |

DELAY_TICK

STOP

AD_CHO

ADO_READ FAR

AD BIT0,0

DEBUGI ;Bingo! "REPEAT ALLIGNMENT PHASE"
RESPONSE 2 :Try Again "KEEP ALLIGNING"
STOP ;stop motors

SPLASH_FOUND ;print result to display
DC_MOTOR ;start "extinguisher" motor

here ;donel!....(for this project)

;Safety Loop (no entry into subroutines)

;QEOEEAEEEEOWEEEEEEEAEEEEEEEEEREEEREOEEREOEREREEEEEE®
;QEEEEEEEEQEEREAEEAEEEEEEEREAEEREAEEREEEEAREEEEAEE@E®

;¥ * *INT. SERVICE ROUTINES* * *

s

ISR:

ISR_PULSE:

done_pb:
inc_pul2:

ISR_TIMERO:

decl:

test2:

dec2:

btfsc
goto

btfsc
goto

goto

bef
incf
btfsc
goto
goto

incf
goto

tstf

skpz
goto
goto

decf
goto

tstf

skpz
goto
goto

INTCON,TOIF ;time-out has occurred for Timer-0 int.
ISR_TIMERO

INTCON,RBIF ;pulse has been detected for Port-B (change) int.
ISR_PULSE

end_isr ;Nevermind...It was nothing!

INTCON,RBIF ;clears RB.interrupt flag
PULSE L sincrements the counter (pulses)
STATUS,Z
inc_pul2
end_isr

PULSE H
done_pb

TIME L ;check if TIMEL is 'zero' or not

;if not zero, then decrement
decl ;otherwise skip the 'goto’
test2

TIME_L,F
end_timer

TIME_H

dec2
pulse out ;if both registers are 'clear', then pulse!

17

decf TIME_H,F
movlw TIME_INIT
movwf TIME L

goto end_timer
pulse_out:
movlw P_MIN ;check if pulse-count is great enough
subwf PULSE_L,W
btfss STATUS,C ;if negative, then output; otherwise skip
goto not_met
;**********************************
bsf PYRO,0 ;SET THE 'PYRO' BIT (ON)
Sk ook R ol ok
goto default
not_met:
;**********************************
bef PYRO,0 ;CLEAR THE 'PYRO' BIT (OFF)
;**********************************
default:
banksel PORTD
clrf PULSE L ;clear pulse count
clrf PULSE H
movlw TIME_INIT ;(140 clocks)
movwf TIME L
movwf TIME H ;re-initialize timer registers
end_timer:
bef INTCON, TOIF ;clear Timer-0 int. flag
goto end_isr
end_isr:
retfie ;SERVICES ROUTINES ARE
COMPLETE!!!

;QEROROEEEEWEEEEOEREEEEREEEXEROEEEEOEEXEEEREAEEREAEE@®
QEOROEEEEQEEREOEEAEEEREEEREROEEEEAOEEREAREAREEEAEE@E®

¢ % % ¥ *SUBROUTINES* * * * *

5

FORWARD 2: ;+3.0V to motors (forward motion)

banksel PORTC

« 3k s sk st sk ok sk sk sk sk sk sk sk sk sk sk stk skokok ok skokok skokoskk
s

bCf PORTC,R_15 sturn-off +1.5V
bCf PORTC,L 15
call DELAY_ISEC ;TRANSITION...(needed!!!)
bSf PORTC,R_30 sturn-on +3.0V
bSf PORTC,L_30
;*********************************
return
FORWARD 1: ;+1.5V to motors (forward motion)

banksel PORTC

« 3k sk sk sk sk sk sk ke sk sk sk sk sk sk skl sk sk sk stk sk kol stk sk skok skokoskk
>

bCf PORTC,R 30 sturn-off +3.0V
bCf PORTC,L 30

call DELAY ISEC ;TRANSITION.. (needed!!!)
bSf PORTC,R_15 sturn-on +1.5V
bSf PORTC,L_15

etttk sk stk stk skl kR R skl R sk R koK
5

return

18

STOP: ;0V to motors (no movement)
banksel PORTC
;*********************************
bCf PORTC,L 30
bCf PORTC,R 30
bCf PORTC,L 15
bCf PORTC,R 15
;*********************************
return
LEFT 1: ;+1.5V to motors (left direction)
banksel PORTC
;*********************************
bCf PORTC,R 30
bCf PORTC,L 30
call DELAY ISEC
bSf PORTC,R 15
bCf PORTC,L 15
;*********************************
return
RIGHT _1:;+1.5V to motors (right direction)
banksel PORTC
;*********************************
bCf PORTC,R 30
bCf PORTC,L 30
call DELAY_ISEC
bCf PORTC,R_15
bSf PORTC,L 15
;********************************* -
return
LEFT 2: ;+3.0V to motors (left direction)
banksel PORTC
Sk okl Rk ok ook
bCf PORTC,R 15
bCf PORTC,L_15
call DELAY ISEC
bSf PORTC,R 30
bCf PORTC,L 30
;*********************************
return
RIGHT 2:;+3.0V to motors (right direction)
banksel PORTC
;*********************************
bCf PORTC,R 15
bCf PORTC,L_15
call DELAY_ISEC
bCf PORTC,R 30
bSf PORTC,L 30

etttk sk stk stk skl kR R skl R sk R koK
5

return

19

sturn everything "off"

sturn-off +3.0V

;TRANSITION...(needed!!!)

sturn-on +1.5V

sturn-off +3.0V

;TRANSITION...(needed!!!)

sturn-on +1.5V

sturn-on +1.5V

;TRANSITION...(needed!!!)

sturn-on +1.5V

sturn-on +1.5V

;TRANSITION...(needed!!!)

sturn-on +1.5V

;QEOREEEEEOEEEEEEEAEEEEEEEEEREEEEEVEEEEOEREREEEEEE®
;QEEEEEEEEQEEREAEEAEEEEEAEEREEEEREVEEREEEEREEEEEE@E®

;set "go-bit" to begin the

;wait for "complete-flag" to be set

;move A/D result into " WREG'

:RESULT(HIGH) for "WRITE_AD"

sresult for testing distance of IR to target (2

ADO_READ: ;Reads A/D-bit0 (SHORT DISTANCE) -> sets/clears bit accordingly
banksel PORTA
bsf ADCONO0,GO_DONE
conversion
ad_wait0:
btfsc ADCONO0,GO_DONE
goto ad_wait0 ;....then proceed.
BANKSEL TRISC
movfw ADRESL
BANKSEL PORTC
movwf AD L ;RESULT(LOW)
movwf AD L _TEMP
movfw ADRESH
andlw b'00000011"
movwf AD H
subroutine
movwf AD H TEMP
= 4 inches)

« 3k 3k ot sk st s st she e sk sk sk sk sk sk sk sk st sk st skeskeske ksl sk skosk sk sk stk stk stttk sk sk ik skok stk stk skokokoskokokokok kok sk
>

; "USE FOR DEBUGGING PURPOSES - ONLY!"

call WRITE_AD

s =
« 3 3 3 s st s st sfe e sfe sk s s s sk sk sk st st st s sfe sk she ke s ke sk e sk sk st st she st sheskesfesfe sk sk sk sk sk sk st st st st sk sfeskeskoskokoskok kol ok
s

movlw h'2'

subwf AD_H TEMP
skpc
goto bad_dist0
goto good_dist0
bad_dist0:
bCf AD_BITO0,0
goto done_a0
good_dist0:
bSf AD_BIT0,0

B/C ALL CONDITIONS ARE TRUE!

done_a0:
return

ADO_READ FAR:

banksel PORTA
bsf ADCONO0,GO_DONE
conversion
ad_waitOfar:
btfsc ADCONO0,GO_DONE
goto ad_waitOfar
BANKSEL TRISC
movfw ADRESL
BANKSEL PORTC
movwf AD L
movwf AD L TEMP
movfw ADRESH
andlw b'00000011'
movwf AD H
subroutine
movwf AD_H TEMP
= 4 inches)

stttk sk skl R stk kol kR sk sk R sk sk ol R Rk sk R stk sk s R stk skl Rk sk sk R sk sk ook
5

20

;write result to LCD

;OUTPUT-BIT IS NOW SET,

;Reads A/D-bit0 (LONG DISTANCE) -> sets/clears bit accordingly

;set "go-bit" to begin the

;wait for "complete-flag" to be set
;....then proceed.

;move A/D result into 'WREG'

;:RESULT(LOW)

;RESULT(HIGH) for "WRITE_AD"

sresult for testing distance of IR to target (2

; "USE FOR DEBUGGING PURPOSES - ONLY!"

; call WRITE_AD ;write result to LCD
;**
movlw h'l'
subwf AD_H_TEMP
skpc
goto next_far
goto good_distOfar
next_far:
movlw h'50' ;DEBUGGER-USE ONLY!!!
subwf AD_L TEMP
skpc
goto bad_distOfar
goto good_distOfar
bad_distOfar:
bCf AD_BITO0,0
goto done_aOfar
good_distOfar:
bSt AD BIT0,0 ;OUTPUT-BIT IS NOW SET,
B/C ALL CONDITIONS ARE TRUE!
done_aOfar:
return
AD1_READ: ;Reads A/D-bitl (LEFT) -> sets/clears bit accordingly
banksel PORTA
bsf ADCONO0,GO_DONE ;set "go-bit" to begin the
conversion
ad_waitl:
btfsc ADCONO0,GO_DONE ;wait for "complete-flag" to be set
goto ad_waitl ;....then proceed.
BANKSEL TRISC
movfw ADRESL ;move A/D result into ' WREG'
BANKSEL PORTC
movwf AD L ;RESULT(LOW)
movwf AD L TEMP
movfw ADRESH
andlw b'00000011"
movwf AD H ;:RESULT(HIGH) for "WRITE_AD"
subroutine
movwf AD H TEMP ;result for testing distance of IR to target (2
= 4 inches)

« 3k 3 ot s st s s she e sk sk sk ke sk sk sk sk st sk st sk skeske ke sk skl sk sk sk sk st st st sk skeskeskeske sk sl ko skok stk stk skoskokoskokokoskok skok ok
s

; "USE FOR DEBUGGING PURPOSES - ONLY!"

call

s =
« 3 3 3t s st sfe s sfe s sfe sk sk sk sk sk sk sk st st s s sfe sk she sk s ke sk s sk st st st st st skeskesfeske sk sk sk sk st sk st st st st sk skeskeoskoskok skok skok ok
s

movlw
subwf
skpc
goto
goto

next_1:

; movlw
MOVLW
subwf
skpc
goto
goto

bad distl:

WRITE_AD
h'l'

AD_H TEMP
next 1

good_distl

h'1o'
H'50"
AD_L TEMP

bad_distl
good_distl

21

;write result to LCD

;DEBUGGER-USE ONLY!!!

bCf AD BIT1,0

;OUTPUT-BIT IS NOW SET,

;set "go-bit" to begin the

;wait for "complete-flag" to be set

;move A/D result into ' WREG'

;:RESULT(LOW)

;RESULT(HIGH) for "WRITE_AD"

;result for testing distance of IR to target (2

goto done_al
good_distl:
bSf AD_BIT1,0
B/C ALL CONDITIONS ARE TRUE!
done_al:
return
AD2 READ: ;Reads A/D-bit2 (RIGHT) -> sets/clears bit accordingly
banksel PORTA
bsf ADCONO0,GO_DONE
conversion
ad_wait2:
btfsc ADCONO0,GO_DONE
goto ad_wait2 ;....then proceed.
BANKSEL TRISC
moviw ADRESL
BANKSEL PORTC
movwf AD L
movwf AD L TEMP
movfw ADRESH
andlw b'00000011"
movwf AD H
subroutine
movwf AD H_TEMP
= 4 inches)

« 3k s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk st sk stk sk sk sk sk skosk stk sk stk skokosk stk skok skoskokskokok skokskokoek
s

; "USE FOR DEBUGGING PURPOSES - ONLY!"

call WRITE_AD

> A
« 3 sk sk sk sk sk sk e sk sk sk sk sk sk sk sk sk sk sk stk sk sk sk sk sk sk skesk skeosk sk skl sk sk sk stk sk stk stk sk stk skok sk skokskokok skokskoksk
B

movlw h'l’

subwf AD_H_TEMP
skpc
goto next_2
goto good_dist2
next_2:
; movlw h'10'
MOVLW H'50'
subwf AD L TEMP
skpc
goto bad_dist2
goto good_dist2
bad_dist2:
bCf AD_BIT2,0
goto done_a2
good_dist2:
bSf AD_BIT2,0
B/C ALL CONDITIONS ARE TRUE!
done a2:
return
DC_MOTOR: ;Drives "Extinguisher" motor for a few seconds
banksel PORTC
bsf PORTC,5
call DELAY ISEC
call DELAY_ISEC
bef PORTC,5
call DELAY_ISEC

22

;write result to LCD

;DEBUGGER-USE ONLY!!!

;OUTPUT-BIT IS NOW SET,

return

MOTOR_INIT: ;Initialization of PORTC (motor bits)
banksel TRISC
clrf TRISC
banksel PORTC
movlw PY_INIT
movwf PY COUNT
return

;PortC will be outputs for "motor relays"

AD_INIT: ;Initialization of PORTA + A/D subsystem (default=channel0)

banksel TRISA
movlw b'II111111"
movwf TRISA ;configure PortA = "analog input" (low-byte)
movlw b'10000010'
movwf ADCONI
banksel PORTA
clrf AD_BIT0
clrf AD_BIT1
clrf AD_BIT2
movlw d2' ;initialize the pulse-count for A/D's
movwf AD COUNTO
movwf AD COUNTI1
movwf AD_COUNT2
movlw b'10000001" ;INITIALIZE A/D PORT-0
;other A/D ports can be initiated
elsewhere in "main()"
movwf ADCONO ;configure A/D operation
call DELAY_TICK ;short delay (for boot-up)
return
AD_CHO: ;Selects A/D - (channel 0)
banksel ADCONO
bef ADCONO,CHS2
bef ADCONO,CHS1
bef ADCONO,CHS0
call DELAY_TICK
return
AD_CHI: ;Selects A/D - (channel 1)
banksel ADCONO
bef ADCONO,CHS2
bef ADCONO,CHS1
bsf ADCONO,CHS0
call DELAY_TICK
return

23

AD_CH2: ;Selects A/D - (channel 2)

banksel ADCONO

bef ADCONO,CHS2

bsf ADCONO,CHS1

bef ADCONO,CHSO0

call DELAY_TICK

return
TIMER_INIT: ;Initializes the Timer-0 Subsystem

banksel PORTC

movlw TIME_INIT ;(140 clocks)

movwf TIME L

movwf TIME_H ;TIME_H * TIME_L = 140”2 = (19600
clocks)

banksel OPTION_REG

bsf OPTION_REG,PS0O ;assign prescalar value (~2 seconds)

bsf OPTION_REG,PS1

bsf OPTION_REG,PS2

bef OPTION_REG,TOCS sinternal clock cycles

bsf OPTION_REG,PSA ;disables prescalar for Timer-0

bef INTCON,TOIF ;pre-initialize TO-flag to zero

bsf INTCON,TOIE ;enable Timer-0 system

return
INTR_INIT: ;Initializes/Enables all interrupt systems

banksel TRISB

movlw b'10000001' ;PortB (7:0) = "inputs"

movwf TRISB

bef OPTION_REG,INTEDG ;(cleared) ints. to 'falling-edge’

banksel PORTB

clrf PULSE L

clrf PULSE H

clrf PYRO

bef ON,h'0’ ;clear 'ON' (default)

bef OFF,h'0" ;clear 'OFF' (default)

bsf INTCON,INTE ;enable the RBO/INT external interrupt

bef INTCON,INTF ;ensures that no external interrupt occurred
yet

bsf INTCON,RBIE ;enable Port-B's interrupt system

bef INTCON,RBIF ;ensures that no PORTB interrupts occurred
yet

bsf INTCON,GIE ;ENABLE ALL GLOBAL INTERRUPTS!

return
LCD_INIT: ;Initializes the LCD for 4-bit data format

banksel TRISD ;Switch to BANK-1

clrf TRISD ;Initialize Ports (D&C) to "OUTPUT"

banksel PORTD ;Switch to BANK-0

movlw h'00' ;Initialize(RS,RW,ECLK == 0)

movwf PORTD

24

WRITE_NUM_WORD:

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

return

;Writes

movwf
movwf
swapf

movlw
call

movfw
andlw
movwf
call

movwf
bsf
bsf
bef
call

movfw
movwf
bsf
bsf
bef
call

movfw
andlw
movwf
call

movwf
bsf
bsf
bef
call

movfw
movwf
bsf
bsf
bef
call

movlw
call
movlw
call

h'33'
WRITE_COMM

h'32'
WRITE_COMM
h28'
WRITE_COMM
h'ocC'
WRITE_COMM

h'01'
WRITE_COMM

;4-bit mode (enable), part 1
;COMMAND ($33)

;4-bit mode (enable), part_2
;COMMAND ($32)

;2 rows for 4-bit data,(small)
;COMMAND ($28)

;display(on),cursor and blink(off)
;COMMAND ($0F)

;clear display, cursor to home
;COMMAND ($01)

a "double" number to the LCD

TEMP L
TEMP_H
TEMP_H

h'CO'
WRITE_COMM

TEMP_H
h'OF'

NUM
NUM_CHECK

PORTD
PORTD,4
PORTD,6
PORTD,6
DELAY X

TEMP2
PORTD
PORTD,4
PORTD,6
PORTD,6
DELAY X

TEMP L
h'OF'

NUM
NUM_CHECK

PORTD
PORTD,4
PORTD,6
PORTD,6
DELAY X

TEMP2

PORTD
PORTD.4
PORTD,6
PORTD,6

DELAY X

n'10'
WRITE_COMM
n'10'
WRITE_COMM

25

;save data to RAM

;LCD cursor to second line

;check which character to output

;latch data to LCD

;short delay

;return original value to WREG
;place data on PORTD bus

;short delay

;check which character to output

;latch data to LCD

;short delay

;return original value to WREG
;place data on PORTD bus

;short delay

scursor shift left (non-destructive)

scursor shift left (non-destructive)

return

NUM_CHECK: ;Useful function for deciding the ASCII format for "WRITE_NUM_WORD"
chk 0: bef STATUS,Z
movfw NUM
sublw h'o' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 1

movlw h'0'
movwf TEMP3

goto set 3
chk 1: bef STATUS,Z
movfw NUM
sublw h'1’ ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 2

movlw h'l’
movwf TEMP3

goto set 3
chk 2: bef STATUS,Z
movfw ~ NUM
sublw h'2' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 3

movlw h'2'
movwf TEMP3

goto set 3
chk 3: bef STATUS,Z
movfw ~ NUM
sublw h'3' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 4

movlw h'3'
movwf TEMP3

goto set 3
chk 4: bef STATUS,Z
movfw ~ NUM
sublw h'4' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 5

movlw h'4'
movwf TEMP3

goto set 3
chk 5: bef STATUS,Z
movfw NUM
sublw h's' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 6

movlw h's'
movwf TEMP3

goto set 3
chk 6: bef STATUS,Z
movfw NUM
sublw h'e' ;Check for '0'
btfss STATUS,Z ;Check the Zero-bit for "a zero number"
goto chk 7

26

chk 7:

chk 8:

chk 9:

chk a:

chk b:

chk c:

chk d:

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw
btfss
goto

movlw
movwf
goto

bef
movfw
sublw

h'6'
TEMP3
set 3

NUM
h'7'

STATUS,Z

;Check for '0'

STATUS,Z ;Check the Zero-bit for "a zero number"

chk 8

h'7'
TEMP3
set 3

NUM
hV8V

STATUS,Z

;Check for '0'

STATUS,Z ;Check the Zero-bit for "a zero number"

chk 9

h'g'
TEMP3
set 3

NUM
h'9'

STATUS,Z

chk_a

h'9'
TEMP3
set 3

NUM
h'A’

STATUS,Z

chk b

h'1
TEMP3
set 4

NUM
h'B'

STATUS,Z

chk_c

h'2'
TEMP3
set_4

NUM
h'C'

STATUS,Z

chk d

h'3'
TEMP3
set_4

NUM
h'D'

27

STATUS,Z

;Check for '0'
;Check the Zero-bit for "a zero number"

STATUS,Z

;Check for 'A’
;Check the Zero-bit for "a zero number"

STATUS,Z

;Check for 'B'

STATUS,Z

;Check for 'C'

STATUS,Z

;Check for 'D'

btfss STATUS,Z
goto chk e

movlw h'4'
movwf TEMP3

goto set_4
chk e:
bef STATUS,Z
moviw ~ NUM
sublw h'E' ;Check for 'E'
btfss STATUS,Z
goto chk f
movlw h'S'
movwf TEMP3
goto set_4
chk f:
bef STATUS,Z
moviw NUM
sublw h'F' ;Check for 'F'
btfss STATUS,Z
goto set 3
movlw h'¢'
movwf TEMP3
goto set_4
set_3: movlw h'3'
goto done_num
set_4: movlw h'4'
goto done_num
done num:
return

WRITE_COMM: ;Writes commands to the LCD

banksel PORTD
movwf TEMPI ;saved in location #1

swapf TEMP1,W

andlw h'OF'

movwf PORTD

bsf PORTD,6

bef PORTD,6 stoggle PORTD-7; (E-clk)
call DELAY X ;short delay

movfw TEMPI1

andlw h'OF'
movwf PORTD
bsf PORTD,6
bef PORTD,6
call DELAY X ;short delay
return
WRITE_DATA: ;Writes data to the LCD

banksel PORTD
movwf TEMPI ;saved in location #1

swapf TEMP1,W

andlw h'OF'
movwf PORTD

28

bsf PORTD,4

bsf PORTD,6
bef PORTD,6 ;toggle PORTD-7; (E-clk)
call DELAY X ;short delay

movfw TEMPI

andlw h'OF'
movwf PORTD
bsf PORTD,4
bsf PORTD,6
bef PORTD,6
call DELAY X ;short delay
return
WRITE_AD: ;Writes the A/D value (word-length) to the LCD

banksel PORTD

movlw h'02' scursor to home
call WRITE_COMM

moviw AD H

movwf TEMP H ;save data to RAM
movwf TEMP_L

swapf TEMP_H

movfw TEMP H

andlw h'OF'

movwf NUM

call NUM_CHECK

movwf PORTD

bsf PORTD,4

bsf PORTD,6

bef PORTD,6

call DELAY_X ;short delay
movfw TEMP3 ;return original value to WREG
movwf PORTD ;place data on PORTD bus
bsf PORTD,4

bsf PORTD,6

bef PORTD,6

call DELAY X ;short delay

movfw TEMP_L

andlw h'OF'

movwf NUM

call NUM_CHECK

movwf PORTD

bsf PORTD,4

bsf PORTD,6

bef PORTD,6

call DELAY X ;short delay
movfw TEMP3 ;return original value to WREG
movwf PORTD ;place data on PORTD bus
bsf PORTD,4

bsf PORTD,6

bef PORTD,6

call DELAY X ;short delay

9939935555555595

movfw AD L

movwf TEMP H ;save data to RAM

29

movwf
swapf

movfw
andlw
movwf
call

movwf
bsf
bsf
bef
call

movfw
movwf
bsf
bsf
bef
call

movfw
andlw
movwf
call

movwf
bsf
bsf
bef
call

movfw
movwf
bsf
bsf
bef
call

movlw
call
movlw
call
movlw
call
movlw
call

return

DELAY_X:

TEMP L
TEMP_H

TEMP_H
h'OF"

NUM
NUM_CHECK

PORTD
PORTD,4
PORTD,6
PORTD,6
DELAY X

TEMP3
PORTD
PORTD,4
PORTD,6
PORTD,6
DELAY X

TEMP L
h'OF'

NUM
NUM_CHECK

PORTD
PORTD,4
PORTD,6
PORTD,6

DELAY X

TEMP3

PORTD
PORTD 4
PORTD,6
PORTD,6

DELAY X

n'10'
WRITE_COMM
n'10'
WRITE_COMM
n'10'
WRITE_COMM
h'10'
WRITE_COMM

« 3k s sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk skoskok sk sk kol skokok skokskokok skokskok
s

; LOOP TIME = (50*50*30) = 75,000 clock cycles (15ms)

; ECLK =[20 MHz]
; MCLK = [5 MHz]

- 3k sk sk sk sk sk sk ik sk sk sk sk sk sk sk sk sk sk sk sk sk sk skl sk sk sk stk skeokok skokskokok skokskok
>

movlw
movwf
movwf
movlw
movwf

Cl: decfsz
goto
movlw
movwf

d's0'
COUNT1
COUNT2
d'30'
COUNT3

COUNT1
Cl

d's0'
COUNT1

30

;short delay

;return original value to WREG
;place data on PORTD bus

;short delay

;short delay

sreturn original value to WREG
;place data on PORTD bus

;short delay

scursor shift left (non-destructive)
scursor shift left (non-destructive)
seursor shift left (non-destructive)

scursor shift left (non-destructive)

;short delay function for "hardware boot-ups"

;initialize Counter #1 to d'255'
;initialize Counter #2 to d'255'

;initialize Counter #3 to (USER DEFINED)

;decrement Counter #1 until "time out"

;(Refill Counter #1)

C2: decfsz COUNT2
goto Cl

occurs
movlw d's50'
movwf COUNT2

C3: decfsz COUNT3
goto Cl

occurs
return

DELAY_1SEC: ;delay function = "roughly 1 second"

« 3k 3 ot sk st s s she e sk sk sk sk sk sk sk sk st sk sk sfeskesk sk sk skok sk sk skokoskoskokoskokokskok
s

; LOOP TIME = (13673) = 5/2 Million clock cycles (1s)
; ECLK = [20 MHz]
; MCLK = [5 MHz]

« 3 3k st s s s s sfe e sk sk sk sk sk sk sk st st st sk sfeskeskeskeske skl ik sk sk skoskoskoskokokokokokok
s

movlw d'136'
movwf COUNTI1
movwf COUNT2
movlw d'136'
movwf COUNT3
C4: decfsz COUNTI1
goto C4
movlw d'136'
movwf COUNTI
C5: decfsz COUNT2
goto C4
occurs
movlw d'136'
movwf COUNT2
Ceé: decfsz COUNT3
goto C4
occurs
return
DELAY_TICK: ;short delay function

« 3k s sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk stk skoskok sk sk skokoskokok skokskokok skokskok
s

; LOOP TIME = (y=x"3) = 250,000 clock cycles (10ms)
; ECLK =[20 MHz]
; MCLK = [5 MHz]*[50ms] = 250,000

- 3k sk sk sk sk sk sk ik sk sk sk sk sk sk sk sk sk sk sk sk sk sk skl stk sk stk skeokokoskoko sk skok skokskok
>

movlw d'60'
movwf COUNTI
movwf COUNT2
movwf COUNT3
C7: decfsz COUNTI1
goto C7
movlw d'60'
movwf COUNTI1
C8: decfsz COUNT2
goto C7
occurs
movlw d'60'
movwf COUNT2
C9: decfsz COUNT3
goto C7
occurs
return

31

;decrement Counter #2 until "time out" occurs
;Loop back to "START" until "time out"

;(Refill Counter #2)
;decrement Counter #3 until "time out" occurs
;Loop back to "START" until "time out"

....(or so!)

;initialize Counter #1 to d'255'
;initialize Counter #2 to d'255'

;initialize Counter #3 to (USER DEFINED)

;decrement Counter #1 until "time out"

s(Refill Counter #1)
;decrement Counter #2 until "time out" occurs
;Loop back to "START" until "time out"

;(Refill Counter #2)
;decrement Counter #3 until "time out" occurs
;Loop back to "START" until "time out"

;initialize Counter #1 to d'255'
;initialize Counter #2 to d'255'
;initialize Counter #3 to (USER DEFINED)

;decrement Counter #1 until "time out"

;(Refill Counter #1)
;decrement Counter #2 until "time out" occurs
;Loop back to "START" until "time out"

;(Refill Counter #2)
;decrement Counter #3 until "time out" occurs
;Loop back to "START" until "time out"

SPLASH_VER:

;displays general version/author information

banksel

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call
movlw

call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw

PORTD

o
WRITE_DATA

e
WRITE_DATA

" A "
WRITE_DATA

HM"
WRITE_DATA

"En
WRITE_DATA

non

WRITE_DATA
" (n
WRITE_DATA

"

WRITE_DATA

nan

e
WRITE_DATA

T
WRITE_DATA

" 1 "
WRITE_DATA

WRITE_DATA

o
WRITE_DATA

o

WRITE_DATA

h'Co'
WRITE_COMM

Hb "
WRITE_DATA

nyn
WRITE_DATA

WRITE_DATA

"o

WRITE_DATA

R
WRITE_DATA

WRITE_DATA

n EH
WRITE_DATA

32

;move cursor to beginning of second row

SPLASH_ON:

SPLASH_OFF:

call

movlw
call

movlw
call

movlw
call

return

WRITE_DATA

%l
WRITE_DATA

g
WRITE_DATA

n EH
WRITE_DATA

;displays "on" to the LCD

banksel

btfsc
goto

movlw
call

movlw
call

movlw
call
movlw
call
movlw
call

movlw
call
movlw
call
movlw
call

bsf
bef

return

PORTD
ON,h'0'
end_on
h'02'
WRITE_COMM
h'Co'
WRITE_COMM
non
WRITE_DATA
it
WRITE_DATA
WRITE_DATA
h'10'
WRITE_COMM
h'10'
WRITE_COMM
h'10'
WRITE_COMM
ON,h'0'
OFF,h'0’

;displays "off" to the LCD

banksel

btfsc
goto

movlw
call

movlw
call

movlw
call
movlw
call
movlw
call

PORTD

OFF,h'0’
end_off

h'02'
WRITE_COMM

h'CO'
WRITE_COMM

no"
WRITE_DATA
" f“
WRITE_DATA
n Fl
WRITE_DATA

33

;skip procedure if output already 'exists'

,mMove cursor home

;move cursor to beginning of second row

seursor shift left (non-destructive)
seursor shift left (non-destructive)
seursor shift left (non-destructive)

;set 'ON'
;clear 'CLEAR'

;skip procedure if output already 'exists'

,mMove cursor home

;move cursor to beginning of second row

end off:

SPLASH_FOUND:

SPLASH_CLOSE:

SPLASH_FAR:

movlw
call
movlw
call
movlw
call

bef
bsf

return

h'10'
WRITE_COMM
h'10'
WRITE_COMM
h'10'
WRITE_COMM

ON,h'0’
OFF,h'0’

;displays "found" to the LCD

banksel

movlw
call

movlw
call
movlw
call
movlw
call
movlw
call
movlw
call

bef
bef

return

PORTD

h'Co'
WRITE_COMM

||FH
WRITE_DATA
HO "
WRITE_DATA
"
WRITE_DATA
ENG
WRITE_DATA
"
WRITE_DATA

ON,h'0'
OFF,h'0’

;displays "close" to the LCD

banksel

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

movlw
call

return

PORTD
h'co'
WRITE_COMM

" C n
WRITE_DATA

"o

WRITE_DATA

non

WRITE_DATA

non

WRITE_DATA

"o

WRITE_DATA

;displays "far" to the LCD

banksel

movlw

PORTD

h'Co’

34

scursor shift left (non-destructive)
seursor shift left (non-destructive)

seursor shift left (non-destructive)

;clear 'ON'
;set 'OFF'

;move cursor to beginning of second row

;clear 'ON'
;clear 'OFF'

;move cursor to beginning of second row

;move cursor to beginning of second row

call WRITE_COMM
SN T
call WRITE_DATA
movlw "
call WRITE_DATA
movlw "
call WRITE DATA
ettt et e
call WRITE DATA
SN I
call WRITE_DATA
return
PRINT_ADO: ;displays "AD-0" to the LCD
banksel PORTD
movlw h'o1'
call WRITE_COMM
movlw "A"
call WRITE_DATA
movlw "D"
call WRITE_DATA
movlw "
call WRITE _DATA
movlw "o"
call WRITE DATA
RN —
PRINT _ADI: ;displays "AD-1" to the LCD
banksel PORTD
movlw h'o1'
call WRITE_COMM
movlw "A"
call WRITE_DATA
movlw "D"
call WRITE_DATA
movlw "
call WRITE_DATA
movlw "
call WRITE DATA
et ot
PRINT_AD2: ;displays "AD-2" to the LCD
banksel PORTD
movlw h'01'
call WRITE_COMM
movlw "A"

35

;move cursor home

,mMove cursor home

;move cursor home

CLEAR_HOME:

SPLASH_FIRE:

call
movlw
call
movlw
call
movlw
call

return

;clears the LCD and moves the cursor to line-1(to the left)

banksel

movlw
call

return

YVISITEiDATA
V\I/)RITEiDATA
V;/RITE_DATA
V%’RITE_DATA

PORTD

h'or'
WRITE_COMM

;displays "fire" to the LCD

banksel

movlw
call

movlw
call
movlw
call
movlw
call
movlw
call

return

END

PORTD

h'01'
WRITE_COMM

YS"RITE_DATA
Y{/EfJTEiDATA
Y\I}E{ITEiDATA
V\];RITEiDATA

36

,move cursor home

,move cursor home

;no more code beyond this point!

