University of Florida

Department of Electrical and Computer Engineering

EEL 5666

Intelligent Machines Design Laboratory

Special Sensor Report

CMUCam

Kaveh Nowroozi

July 6, 2004

TAs: Max Koessick, William Dubel

Professors: A. Antonio Arroyo, Eric M. Schwartz

Introduction:
T.o.P.S.o.R. is a toy picking up and sorting robot. In order to accomplish this task, a method of color distinction had to be achieved. Although the CMUCam is not the best decision in color detection and differentiation, it was successful in differentiating between red, green and blue pretty easily. After many hours of tinkering, it was determined that these three colors would be used for the ‘toys’ in demonstration. In order to detect these colors, the ‘get mean’ function of the camera was used to determine the mean of colors present in the selected window of the camera. If a significant amount of one color more than others is present, the camera will set the appropriate variable. The code can be seen at the end of this report.

CMUCam:
Assembling the camera from the kit was very easy although there is not very good documentation on the assembly, only two pictures. The core of the robot is the AtMega128-Dev board from Progressive, which posed a problem for me while trying to interface the camera. When connected to a PC (camera shots in Figures 1 and 2), both the CMUCam and the main board worked correctly at 115200bps with 8 bit data, 1 start/stop bit, no parity and no flow control. When the camera was connected to the main board, it did not work. After reviewing the board documentation (after many hours of software debugging), it was found that the Progressive PCB was incorrectly built. As shown below in Figure 3. T1Out from the RS232 controller maps to pin 2 on the DB9 port and R2In maps to pin 3. These two connections are reverse from what they should be to interface with the camera. After constructing a cable with these wires reversed, the camera successfully sent data to the CPU. After a ‘gm’ (get mean) command is sent to the camera, it returns a decimal value for red, green, blue, and standards deviations for each of these colors. By testing the values returned from the camera, code was constructed to determine the closest color. 
[image: image1.jpg]                 [image: image2.jpg]
Figure 1: Cam shot of me                                 Figure 2: Whiteboard message

[image: image3.jpg]
Figure 3: PCB Error
Code:

//Kaveh Nowroozi


//CAMERA TEST

//6/28/2004

//Based on code from Kyle Tripicain Spring 2003

#include <stdlib.h>

#include <avr/io.h>

#include "lcd.h"

#include <avr/delay.h>

#include "timer128.h"

#include "test.h"

#include "uart2.h"

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <string.h>

#include <avr/pgmspace.h>

#define BAUD_RATE1_REG  (unsigned int)(CPU_CLK_SPEED / (16 * BAUD_RATE1) ) - 1

#define ACTUAL_BAUD1    (unsigned int)(CPU_CLK_SPEED / (16 * BAUD_RATE1_REG + 1)

#define CPU_CLK_SPEED

14745600

#define BAUD_RATE1

115200

#define NUM_OF_BAUDREGS
2

#define BAUD1H_REG

UBRR1H

#define BAUD1L_REG

UBRR1L

#define NUM_OF_UARTS    
2

#define RXTXEN1_REG

UCSR1B

#define STAT1RXTX_REG 

UCSR1A

#define RX1EN


RXEN1

#define TX1EN


TXEN1

#define RX1C


RXC1

#define UDR1E


UDRE1

#define true 


1

volatile u08 i =0;

volatile u08 j =0;

SIGNAL(SIG_UART1_RECV)

{


temp=UDR1; //save data from camera to temp


if (temp == 0x3A) //if ':' then new data



i=0;


if (temp != 0x3A && temp > 0x19) 


{



cmudat[i]=temp; //save to array



i++; //next index


}


if(i == 5) //after finished getting values from getmean


{

if (cmudat[2] > 0x80 && cmudat[2] > cmudat[3] && cmudat[2] > cmudat[4]) 
//if more red, print red



{




red = true;




lcd_puts("Red ");



}



else if (cmudat[3] > 0x80 && cmudat[3] > cmudat[2] && cmudat[3] > 
cmudat[4]) //if more green, print green



{




green = true;




lcd_puts("GREEN ");



}



else if (cmudat[4] > 0x80 && cmudat[4] > cmudat[2] && cmudat[4] > 
cmudat[3]) //if more blue, print blue



{





blue = true;




lcd_puts("BLUE ");



}



else lcd_puts("none ");


i=0;


}

}

void init_uart1
(void)

   {

//turn on TX and RX

   RXTXEN1_REG = 0x98;

   //set up baud rate

   #if (BAUDREGS == 2)

   
BAUD1H_REG = (unsigned char)(BAUD_RATE1_REG >> 8);

   
BAUD1L_REG = (unsigned char)BAUD_RATE1_REG;

   #else

   
BAUD1L_REG = (unsigned char)BAUD_RATE1_REG;

   #endif              

   return;

   }

void uint(void)

{


UCSR1B = 0x98;


UCSR1C = 0x06;


UBRR1H = 0x00;


UBRR1L = 23;

}

// Following two methods from Kyle Tripician

// Spring 2003 IMDL'er

void uartstring(char* myStringIn)

{


unsigned char *myString = myStringIn;


unsigned char ch1;


unsigned char gotNULL = 0;


ch1 = *myString++;


while(!gotNULL)


{



uarttransmit(ch1);



_delay_loop_2(60000);



ch1 = *myString++;



if(ch1 == '\r')



{




gotNULL = 1;




uarttransmit(ch1);






}


}

}


void uarttransmit(unsigned char data)

{


while(!(UCSR1A & (1<<UDRE1)));


UDR1 = data;

}

int main(void)

{


lcd_init(LCD_DISP_ON);


lcd_clrscr();


init_uart1();


sei();


uartstring("RM 2\r"); //set raw mode to get rid of ACK returns


uartstring("PM 1\r"); //poll single time


uartstring("gm \r"); //get mean

}

