

University of Florida
Dept. of Electrical Engineering

Final Report

BOB the Builder
An Autonomous Bulldozer Robot

By

Salman Siddiqui
August 3, 2004

EEL5666C
Intelligent Machine Design Lab

Summer 2004
Dr. Arroyo

&
Dr. Schwartz

 2

Table of Contents

Abstract...........…...3

Executive Summary……………………………………………………………………….4

Introduction..…..…........5

Integrated
System..……..…..6

Mobile
Platform/Actuation...7

Sensors…...8

Behaviors...13

Experimental Layout and
Results......……………………..14

Conclusion.…..15

Parts………………………………………………………………………………………16

References………………………………………………………………………………..17

Source Code…………………………………………………………...…………………18

 3

Abstract

 Bob, the builder, is an autonomous bulldozer robot that performs a regular

bulldozer’s tasks without any input. Bob is planned in such a way so that it would be

completely independent in its tasks and would not require any outside assistance for its

operations. It searches for nearby objects and with the help of its moveable shovel, it

picks the object up and carries it towards a dumping site. Once it has dumped its load it

searches for more stuff to pick up. This way the cycle continues and Bob ends up

cleaning the whole site by itself.

 4

Executive Summary

 Bob is an autonomous, self-trained, work-loving robot bulldozer. Its sole purpose

is life is to play with dirt, move dirt, carry dirt, drop dirt and spread dirt. In short it likes

dirt.

 Its basic platform is made out of a toy bulldozer with a working shovel attached to

it. To aide in its work it has a bunch of sensors. These sensors work together in their

individual capacity to make Bob the way it is. For example:

 Sonar is supposed to search for objects, which it successfully does. Once it has

done so it proceeds towards the object.

 Now the IR sensors up front kick in. They are suppose to align Bob with the

object so that it can easily pick stuff up.

 Once that has been accomplished the two, awesome, gear-head motors come into

play. They go full speed ahead to provide the necessary force to lift the objects up.

 Just at the right time the shovel goes up, taking the object with it.

 Now Bob, with the help of four IR receivers starts homing in on the IR

transmitter.

 Once it gets close to the transmitter, Bob uses its photoreflector to detect for a

black line.

 As soon as a black line is detected, Bob knows to drop the stuff in its shovel and

to return to the original site.

 5

Introduction

 Heavy equipment vehicles have always interested me. I am left in awe by

watching such huge machines being operated by a human operator. These heavy-duty

machines are responsible for getting the work done early, on time and appropriately.

However, these machines are still what they are, stupid machines. They need to be

operated by a human being in order to get the work done. I think that there is need for

intelligent machines that can get the simpler work done by them selves. Simple tasks

such as digging along a straight line, filling earth in a hole or moving sand/gravel from

one place to another place are tasks that do not require much intelligence and they

basically follow the same pattern over and over again.

 My robotics project is based upon this observance. Bob is a bulldozer robot that

is most useful at a construction site. It finds nearby objects, such as sand, gravel or iron,

picks them up and moves them to a designated area. Bob is equipped with a wide variety

of sensors to aid it in its tasks. These sensors enable it to “know” when the work has

finished.

In this way a lot of manpower would be saved and that manpower can be

employed elsewhere doing some intelligent work. Companies using these robots would

be able to save a lot of money in terms of wages, thus gaining more profits.

The idea behind Bob’s construction is defined in the following pages. The various

sections have been divided up according to the nature of the material and all aspects of

Bob have been discussed at length.

 6

Integrated System

 Bob’s brain is the MavricII development board that’s running a Atmega128

Microprocessor. The kit for the board was ordered form www.bdmicro.com and I

soldered the components on the board. However this method proved to be a disaster as I

ended up buying a new soldered board anyways. The micro controller is the main part of

the robot that is actually responsible for whatever little intelligence Bob possesses. It is

used to operate all the sensors, drivers and the LCD display. Every sensor provides

feedback to the microprocessor and then based on that data, future commands are given

to the other components. Software for the Microprocessor is written in the C language

and then loaded into the onboard memory using the AVRISP programmer available from

digikey.com. First the code for each sensor and each behavior was written and only after

many hours of agonizing work this code was optimized to work with the final code. This

technique of breaking code up into many small functions is found to be extremely useful

by me and is recommended to everyone.

Of all the sensors the LCD is the most useful one. It provides instant feedback to

the user in visual form and is an extremely important debugging tool. For this reason, the

LCD is interfaced to the microprocessor first and foremost. It paves the way for the other

devices as well.

Power to the board and the sensors is provided by an eight-pack rechargeable

battery pack that outputs 11V when fully charged. Rechargeable batteries are being used

for this robot as to minimize the cost factor. There is a separate four-battery pack for the

shovel. All the wires go through the on/off switch providing an instant kill to all on-board

systems. A reset switch is directly interfaced to the MavricII board.

 7

 The following picture shows the conections of all my sensors to the board itself:

Mobile Platform/Actuation

 My platform is really simple because it is, for the most part, a toy bulldozer. For

the purpose of moving fast, I used two DC gear head motors and a motor driver to

operate them. The DC gear head motors are required due to the large amount of torque

needed to get Bob moving fast. I installed the two motors with the rear wheels and the

castors were used up front. Here is an under-view of my robot:

 8

I had to use the toy bulldozer because it would have been hard to create a properly

working shovel. Therefore the whole body of the bulldozer was also used which gave a

nice look to my robot:

As you can see from the picture my Sonar and two IRs are mounted on the shovel

by Aluminum brackets. Aluminum was not used at first buy then it had to be used

because its is much lighter than any other metal and provides more flexibility.

The four IR receivers on the top are my beacon receivers and are mounted in the

most optimum configuration.
Sensors

 A robot would be a dumb machine, like all the other machines, if it was not for its

sensors. For this project I utilized a variety of sensors, ranging from SONAR to photo

reflectors and IR transmitter and receivers.

Sharp GP2D12 IR:

 These are the most popular of all the sensors, as every one seems to be using

them. These provide pretty accurate distance measurement and are mainly used for object

detection and obstacle avoidance. The sensor is comprised of an emitter for sending out

the IR pulse and a receiver to record the reflected pulse. These provide the much needed

 9

precise movement to the robot. They are also responsible for object avoidance and for

centering the robot in line with the objects to be picked. Two of these have been mounted

upfront on the shovel. For this reason they are only operational with the shovel down.

This limits their usage but I don’t really need them with the shovel up.

Devantech SRF04 Ultrasonic Range Finder (SONAR):

 This is the most popular type of sonar device available. Its popularity is based on

the fact that it is really simple and easy to use and provides excellent results. This is an

excellent choice for any one that has to measure distance and proximity. The SRF04

model is a bit less sensitive than the SRF08 one but still it is all I required for my project

and was amazed at the sensitivity of this thing.

This SONAR serves as my primary object detection sensor. The main scanning

takes place with the help of this sensor. The breakout is given below:

x� When Bob is turned on and left of the ground it starts rotating slowly on

its axis.

x� All the while it’s rotating it also comparing the values given out by the

SONAR sensor.

x� Once it has found a suitable match to the value of the SONAR, Bob stops

and proceeds in that direction.

In this way Bob is able to find the closest possible object to itself.

Hamamatsu P5587 Phototransistor:

 This tiny phototransistor has been put on a t-tech board. The board was designed

by Mr. Kosala, many thanks to him, and used by me. It is a design for only a single

photoreflector to be mounted on there but in my case there was no need for that.

 10

This photoreflector is mounted under the robot just a quarter inch above the

ground. This is a requirement for it to work properly. The sensor is also slightly slanted

with respect to the ground and is not exactly parallel to it. This has been proven to be the

best mount for this sensor and provides optimum results this way.

 There is a black line surrounding the drop-off area. As soon as the robot passes

over the black line the output of the photo-reflector changes and lets the microprocessor

know that the dumping site has been reached.

Special Sensor Report

 After Bob has picked up something in its shovel, it is required for it to

proceed towards the dumping site. Therefore, a sensor is required to guide Bob towards

this dumping site. To fulfill this purpose an IR beacon, comprised of two IR LEDs, was

assembled in the lab on a PC board. Four IR receivers were ordered from

www.jameco.com and used for detecting the beacon. This beacon and receiver combine

together to form my special sensor.

Components

LMC 555CN CMOS Timer

 This CMOS timer chip from National Semiconductor was utilized to create the

56.8kHz beacon to be placed at the dumping site. The timer was used in an astable

because a continuous train of a 56.8 kHz frequency train is required. The power

consumption for this chip is really low and is capable of being operated at 5V. However,

for my purpose, 9V – 10V of voltage supply was used.

Data sheet can be found at: http://www.national.com/ds/LM/LMC555.pdf

 11

LITEONLTM9034 56.8kHz Receiver

 This is a very common IR detector used in numerous appliances to receive IR

signals such as TVs, VCRs and home stereos. Originally the output of this device is

analog but by using Michael Hatterman’s Hack, this receiver was modified to output

analog voltage. See references for detail.

Construction

56.8 kHz Transmitter

 Using the following circuit design, found at: www.eleinmec.com/article.asp?3, a

56.8 kHz frequency generator was constructed using a 555 timer chip:

f = 1/T = 1.44/((R1 – 2R2)C1)

 The above given equation for generating the desired frequency was obtained from

the above given website. The values for the passive components were calculated and

were found to be:

R1 = 5.6 K R2 = 10 K

C1 = 1 nF C2 = 0.01 uF

 Real values of the resistors found to be the closest to the ones found were used in

the design. The circuit was quite easy to construct and was laid out on a perforated board.

An image of the constructed device is given below:

 12

In our case the device, the load, is comprised of a 100-ohm resistor in series with

two IR LEDs. As the circuit is an astable circuit, we obtain a continuous IR frequency of

56.8 kHz.

 The LiteOn IR receiver was modified using a previous design. The details are

provided in the reference section.

Failed Sensor Implementation: Digital Compass (Dinsmore 1490 Digital Compass)

 I was thinking about implementing this digital compass on Bob as well. This

would help bob in returning to the pickup site quickly. But unfortunately this didn’t go as

planned as I could not get the compass to work. Thus this project was abandoned after

some experimentation.

 13

Behavior

The following points summarize Bob’s expected behavior. This is the idealistic

version, meaning that I would like Bob to do all this, but then all the behaviors may not

be feasible to implement in the robot at the end of the semester.

x� When Bob is turned on and set on the ground, he immediately starts searching

for close by objects by rotating on its axis.

x� Upon detecting the closest object it proceeds towards that object

x� Using the Sonar and IRs, it positions itself in the center of the object

x� With a swift forward motion of the shovel it picks the object up in its shovel

x� Upon picking up the object it then proceeds to the dumping site denoted by

the IR beacon

Upon reaching the black line surrounding the beacon Bob stops and tries to find the

original site by trial and error.

 14

Experimental Layout and Results

 Many experiments were performed during the course of the construction of my

robot. Many involved the correct angle of the Soar and IR sensors of the ground, while

others called for the calibration of the IR receivers on Bob’s top.

First I had planned to use only two IR receivers at the top but then this didn’t

seem practical later on so I ended up ordering two more. The most important thing to

keep in mind is to have a good idea about what your goals are and what you are going to

need. This helps in lowering the costs and to finish the project in a timely manner without

any wait for last minute shipments.

The project always seems to take a direction of it’s own. There is no telling what

idea might pop up in your mind. More often than not I ended up taking a whole new

approach to a problem and solving it in a totally different manner.

 15

Conclusion

 This class has been one of the most exhausting classes I have ever taken. Even

though my project was relatively simple and straight forward, even then it took me

countless number of hours to make it work perfectly. This class is somewhat along the

line of Microprocessor applications class in the sense that you gain a lot of knowledge by

having first hand experience of everything. It is definitely an excellent class to take for

the person who can handle the stress and depression of things not working right.

 Special thanks to Mr. Max, Mr. William, Mr. Kosala and Mr. Steve for all their

help and advice.

 Also, a special thanks to Dr. Arroyo for teaching the class and Dr. Schwartz for

making attendance mandatory and for all the threatening emails. Those were the real

motivation behind all my effort.

Lessons Learnt:

1) Lynxmotion motors are a piece of CRAP, stay away from them.

2) On Atmega128 if you want to use all 8 A/D conversion ports, you have to

write a 1 to the mMCUCSR bit twice consecutively.

3) Always make videos of your working robots! They might prove to be a life

saver in the end.

 16

Parts

x� MavricII board (2; first one broke)-----$160
www.bdmicro.com

x� Sonar, IRs, Photoreflector------------$75
www.junun.org

x� Motor Driver, Motors-----------------$95
www.lynxmotion.com

x� LCD, Switches-------------------------$20
www.junun.org

x� AVR ISP Programmer----------------$35
www.digikey.com

x� 4 Liteon receivers----------------------$15
www.jameco.com

x� Various stuff from Lowes-------------$40
(nuts, bolts, screws, castors….etc.)

 www.lowes.com

x� Toy Bulldozer---------------------------$28
www.toysrus.com

x� Rechargeable batteries and charger---$35
www.samsclub.com

x� Relays, perforated boards--------------$20
www.radioshack.com

x� Switches, wire,nuts,bolts,solder-------Free from Lab

****All prices include shipping

 17

References

LiteOn 56.8 kHz receiver hack By Michael Hatterman. IMDL. Spring 2002

http://www.mil.ufl.edu/imdl/papers/IMDL_Report_Spring_02/michael_hatterman/hacked

_ir.pdf

LiteOn 56.8 kHz receiver Data Sheet

http://jameco.com/Jameco/Products/ProdDS/176541.PDF

Referred to Jeff Panos final report. IMDL. Spring 2004

http://www.mil.ufl.edu/imdl/papers/IMDL_Report_Spring_04/panos_jeff/gimp-ss.pdf

Referred to Palani Rathinasamy final report. IMDL. Spring 2003

http://www.mil.ufl.edu/imdl/papers/IMDL_Report_Spring_03/rathinasamy_palany/golfc

addy.pdf

Referred to the following websites

http://www.eleinmec.com

http://www.national.com

www.bdmicro.com

 18

Source Code
//Salman Siddiqui
//IMDL summer 2004
//Source Code for Bob the Builder
//This code is only 90% done so far; so dont count on the other 10%
//Get the LCD code from http://jump.to/fleury super code…guranteed to work

#include <stdlib.h>
#include <avr/io.h>
#include "lcd.h"
#include "adc.h"
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/signal.h>
#include <stdio.h>

///delay function
void delay (uint16_t n)
{
double b;
for (b=0;b<n;b++)
{}
}

/*
code for 6.5 u sec delay
*/
void delay_10us (int t)
{
int n =800;
while (t--);
{
n = 800;
while (n!=0)
{
n--;
}
}
}

//Define all the movements over here
//the following are the timer 1 values for the
//motion.I am using 2 out of 3 pwms
void slowforward(int speed)
{
for (int a=0;a<speed;a++)

 19

{
for (int b = 0;b<(speed/20);b++)
{
outp(0xe0, OCR1AL);
outp(0x47, OCR1AH);
outp(0xe0, OCR1BL);
outp(0x47, OCR1BH);
outp(0xe0,OCR1CL);
outp(0X47,OCR1CH);
}}}

void mediumforward(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x50, OCR1AL);
outp(0x47, OCR1AH);
outp(0x50, OCR1BL);
outp(0x47, OCR1BH);
outp(0x50,OCR1CL);
outp(0X47,OCR1CH);
}}}

void maxforward(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x00, OCR1AL);
outp(0x46, OCR1AH);
outp(0x00, OCR1BL);
outp(0x46, OCR1BH);
outp(0x00,OCR1CL);
outp(0X46,OCR1CH);
}}}

void fastleftturn(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x50, OCR1AL);
outp(0x46, OCR1AH);
outp(0x50, OCR1BL);

 20

outp(0x40, OCR1BH);
outp(0x50,OCR1CL);
outp(0X40,OCR1CH);
}}}

void slowleftturn(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x50, OCR1AL);
outp(0x47, OCR1AH);
outp(0x50, OCR1BL);
outp(0x40, OCR1BH);
outp(0x50,OCR1CL);
outp(0X40,OCR1CH);
}}}

void fastrightturn(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0xe0, OCR1AL);
outp(0x40, OCR1AH);
outp(0x50, OCR1BL);
outp(0x46, OCR1BH);
outp(0x50,OCR1CL);
outp(0X46,OCR1CH);
}}}

void slowrightturn(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x00, OCR1AL);
outp(0x40, OCR1AH);
outp(0x50, OCR1BL);
outp(0x47, OCR1BH);
outp(0x50,OCR1CL);
outp(0X47,OCR1CH);
}}}

void reverse(int speed)

 21

{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x90, OCR1AL);
outp(0x49, OCR1AH);
outp(0x90, OCR1BL);
outp(0x49, OCR1BH);
outp(0x90,OCR1CL);
outp(0X49,OCR1CH);
}}}

void stop(int speed)
{
for (int a=0;a<speed;a++)
{
for (int b = 0;b<(speed/20);b++)
{
outp(0x50, OCR1AL);
outp(0x42, OCR1AH);
outp(0x50, OCR1BL);
outp(0x42, OCR1BH);
outp(0x50,OCR1CL);
outp(0X42,OCR1CH);
}}}

//Functions for the AD conversion
//taken from www.bdmicro.com
uint16_t adc_read(void)
{
 return ADC;
}

void adc_wait(void)
{
 /* wait for last conversion to complete */
 while ((ADCSR & BV(ADIF)) == 0);
}
/*
 * adc_start() - A/D start conversion
 *
 * Start an A/D conversion on the selected channel
 */
void adc_start(void)
{
 /* clear conversion, start another conversion */

 22

 ADCSR |= BV(ADIF);
}

void adc_chsel(uint8_t channel)
{
 /* select channel */
 ADMUX = BV(REFS0);
 //ADMUX = BV(REFS1);
 ADMUX = (ADMUX & 0xf0) | (channel & 0x07);
}
//void selectchannel(int a)
//{
//ADMUX = a
void initadc(void)
{
outp(0xe7,ADCSRA);
}

uint16_t adc_readn(uint8_t channel, uint8_t n)
{
 uint16_t t;
 uint8_t i;
 adc_chsel(channel);
 adc_start();
 adc_wait();
 adc_start();
 /* sample selected channel n times, take the average */
 t = 0;
 for (i=0; i<n; i++) {
 adc_wait();
 t += adc_read();
 adc_start();
 }

 /* return the average of n samples */
 return t / n;
}

//****THE FOLLOWING CODE WORKS PERFECTLY FOR SONAR
//I didnt use interrupts but used this code
//also found in palanis report from spring 2003
int sonar (int times)
{
delay_10us(10);
int i,counter=0;
for (i=0;i<times;i++)
{
cbi(PORTE,0);

 23

sbi(PORTE,0);
delay_10us(4);
cbi (PORTE,0);

while (bit_is_clear(PINE,2))
{
}
while (bit_is_set(PINE,2))
{
delay_10us(6);
counter++;
}
}
return (counter/times);
}

//Shovel operation code
//This is specifically to turn the relay
//connected to my port E on to make the shovel go up or down
void shovelup (void)
{
int a,b;
//delay(6000);
delay(6000);
delay(6000);
for(a=0;a<600;a++)
{
for(b=0;b<1000;b++)
{
outp(0x01,PORTG);
}}
outp(0x00,PORTG);
delay(6000);
delay(6000);
delay(6000);
}

//shovel down code
void shoveldown (void)
{
int a,b;
//delay(6000);
delay(6000);
delay(6000);
for(a=0;a<600;a++)
{
for(b=0;b<1000;b++)
{

 24

outp(0x04,PORTG);
}}
outp(0x00,PORTG);
}

//look to find item
//searching for item
void look (void)
{
int a,b,c,d;
b=0;
c=0;
for(;;)
{
slowrightturn(40);
a=sonar(10);
printf("a=%d ",a);
if (a<400)
{
stop(20);
return;
}
delay(6000);
lcd_clrscr();
b=a;
}
}

//Searching for item
//actually cheking the IR for alignment
void search (void)
{
lcd_clrscr();
uint16_t snr,z,y;
for (;;)
{
snr=sonar(5);
z=adc_readn(0,5);
y=adc_readn(1,5);
mediumforward(30);
printf(" S= %u L=%u R=%u",snr,z,y);
if(z>100)
{
stop(500);
reverse(600);
fastrightturn(450);
}
if(y>100)

 25

{
stop(500);
reverse(600);
fastleftturn(850);
}
if ((z>100) && (y>100))
{
stop(50);
reverse(800);
stop(500);
maxforward(800);
shovelup();
mediumforward(500);
slowforward(500);
stop(50);
return ;
}
if (snr<40)
{
stop(50);
reverse(800);
stop(500);
maxforward(890);
shovelup();
mediumforward(600);
slowforward(600);
stop(50);
return ;
}
delay (6000);
lcd_clrscr();
}
}

//Go to home base code
//this code is to make bob compare different receiver values
//and to make it to the home base transmitter
void gohome (void)
{
int valueofpreflector;
uint16_t left,right,front,back;

int a,b,c,d,e,f,g,h;
a=0;
b=0;
c=0;
d = 0;
stop(2000);

 26

for (;;)
{
left=adc_readn(2,5);
right=adc_readn(3,5);
front=adc_readn(4,5);
back=adc_readn(5,5);
lcd_clrscr();
printf("a=%d b=%d c=%d d=%d",a,b,c,d);
e=0;
f=0;
g=0;
h=0;
if (front>left && front >right && front >back)
{
a++;
e++;
mediumforward(100);
}
//reverse
if (back>left && back > right && back > front)
{
b++;
f++;
fastrightturn(1600);
}
//leftturn
if (left > right && left > front && left > back)
{
c++;
g++;
fastrightturn(100);
}
//rightturn
if (right>left && right>front && right > back)
{
d++;
h++;
fastleftturn(100);
}
if (bit_is_clear(PINE,4))
{

stop(1000);

if (e==1)
{
fastrightturn(1600);
}

 27

if(g==1)
{
fastrightturn(1150);
}

if(h==1)
{
fastleftturn(1150);
}

stop(30);
return;
}

delay(6000);
lcd_clrscr();

}
}

//Port Initialization of all ports
//good thing to have...just write all the port information
//over here to initialize them properly
void initports(void)
{
//for ADC setup
DDRF = 0x00;
PORTF = 0x00;
outp(0x80,MCUCSR);//write twice clear the jtd flag to disable jtag interface
outp(0x80,MCUCSR);//clear the jtd flag to disable jtag interface

//for sonar
outp(0x01,DDRE);

//for Motor control
outp(0xff, DDRB);

//for shovel
outp(0xFF,DDRG);
}

///LCD initialization
//code taken from peter fluery website
//excellent code
//thanks to mr.kosala on helping me with
//my LCD
void initlcd (void)

 28

{
lcd_init(LCD_DISP_ON);
lcd_clrscr();
fdevopen(lcd_putc, NULL, 0);
}

//initialize timer1 for motor control
//Timer initialization for PWMs
void inittimer1(void)
{
outp(0xa8, TCCR1A); /* init the counter */
outp(0x12, TCCR1B); /* init the counter */
outp(0X4e,ICR1H);
outp(0X20,ICR1L);
outp(0x00, TCNT1L); /* value of T/C1L */
outp(0x00, TCNT1H); /* value of T/C1L */
}
//The main source code
//all you have to do is to call functions
int main (void)
{
uint16_t z,y,left,right,front,back,snr;
int volts;
initlcd();
initadc();
initports();
inittimer1();
for (;;)
{
look();
stop(2000);
mediumforward(900);
search();
delay(10000);//the delays have been added to give it time to stop
delay(10000);
gohome();
}
}

