HOMER

(Helping Others Move Easily on Roads)

Bryan Talenfeld

EEL 5666

8/8/06

Table of Contents

Abstract

 3
Executive Summary

 4

Introduction

 5
Integrated System

 6
Mobile Platform

 7
Actuation

 8
Sensors

 9
Behaviors

 11
Experimental Layout and Results

 12
Sensors

 14
Appendices

 15

Abstract

HOMER is an autonomous robot that is used to help color blind people with traffic lights. HOMER drives around on his road and avoids objects that come across his path. When he reaches an intersection, he looks for the traffic light and reacts to it appropriately. HOMER has a wild side though, and sometimes gets drunk and goes crazy in his hotrod. HOMER will realize his functions through line following, color detection, and obstacle detection.
Executive Summary

This is the final report in a series of 3 reports covering all aspects of HOMER. This report will include everything that has been covered in the first 2 reports, as well as covering many things that have occurred since those reports and an overall view of HOMER. This will begin with a summary of what HOMER is, why he was developed, and his use. The report will cover everything that was required to realize the goals of HOMER, from his platform, to how he moves, to all of his sensors that help accomplish his objective. It will also discuss the process and the growing pains that occurred during the summer semester. All of the references, documentation, and code will be included as well.
Introduction

HOMER (Helping Others Move Easily on Roads) will help people that are colorblind navigate their way through traffic. Not only would a robot like HOMER be helpful for your typical traffic light, but it would be essential when encountering the ever increasing amount of sideways lights where simply noticing the top and bottom lights doesn’t help in determining red and green.

This robot will drive along the road until it encounters an intersection. When it reaches the intersection, it will look for a traffic light. The robot would then detect the color of the light and handle the light as if it were a typical car, stopping on red, continuing on green, and speeding up on yellow. This proposal will show the basic outline of the expectations of HOMER.

Integrated System

The CPU for HOMER will be the Mavric-IIB board, which will control the inner workings of HOMER. The CPU will be connected to motors for the driving, a color sensor, bump sensors, an IR sensor, a line tracking device, and an LCD screen.

[image: image3.png]&

5

0.1

TR

E

baka

i

ama

-
$esv

[souput

The two DC motors drive the robot, controlled by the H-bridges. The color sensor (CMU cam) is used to detect the color of traffic lights. The bump sensors and IR are obstacle avoidance, and the line tracker (photo reflectors) follows the line. The LCD is used primarily for debugging.
Mobile Platform

When trying to think of a platform, I was initially thinking I would go with something very simple. I didn’t learn AutoCAD enough to do much with it and wasn’t experienced in building platforms, so I was initially thinking of taking a slab of wood and throwing all of my components on top of it. In retrospect, I still think that might have been better than my current platform, since there would have been more room. After going through Home Depot and Lowe’s, it seemed like putting together my own platform might be difficult, which left me in a dilemma. It was then that I found out about a pre-designed TJ platform that we could have T-teched without needing to make any design, so I opted for that.

The platform ended up being a bust, but it accomplished what was necessary. A TJ is just not cut out for a robot with motors, so the wheels stick out from the platform. I had a lot of components that were too large for the platform, so everything is scrunched in a small space when it probably needs more room. While HOMER is space efficient, it’s crammed about as much as possible.
Actuation

HOMER will have to drive around his road to find traffic lights. In order to do this he will require two wheels, attached to motors and drivers, that will help control the speed and direction of the wheels. This will be the only required moving part of HOMER. The motors are GHM-03, 7.2vdc, with a stall torque of 54.31 oz-in that run at 291 RPM from lynxmotion.com.
The motors are controlled by a dual motor driver ordered from the same website. I purchased the Dual H-Bridge motor driver with a 4.8 to 12V threshold and a peak of 2A. The motor driver has a PWM, and then a + and – connection to control the direction. If the + is enabled and – disabled, the motor will go forward. If the + is disabled and – enabled, the motor will go in reverse. If both are enabled or disabled, the motor will stop. The PWM ranges from 0 to 255, which controls the speed. The motors are controlled by timers 0 and 2.
Originally, I attempted to use an LMD18201 H-bridge from National Semiconductor and create two small boards to control the motors. The board seemed to be cursed, since the T-tech never made it correctly in numerous attempts. I waited over 6 weeks before realizing that I should have ordered a motor driver instead of ordering the H-bridges that began the entire process.
Sensors
· IR detectors

The IR detectors are from MarkIII Robot store. I am using the Sharp GP2Y0A21YK, which is similar to the Sharp GP2D12 but has a larger range and was in stock, unlike the Sharp GP2D12, when I ordered. The IR sensor runs in analog, so it must be connected to Port F of the microprocessor which is an ADC. The IR shows a value dependant upon the nearest object, which then must be converted to a digital value to be observed on the LCD and used to detect objects in the programming.

I took some sample values of the IR in the same room both with the lights on and with the lights dimmed and noticed differences in the readings. It will work better to take a few readings (5) and average them to avoid random spikes giving incorrect information and causing problems.
· Bump Switches

Lever switches from the Radio Shack will be attached to the front half of the bumper to detect if HOMER bumps into objects. The bump switches can have 1 side connected to I/O ports while the other end is connected to ground for an active low connection. A switch will read 0 if it gets pressed and will show as 1 otherwise. If a switch reads 0, that side of the robot was hit and the robot will stop. If I later choose to have the robot bounce off the object in reverse and maneuver around it, this setup will come in useful since it will know which side was hit.

· CMU Cam

The color detector that I purchased is the CMUCam2+ from Acroname. This version of the CMUcam doesn’t have an RS 232 conversion chip, so everything will be done through the microprocessor and a TTL setup, since the conversion just for testing on the computer would have been additional money. The CMUcam is connected to the first UART on the board, at Port E0 and E1. The CMUcam detects the amount of red, green, and blue within an object and returns values to determine what color the camera is looking at.
· Line follower

HOMER will use 4 photoreflectors from the MarkIII store, all of which are Hamamatsu P5587 IR Photoreflectors. The board is still a work in progress, but the data sheet gives a setup that will work for 1 photo reflector which can be expanded for using 4 of them. Two will be on each side of the inside of the line and two will be on the outside, used for detecting intersections (depending on how I set up my track). These photoreflectors are analog values, but since I am only searching for the difference between black (0V) and white (5V), the values are on the opposite ends of the spectrum and are easy to determine without needing to do conversion. The black will be the road that HOMER needs to follow and the white will be the sides of the road. The 4 photoreflectors will be connected to I/O pins and will be checked for high or low.

[image: image2]
This is a schematic for a single photoreflector
Behaviors

The sensors will help HOMER realize its various behaviors. The line detector will be used so the robot can follow the street until it reaches a traffic light. Four photo reflectors will be used, with two in the middle of HOMER to detect the black line and then two on the outsides over the white track, which helps detect intersections. Once at an intersection, the color sensor will be used to detect which color the traffic light is. If the light is green, the robot will continue forward. If the light is red, the robot will come to a halt. If the light is yellow, it will increase the current speed to cross the intersection. Some additional behaviors related to this could be added later.

For accident prevention, an IR detector will be required. If an object is detected, it will to avoid a collision and wait until the object has been removed. If a collision does occur, HOMER will stop to prevent further damage and avoid a hit and run.
Experimental Layout and Results

· Bump Switches

Since the switches are set as active low, I tested the switches by checking the LCD to see what output they gave when they were pressed and not pressed. Each time I pressed a switch the output became 0, and when I didn’t press them the output was 1.
· IR range test

	
	PORTF.0 dark
	PORTF.0 light
	PORTF.1 dark
	PORTF.1 light

	2-3”
	600+
	600+
	600+
	600+

	6”
	320-350
	300-320
	330-350
	310-330

	1’
	190-210
	180-200
	190-210
	180-200

	2’
	100-120
	90-110
	90-110
	100-120

	2.5’
	70-90
	80-100
	XXX
	XXX

	3’
	50-70
	50-70
	70-90
	60-80

	nothing
	30-50
	20-40
	40-60
	0-40

· Line follower

The test here was relatively easy. After hooking up the photo reflectors to their board, I just showed the outputs to the photoreflectors on the LCD. When it read a black line, the output was 0. When it was over the white part of the track, the output was 1.

I initially botched this test, which ruined my line following at first. I would hold up the line follower and it would be outputting 0’s, since it didn’t see anything. When I would put my finger in front of them, it would give out a 1, which I assumed to be the same reading as with a black line. It wasn’t until later that I realized this was the opposite effect, since my finger was closer to the white reading and the empty space was closer to the black reading. Once I figured out this problem and ran tests using the line, everything made sense.
· CMU color test

Here are some color readings (Red mean, Green mean, Blue mean):

	
	Red mean
	Green mean
	Blue mean

	Yellow 1
	138
	65
	16

	Yellow 2
	137
	67
	16

	Yellow 3
	155
	77
	16

	Yellow 4
	143
	69
	16

	Yellow 5
	131
	68
	16

	Red 1
	145
	28
	16

	Red 2
	149
	31
	16

	Red 3
	152
	32
	16

	Red 4
	162
	34
	16

	Red 5
	155
	33
	16

	Green 1
	134
	90
	26

	Green 2
	133
	91
	25

	Green 3
	135
	85
	24

	Green 4
	126
	86
	26

	Green 5
	132
	88
	26

The red seemed to be very similar, but the green values varied greatly, enough to be able to detect all 3 colors. Another test, done in lab instead of my room, had different color values result. The red mean in green was lower, while the green mean in both yellow and green were very similar. In this case, I needed to adjust the parameters accordingly. I will either have to calibrate the colors prior to a run or create a self calibration program.
Conclusion

HOMER is an autonomous robot that can follow his road around, detect an intersection, and then read and react to a traffic light. He can also successfully avoid objects that are in his way to prevent accidents. He will continue normally if the light is green, speed up and honk his horn through the intersection if the light is yellow, and stop if the light is red. If an object gets in his way he will stop and honk his horn.

There have been various problems that I have encountered while working on HOMER. My first problem was the platform, which I should have asked more people about. This way I wouldn’t have ended up with a TJ platform, but something that would have had more room on the robot which would have made my life easier.

Another problem was the color detection, which was pointed out the day I proposed HOMER. My initial red and yellow were reading nearly identical readings while I was doing color tests in my room. It is possible that they would have had different readings in another location, but they were very similar when I initially tested them. I had to work with various combinations before I found colors that ended up reading far enough apart to work a majority of the time.

My bump switches have been a much larger problem than they should be. I have been a little epoxy crazy, and try to connect everything with epoxy. It seems that the epoxy runs a lot, because when I initially used 5 push button switches, most of them had epoxy get in them and they were very hard to manage. One of my two lever switches suffered a similar fate, although this time it was when I was connecting the bumper to the switch instead of connecting the switches to the platform. On my third set of switches I finally managed not to destroy them, but had to get creative with a bumper setup.

The voice system never worked, unfortunately. HOMER was supposed to speak when obstacles were in front of him and say the color of the light, but the Sound Module that I received from Parallax never seemed to work properly even after many called to tech support. While everything else eventually came through, this didn’t.

If I had to recreate HOMER, I would begin by making a better platform, including my bump switch and bumper setup. I would have ordered the motor driver I ended up with, instead of waiting 6 weeks trying to create one and never being successful. My line follower was a little too narrow, which has caused slight line following problems on turns. The last thing I would have changed is the Sound Module that I bought from Parallax. I would look elsewhere to find something that would actually work.
Appendices
/***

This program was produced by the

CodeWizardAVR V1.24.9 Evaluation

Automatic Program Generator

© Copyright 1998-2006 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

Project :

Version :

Date : 7/5/2006

Author : Freeware, for evaluation and non-commercial use only

Company :

Comments:

Chip type : ATmega128

Program type : Application

Clock frequency : 14.745600 MHz

Memory model : Small

External SRAM size : 0

Data Stack size : 1024

***/

#include <mega128.h>

// Alphanumeric LCD Module functions

#asm

 .equ __lcd_port=0x1B ;PORTA

#endasm

#include <delay.h>

#include <lcd.h>

#include <stdlib.h>

//input and output (printf, etc) here

#include <stdio.h>

#define ADC_VREF_TYPE 0x40

 int done;

 int Rtotal = 0; int Gtotal = 0; int Btotal = 0;

 int RedRbig, RedRsmall, RedGbig, RedGsmall, RedBbig, RedBsmall;

 int GreenRbig, GreenRsmall, GreenGbig, GreenGsmall, GreenBbig, GreenBsmall;

 int YellowRbig, YellowRsmall, YellowGbig, YellowGsmall, YellowBbig, YellowBsmall;

 int RforRed, RforGreen, RforYellow, GforRed, GforGreen;

 int GforYellow, BforRed, BforGreen, BforYellow;

 int camera_needed = 0;

 int start_bump;

 int IR_nothing0, IR_nothing1;

 int zz;

 int looping = 0;

 int color_needed = 0;

 int rightColor;

 int counter;

 int holder;

 int stopit = 0;

 int countingThing = 0;

 int total_char;

 int cam_pack;

 unsigned char CamReading[25];

 unsigned char emptyspots[10];

 int colors[4];

 unsigned char test;

 int i;

 int Rmean, Gmean, Bmean, confidence, TestCoord;

 int IR0, IR1; //number to transform char into

 char irInput0[1], irInput1[1]; //input from the IR

// Read the 8 most significant bits

// of the AD conversion result

#define UDRE 5

#define DATA_REGISTER_EMPTY (1<<UDRE)

#pragma used+

void putchar1(char c)

{

while ((UCSR1A & DATA_REGISTER_EMPTY)==0);

UDR1=c;

}

#pragma used-

unsigned int read_adc(unsigned char adc_input)

{

ADMUX=adc_input|ADC_VREF_TYPE;

// Start the AD conversion

ADCSRA|=0x40;

// Wait for the AD conversion to complete

while ((ADCSRA & 0x10)==0);

ADCSRA|=0x10;

return ADCW;

}

int adc_five_times(int port)

{

int a, b, c;

c = 0;

for(a = 0; a < 5; a++)

{

 b = read_adc(port);

 c = c + b;

}

c = c / 5;

return c;

}

void follow_road_to_light(int IR_nothing0, int IR_nothing1)

{

int off_left, on_left, on_right, off_right, bumper;

unsigned char bump, line;

int intersection;

intersection = 0;

 PORTC.0 = 0;

do

{

if(PIND.4 == 0) {
//0 for black, 1 for white

 off_left = 1;

}

else {

 off_left = 0;

}

if(PIND.5 == 0) {

 on_left = 1;

}

else {

 on_left = 0;

}

if(PIND.6 == 0) {

 on_right = 1;

}

else {

 on_right = 0;

}

if(PIND.7 == 0) {

 off_right = 1;

}

else {

 off_right = 0;

}

//need to take 5 IR readings and find average!

IR0 = adc_five_times(0); //this is reading from channel 0

IR1 = adc_five_times(1); //this is reading from channel 1

PORTC = 0x48;

if((PINC.6 == 0) || (PINC.3 == 0))

{

 bumper = 1;

}

else

{

 bumper = 0;

}

 if((IR0 >= (IR_nothing0 + 300)) || (IR1 >= (IR_nothing1 + 300)) || (bumper == 1))

//stop the motors!!! obstacle

{

 PORTC.0 = 1; //turns on the buzzer (horn)

PORTB.0 = 1;

PORTB.1 = 1;

PORTB.2 = 1;

PORTB.3 = 1;

OCR0 = 0;

OCR2 = 0;

}

else if((on_left == 1) && (on_right == 1) && ((off_left == 0) || (off_right == 0))) //go straight

{

PORTB.0 = 1;

PORTB.1 = 0;

PORTB.2 = 1;

PORTB.3 = 0;

OCR0 = 35;

OCR2 = 35;

}

else if(((off_right == 0) && (((on_right == 1) && (off_left == 1)) ||

 ((on_left == 1) && (on_right == 0)))) ||

 ((off_left == 0) && (on_left == 1) && (on_right == 0) && (off_right == 0))) //left

{

PORTB.0 = 1;

PORTB.1 = 0;

PORTB.2 = 1;

PORTB.3 = 0;

OCR0 = 40;

OCR2 = 10;

}

else if((off_left == 1) && (on_left == 0) && (on_right == 0) && (off_right == 0)) //hard left

{

PORTB.0 = 1;

PORTB.1 = 0;

PORTB.2 = 1;

PORTB.3 = 0;

OCR0 = 53;

OCR2 = 10;

}

else if(((off_left == 0) && (((on_left == 0) && (off_right == 1)) ||

 ((off_right == 1) && (on_left == 1)))) ||

 ((off_left == 0) && (on_left == 0) && (on_right == 1) && (off_right == 0))) //right

{

PORTB.0 = 1;

PORTB.1 = 0;

PORTB.2 = 1;

PORTB.3 = 0;

OCR0 = 10;

OCR2 = 40;

}

else if((off_left == 0) && (on_left == 0) && (on_right == 0) && (off_right == 1)) //hard right

{

PORTB.0 = 1;

PORTB.1 = 0;

PORTB.2 = 1;

PORTB.3 = 0;

OCR0 = 10;

OCR2 = 53;

}

else if((off_right == 1) && (off_left == 1)) //intersection

{

intersection++;

 camera_needed = 1;

}

else {

 PORTB.0 = 1;

 PORTB.1 = 1;

 PORTB.2 = 1;

 PORTB.3 = 1;

}

} while (intersection < 1);

}

void doSpaces(void)

{

 int starting;

 counter = 0;

 holder = 0;

 for(starting = zz; starting < total_char; starting++)

 {

 if(CamReading[starting] == ' ')

 {

 emptyspots[holder] = counter;

 counter = 0;

 holder++;

 }

 else

 counter++;

 }

}

void Tens(int now)

{

 colors[now] = 10*(CamReading[zz] - 48) + (CamReading[zz+1] - 48);

}

void Hundreds(int now)

{

 colors[now] = 100 * (CamReading[zz] - 48) + 10*(CamReading[zz+1] - 48) + (CamReading[zz+2] - 48);

}

void Spacket(void)

{

 int now;

 int not_here;

 not_here = 0;

 doSpaces();

//this will get RMean, GMean, and BMean

 for(now = 0; now < 5; now++)

 {

 if((CamReading[zz] < 48) || (CamReading[zz] > 57))

 {

 not_here++;

 }

 if(emptyspots[now] == 2) {

 Tens(now);

 zz+=3; }

 else if(emptyspots[now] == 3) {

 Hundreds(now);

 zz+=4; }

 else {

 colors[now] = CamReading[zz];

 zz+=2; }

 lcd_putchar(' ');

 }

 Rmean = colors[not_here];

 Gmean = colors[not_here + 1];

 Bmean = colors[not_here + 2];

}

void grab_color_info(void)

{

 //Reading the UART for the CMU cam!

 for(i = 0; i < 20; i++)

 {

 CamReading[i]=getchar();

}

zz = 0;

stopit = 0;

while(stopit == 0) {

 if (CamReading[zz] == 'S') {

 Spacket();

 stopit = 1;

 }

zz++; delay_ms(100);

}

stopit = 0;

}

void calibrate_colors(void)

{

 lcd_clear();

 lcd_putsf("Show me Green");

 start_bump = 0;

 PORTC.3 = 1;

 PORTC.6 = 1;

 while(start_bump < 1)

 {

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

 }

 printf("gm\r");

 delay_ms(500);

 grab_color_info();

 GreenRbig = Rmean; GreenRsmall = Rmean;

 GreenGbig = Gmean; GreenGsmall = Gmean;

 GreenBbig = Bmean; GreenBsmall = Bmean;

 for(looping = 0; looping < 5; looping++)

 {

 grab_color_info();

 if(Rmean > GreenRbig)

 GreenRbig = Rmean;

 if(Rmean < GreenRsmall)

 GreenRsmall = Rmean;

 if(Gmean > GreenGbig)

 GreenGbig = Gmean;

 if(Gmean < GreenGsmall)

 GreenGsmall = Gmean;

 if(Bmean > GreenBbig)

 GreenBbig = Bmean;

 if(Bmean < GreenBsmall)

 GreenBsmall = Bmean;

 delay_ms(50);

 }

 GreenRbig = GreenRbig+15; GreenRsmall = GreenRsmall-15;

 GreenGbig = GreenGbig+15; GreenGsmall = GreenGsmall-15;

 GreenBbig = GreenBbig+15; GreenBsmall = GreenBsmall-15;

 lcd_clear();

 lcd_putsf("Show me Yellow");

 start_bump = 0;

 PORTC.3 = 1;

 PORTC.6 = 1;

 while(start_bump < 1)

 {

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

 }

 delay_ms(500);

 grab_color_info();

 YellowRbig = Rmean; YellowRsmall = Rmean;

 YellowGbig = Gmean; YellowGsmall = Gmean;

 YellowBbig = Bmean; YellowBsmall = Bmean;

 for(looping = 0; looping < 5; looping++)

 {

 grab_color_info();

 if(Rmean > YellowRbig)

 YellowRbig = Rmean;

 if(Rmean < YellowRsmall)

 YellowRsmall = Rmean;

 if(Gmean > YellowGbig)

 YellowGbig = Gmean;

 if(Gmean < YellowGsmall)

 YellowGsmall = Gmean;

 if(Bmean > YellowBbig)

 YellowBbig = Bmean;

 if(Bmean < YellowBsmall)

 YellowBsmall = Bmean;

 delay_ms(50);

 }

 YellowRbig = YellowRbig+15; YellowRsmall = YellowRsmall-15;

 YellowGbig = YellowGbig+15; YellowGsmall = YellowGsmall-15;

 YellowBbig = YellowBbig+15; YellowBsmall = YellowBsmall-15;

 lcd_clear();

 lcd_putsf("Show me Red");

 start_bump = 0;

 PORTC.3 = 1;

 PORTC.6 = 1;

 while(start_bump < 1)

 {

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

 }

 delay_ms(500);

 grab_color_info();

 RedRbig = Rmean; RedRsmall = Rmean;

 RedGbig = Gmean; RedGsmall = Gmean;

 RedBbig = Bmean; RedBsmall = Bmean;

 for(looping = 0; looping < 5; looping++)

 {

 grab_color_info();

 if(Rmean > RedRbig)

 RedRbig = Rmean;

 if(Rmean < RedRsmall)

 RedRsmall = Rmean;

 if(Gmean > RedGbig)

 RedGbig = Gmean;

 if(Gmean < RedGsmall)

 RedGsmall = Gmean;

 if(Bmean > RedBbig)

 RedBbig = Bmean;

 if(Bmean < RedBsmall)

 RedBsmall = Bmean;

 delay_ms(50);

 }

 RedRbig = RedRbig+15; RedRsmall = RedRsmall-15;

 RedGbig = RedGbig+15; RedGsmall = RedGsmall-15;

 RedBbig = RedBbig+15; RedBsmall = RedBsmall-15;

 lcd_clear();

 lcd_putsf("Done! Go go go");

 delay_ms(100);

 printf("rs\r"); //resets the camera

}

void main(void)

{

// Input/Output Ports initialization

// Port A initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTA=0x00;

DDRA=0x00;

// Port B initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTB=0x00;

DDRB=0x9F; //7 and 4 for PWM

// Port C initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTC=0x00;

DDRC=0x0F;

// Port D initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTD=0x00;

DDRD=0x08;

// Port E initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTE=0x00;

DDRE=0x02;

// Port F initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTF=0x00;

DDRF=0x00;

// Port G initialization

// Func4=In Func3=In Func2=In Func1=In Func0=In

// State4=T State3=T State2=T State1=T State0=T

PORTG=0x00;

DDRG=0x00;

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: 14.400 kHz

// Mode: Phase correct PWM top=FFh

// OC0 output: Non-Inverted PWM

ASSR=0x00;

TCCR0=0x67;

TCNT0=0x00;

OCR0=0x00;

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: Timer 1 Stopped

// Mode: Normal top=FFFFh

// OC1A output: Discon.

// OC1B output: Discon.

// OC1C output: Discon.

// Noise Canceler: Off

// Input Capture on Falling Edge

// Timer 1 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR1A=0x00;

TCCR1B=0x00;

TCNT1H=0x00;

TCNT1L=0x00;

ICR1H=0x00;

ICR1L=0x00;

OCR1AH=0x00;

OCR1AL=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

OCR1CH=0x00;

OCR1CL=0x00;

// Timer/Counter 2 initialization

// Clock source: System Clock

// Clock value: 14.400 kHz

// Mode: Phase correct PWM top=FFh

// OC2 output: Non-Inverted PWM

TCCR2=0x65;

TCNT2=0x00;

OCR2=0x00;

// Timer/Counter 3 initialization

// Clock source: System Clock

// Clock value: Timer 3 Stopped

// Mode: Normal top=FFFFh

// Noise Canceler: Off

// Input Capture on Falling Edge

// OC3A output: Discon.

// OC3B output: Discon.

// OC3C output: Discon.

// Timer 3 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR3A=0x00;

TCCR3B=0x00;

TCNT3H=0x00;

TCNT3L=0x00;

ICR3H=0x00;

ICR3L=0x00;

OCR3AH=0x00;

OCR3AL=0x00;

OCR3BH=0x00;

OCR3BL=0x00;

OCR3CH=0x00;

OCR3CL=0x00;

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

// INT2: Off

// INT3: Off

// INT4: Off

// INT5: Off

// INT6: Off

// INT7: Off

EICRA=0x00;

EICRB=0x00;

EIMSK=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=0x00;

ETIMSK=0x00;

// USART0 initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity

// USART0 Receiver: On

// USART0 Transmitter: On

// USART0 Mode: Asynchronous

// USART0 Baud rate: 115200

UCSR0A=0x00;

UCSR0B=0x18;

UCSR0C=0x06;

UBRR0H=0x00;

UBRR0L=0x07;

// USART1 initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity

// USART1 Receiver: Off

// USART1 Transmitter: On

// USART1 Mode: Asynchronous

// USART1 Baud rate: 9600

UCSR1A=0x00;

UCSR1B=0x08;

UCSR1C=0x06;

UBRR1H=0x00;

UBRR1L=0x5F;

// Analog Comparator initialization

// Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;

SFIOR=0x00;

// ADC initialization

// ADC Clock frequency: 921.600 kHz

// ADC Voltage Reference: AVCC pin

// Only the 8 most significant bits of

// the AD conversion result are used

ADMUX=ADC_VREF_TYPE;

ADCSRA=0x84;

// LCD module initialization

lcd_init(20);

_lcd_ready();

_lcd_write_data(0xe);

start_bump = 0;

PORTC.3 = 1; //set high to test active low bump switch

PORTC.6 = 1;

lcd_putsf("Reset once first");

lcd_gotoxy(0,1);

lcd_putsf("Push To Start");

while(start_bump < 1)

{

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

}

lcd_clear();

/*CALIBRATING IR*/

lcd_putsf("Waiting to calibrate");

//need to allow a bump before doing anything!

start_bump = 0;

PORTC.3 = 1;

PORTC.6 = 1;

while(start_bump < 1)

{

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

}

delay_ms(1000);

IR_nothing0 = adc_five_times(0);

IR_nothing1 = adc_five_times(1);

start_bump = 0;

lcd_clear();

lcd_putsf("IR done");

PORTC.3 = 1;

PORTC.6 = 1;

while(start_bump < 1)

{

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

}

delay_ms(1000);

/*CALIBRATING COLOR*/

/*

calibrate_colors(); //COLOR CALIBATION!

start_bump = 0;

PORTC.3 = 1;

PORTC.6 = 1;

while(start_bump < 1)

{

 if((PINC.3 == 0) || (PINC.6 == 0))

 start_bump++;

}

delay_ms(1000); */

while (1)

 {

 /*MAIN PROGRAM!!!*/

 lcd_clear();

 follow_road_to_light(IR_nothing0, IR_nothing1); //testing the line function

 printf("gm\r");

 delay_ms(100);

 grab_color_info();

 if((Gmean > 0) && (Gmean < 50))

 {

 lcd_putsf("Red");

 OCR0 = 0;

 OCR2 = 0;

 while((Gmean > 0) && (Gmean < 50))

 {

 grab_color_info();

 delay_ms(100);

 }

 }

 else if(((Gmean > 50) && (Gmean < 80)) && (Rmean > 115)) //only rmean before

 {

 lcd_putsf("Yellow");

 PORTC.0 = 1; //horn

 OCR0 = 70; //speed up

 OCR2 = 70;

 }

 else if(Gmean > 80)

 {

 lcd_putsf("Green");

 OCR0 = 35;

 OCR2 = 35;

 }

 else if (Bmean > 40) //should be for blue, test this!

 {

 lcd_putsf("Im drunk!");

 OCR0 = 20;

 OCR2 = 200;

 }

 else

 {

 lcd_putsf("ERROR");

 }

 /*

 if(((Gmean > RedGsmall) && (Gmean < RedGbig))

 &&((Rmean > RedRsmall) && (Rmean < RedRbig))

 &&((Bmean > RedBsmall) && (Bmean < RedBbig)))

 {

 lcd_putsf("Red");

 OCR0 = 0;

 OCR2 = 0;

 while((Gmean > 0) && (Gmean < 50))

 {

 grab_color_info();

 delay_ms(100);

 }

 }

 else if(((Gmean > YellowGsmall) && (Gmean < YellowGbig))

 &&((Rmean > YellowRsmall) && (Rmean < YellowRbig))

 &&((Bmean > YellowBsmall) && (Bmean < YellowBbig)))

 {

 lcd_putsf("Yellow");

 PORTC.0 = 1; //horn

 OCR0 = 70; //speed up

 OCR2 = 70;

 }

 else if(((Gmean > GreenGsmall) && (Gmean < GreenGbig))

 &&((Rmean > GreenRsmall) && (Rmean < GreenRbig))

 &&((Bmean > GreenBsmall) && (Bmean < GreenBbig)))

 {

 lcd_putsf("Green");

 OCR0 = 35;

 OCR2 = 35;

 }

 else {

 lcd_putsf("ERROR");

 }

 */

 printf("rs\r");

 delay_ms(500);

 PORTC.0 = 0;

 /*END OF MAIN PROGRAM*/

 };

}
PAGE
26

[image: image1.png]otors.

Hobrdge

MAVRIC IIB

Color Sensor

Bump Sensors

IR sensor

Line tracker

]

LCD screen

