 11

Student: Stefan Craciun

TA’s: Adam Barnett and William Otto Goethals
Instructors: A. A. Arroyo and E. M. Schwartz

[image: image1.png]

Tag Team Ying Yang
Final Report
“Two robots engage in a brutal game of tag”
University of Florida

Department of Electrical and Computer Engineering

EEL 5666

Intelligent Machines Design Laboratory

Summer 2006

Table of Contents:
Cover Page……...…………………………………..……1

Abstract……………………………………………..……3
Executive Summary…………………………..………….4
Integrated System…………………………………..…….5
Mobile Platform…………………………………..……...6
Actuation……………………………………………..…..7
Sensors…………………………………………….……...8
Behaviors……………………………..…………………14
Experiment and results ………………………………….15
Conclusion…..…………………………………………..15
Documentation…..……………………………………....16
Appendices……………………………………………....16
Abstract

Ying and Yang are two autonomous robots which play a game of tag with each other. The robots avoid obstacles while chasing each other and eventually tagging the opponent by whacking it with a wooden stick. The purpose of the project was to design two systems capable of finding the position of a moving object, tracking it down and recognizing it once it is in its proximity. The robots will both take turns at running away and pursuing each other while imitating the universal game of tag. The overall project was intended for entertainment purposes but the solutions and the algorithms developed can be used for any project that requires similar tasks.
[image: image2.png]

Executive Summary

The idea that stood at the base of my project was to construct two robots that will play a game of tag. The robots have to execute three tasks which define the game of tag:

1) One robot will be the pursuer and its purpose is to tag the other robot by touching it.

2) The other robot has to run away and avoid being tagged.

3) Once touched or “tagged” the roles will switch and the game continues.

The first problem that had to be solved was that of locating a moving object. This is done with the use of multiple infra red (IR) matched emitter-detector pairs and a software program (data acquisition and decision making). The emitters are simple 950nm IR emitters from Radio Shak that can be modulated to oscillate at any necessary frequency. The detectors are the PNA4611M-XD made by Panasonic and bought from Digi Key. The detectors detect a frequency of from 35 to 40 kHz which is a very narrow carrier frequency.

The second problem is that of object recognition. This was solved with a Radio Frequency ID Reader (RFID-reder) and RF-tags both of which were bought from Hobby Engineering http://www.hobbyengineering.com/. Once the robots were close enough the RFID reader could detect the tag and thus recognize the other robot distinguishing it from any other object.
The microcontroller used to direct the robots was the Atmel Atmega 128 which came installed on the Mavrick II B board from www.bdmicro.com. The functions used were the ADC (6 channels) for the detectors, the timers (5 channels) for the emitters the servo and the motors, LCD functions for the LCD display, simple logic functions for the bump switches, UART0 for the RFID reader.

Actuation was achieved with the use of two 12V DC gearhead motors and the tagging was done with a simple Futaba servo.
Integrated Systems
[image: image3.png]Futaba S3010 servo Radio Shak 950nm IR emitter

N

Timer O Tuner 1
Non Inverted PWM Clear Timer on Compare

\ / mode

imer 3
% 12V DC gearhed motors

Ph. Correct PWM

Mavric II B board
Atmel Atmega 128

US/)
RFID reader &

ADC 8 bit
conversion

PNA4611MXD IR detector

Each of the two robots was built using the same components and is driven by the same microcontroller The ATmega 128 from Atmel.

The following components were used for each robot:

●
Two 12V DC gearhed motors from Spark-Fun Electronics
●
One Futaba S3010 servo from servocity.com

●
Two dual H-bridge motor drivers from Lynxmotion.com

●
Six PNA4611MXD IR detectors from DigiKey.com

●
Two IR 950nm emitters from Radio Shak
●
One RFID reader from hobbyengineering.com

●
Four RF tags from hobbyengineering.com
●
One Mavric II B board from bdmicro.com

●
Two 5V DC NiMH rechargeable batteries from batteryspace.com
●
Two 12V DC NiMH rechargeable batteries from batteryspace.com

●
AVR JTAG ICE from sparkfunelectronics.com

Mobile Platform
The mobile platform had to be constructed from a very tough material as was my entire robot. The robots have to withstand many hard impacts without deteriorating so I chose a rather thick wood for my platform. This would have been impossible to cut with the T-Tech machine so I proceeded to cut and measure everything myself. No part of my robot was designed in Autocad or cut on the T-Tech machine. The platform was the hardest to produce since I needed a circular shape. I had many difficulties cutting a circular shape with a simple saw but the precision to which the circular contour was cut out was not important. In fact the platform has rather rugged edges but it serves its purpose of being very robust, it can sustain a big weight without bending and it has stood numerous collisions during testing.
[image: image4.png]

The reason the platform is circular is because I needed a perfectly symmetrical shape, on the perimeter of which I placed detectors at equally spaced distances. This way all detectors are free from obscurities and can receive signals with the closest detector to the signal receiving the best signal. Holes were cut in to the platform for the wheels since the wheels could not be placed on the outside. This way the wheels do not block any of the detectors from receiving a signal.
One of the most important parts of the platform was the design of the tagging system. A servo with a long wood stick attached to it is the tagging arm. The stick swings 120 degrees to tag the opponent. The robot has no way of knowing if it has missed or not, and so it has to always tag the opponent. The opponent being tagged has a robotic beam with springs attached to one end and a bump switch at the other. Both the tagging arm and the beam are placed high above the platform to avoid hitting the circuitry or any other component. This way the tagging can be done safely and with much precision.
The RFID reader is placed in the very front of the robot and the tags at the very back right next to the emitters. This way as the emitters lure in the pursuer and the RFID reader will eventually touch the tags and recognize its opponent.

[image: image5.png]

The motor drivers and the motors have been placed under the platform as well as the batteries supplying current to the motor driver.

Actuation
The actuation is achieved with the use of two 12V DC gearhead motors. Each motor is connected to a rubber wheel through a hub. The front wheel is a castor wheel that has been well greased to decrease friction. The castor wheel plays a big role in the direction of motion. If the caster wheel has too much friction and cannot rotate freely, the robot will not move as desired. This was a problem I encountered and after numerous programming changes I observed that the castor wheel would get stuck and the robot moved preferentially in one direction. The motors do not receive simple “high” and “low” signals from the microprocessor. The motors are attached to a motor driver which receives Phase Correct PWM non-inverted signals. This is essential to achieving a specific direction. My robot has its center of mass on it’s far left and the wheels are not perfectly mounted which means that by providing only “low” and “high” signals to the motor the robot will never travel in a straight line or follow a steady direction. In fact the robot will deviate enormously from I a straight trajectory. By rotating one wheel preferentially faster all these problems can be overcome and the robot can efficiently move straight. By switching from “low” “high” signals to PWM signals the time it took the robots to find each other was halved.
The motors I chose are high torque low RPM motors. This is because I did not need a fast moving robot but a more powerful and precise one capable of pulling a big weight and pushing its opponent when necessary.
[image: image6.png]’k

Sensors
I used three types of sensors to achieve my goal.

→
Bump switches for obstacle avoidance and detect a hit

→
RFID reader for object recognition

→
36.7 kHz IR detectors and emitters for tracking down the position of a moving object

The bump switches were easy to use and install. The C. (PIN 1) was connected to VCC, the N.O. (PIN 3) was connected to ground through a resistor and to a pin of the Mavric II B board for detection purposes.
[image: image7.png]PIN to detect if closed or open
vee

Five bump switches were placed on the front of the robot for obstacle avoidance. The bump switches will have to hit an object before it can detect its presence but the robot is built to withstand bumps. However the bump switches are spaced too far apart to detect thin objects like chair and table legs and occasionally can get tangled up in the tags of the robot it is following. However the bump switches are also robust sensors and can withstand a hard impact.

The second sensor used was the RFID reader with four magnetic tags. The RFID reader is a very and almost unique way of distinguishing between different objects using only hardware. However the reader has a major disadvantage, it draws high levels of current from the microprocessor and will leave little if any power for other components. It is thus suggested that the RFID reader is turned off while other applications are executed and turned on only at specific times to check for the tags. The range at which the detector receiver pair was able to communicate was largely affected by the RFID reader. When the reader was on, the maximum detection distance was reduced to 0.5 meters. When the RFID reader was turned off the distance increased to 2.5 meters. The reader is fortunately designed to be easily enabled and disabled without having to turn off its power. Thus the searching and the recognizing processes can run continuously one after the other without interfering with each other.
[image: image8.png]RFID Reader

GND

Enable

SouT

vee

[image: image9.png]

The RFID reader can read the tags from a distance of 2-3 cm. The tag does not have to perfectly cover the reader nor des it have to be parallel. The only problem encountered with the reader is it does not always read the tag if the tag is too quickly swiped across it. This can be solved by swiping the tag multiple times across the reader. Each tag has a distinct 10 digit hex code which is transmitted to the tag. The information is read with either USART 0 or USART 1. I fount it very easy to read the tag’s code serially through the USART 0 pin on the Mavric II B board. When the reader is not receiving information the SOUT pin is held “high” and once the tag is detected the Start bit si sent followeb by the code and ending with a stop bit. I was not able to have an interrupt fire once the USART 0 is receiving information so the receiving pin is continuously polled until the start bit is sent and then the code is fetched and recorded.

The last of the sensors is the PNA4611MXD detector coupled with the IR 950nm emitter. The detector circuitry is quite complex but it can be simplified to an NPN transitor which is off when it is not detected so Vout = 5V. When the signal is detected the transistor in onn the Vout is grounded Vout = 0V.

[image: image10.png]M Block Diagram

amplifier) demodulator comparator

{/I i— - | }_ﬂ'

integrator

Constant volta peak hold

[image: image11.png]

[image: image12.png]

The characteristics of this Panasonic IR detector are perfect for my application. The emitter only detects modulated IR emission that oscillates in the close vicinity of 36.7kHz and 950 nm making it almost invulnerable to noise sunlight and other IR emitting sources.

[image: image13.png]B.PF frequency characteristics
(PNAd612M)"

Spectral sensitivity characteristics

Directivity characteristics
w0

\ g \
ST -, \
) II \
(IR
G:,« 35 37 39 41 43 UECC 700 800 900 1000 1100 1200

Carrier frequency (kHz)

* The peaks for PNA461 1M, PNA4613M.
PNA4614M. and PNA4620Mare all at £,

Wavelength 7. (am)

The emitter also has a narrow angle of reception but a large reception distance. This means that only one or two detectors will receive a signal at any given time revealing the exact position of the emitters.

The emitters chosen for this project were some simple 950 nm IR emitters from Radio Shaq. I bought many other special IR emitters but none managed to work as well and produce as strong a signal as the Radio Shak emitters.
[image: image14.png]

[image: image15.png]

The most problematic signal to produce was the 36.7 kHz frequency signal. I tried generating the right frequency signal using the timer 1 CTC mode (Clear Timer on Compare match) and toggling every time the Output compare register matches the Timer. This did not work no matter how many calculation I made. It seemed that only when I connected the output of Timer 1 to an oscilloscope and measured the period of oscillation with cursors was I able to construct the correct waveform. The figure bellow explains how the CTC mode of operation functions. The abstract is take straight from the user manual of the ATmega 128 and the toggle on compare function is used just like in my case.
[image: image16.png]Clear Timer on Compare
Match (CTC) Mode

2467N-AVR-0306

In Clear Timer on Compare or CTC mode (WGMO':0 = 2), the OCRO Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNTO) matches the OCRO. The OCRO defines the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 38. The counter value
(TCNTO) increases until a compare match occurs between TCNTO and OCRO, and then

counter (TCNTO) is cleared

Figure 38. CTC Mode, Timing Diagram

TCNTn

ocn

OCn Interrupt Flag Set

(COMN1:0=1)

(Toggle)

Period |

3

97

With the emitters and detectors communicating perfectly I was able to carry out my design and with the aid of software design an IR beacon capable of tracking down a moving object. The matched detector emitter pair will function as a tracking system capable of finding the emission source. Six detectors will be placed at equal distances along a circular platform facing away from the center. Each of the six detectors will cover an angle of 45 degrees covering the entire 360 degrees of possible incoming signals. Two emitters at the back of the robot continually emit 36.7 kHz waveform. The bellow picture shows how the position of the emitters is detected.
[image: image17.png]m emitter Will nat detect signal detect IR signal

i

B detector

IR LED's
emitting
signal

Will not detect signal

detect IR signal

Only one or two of the detectors can receive a signal at any given time and so the robot can be programmed to move in that direction. This detection system can only give the position of the opponent but will not specify the distance. In fact the distance is never calculated but once the RFID reader is close enough the servo is enabled and the slick will whack the opponent.
Behaviors
The two robots were built to have similar behavior, however this is only possible to a certain extent. The robots have a different center of mass and the wheels were not mounted at precisely the same location. Also the wheels seem to have different friction coefficients with the floor. The software guiding the robots is quite different helping them behave similarly but the electrical components also have different reaction times making the twin robots unpredictable in some situations. The robots perform two tasks: One of moving in a straight line and avoiding objects and the other of pursuing an opponent and hitting it with a stick. The object avoidance is achieved with five bump switches placed on the front of the robots. The reason the robots run away in a straight line is because it has to permanently have its emitters point towards the other robot. If this were not the case the other robot would have no idea where its opponent is located. The chasing robot will gradually get closer and closer to its opponent until its RFID will touch the RFID tags of the opposite robot. This will trigger the wooden stick to hit and usually it is a hit. The roles immediately reverse and the game continues until the batteries run out.
Experiment and Results

A few results are worth mentioning:

The RFID reader works very well from 0 to 4 cm. The tag has to be held close to the reader for a second or two. Moving the tag while reading does not help the process but enabling and disabling the reader a few times while reading does help. Do’t forget that the RFID reader is a big current drain and having extra batteries to power it is a safe investment. The tag does not have to perfectly overlap the reader but it does have to be held at a constant distance for a second.
The emitter detector pair works for a maximum distance of 3 meters. I expect that it could potentially function for over 5 meters it the battery source is more powerful. As an example when my batteries are low (4.5 V) the communication distance is decreased to 1.5 meters and when the batteries are fully charged (5.5 V) the distance is increased to 3 meters. When trying to emit a certain frequency make sure to capture the waveform on an oscilloscope rather than trying to divide clock cycles with prescalers. It is almost impossible to predict the frequency you will obtain.
Conclusion

I am very pleased with the outcome of my project because I challenged myself to achieve a complicated task and with a lot of work managed to achieve my goal. The robots are functioning as proposed and descried above. Sometimes it takes a while for the robots to recognize and find each other but given enough time the robots will hit each other consistently. The sum of my project is $1300 which is double what I estimated at the beginning of the semester. I burnt one Mavric II B board, one detector one led, I damaged a few bump switches and the AVR JTAG ICE stopped working. I also bought a few components which I did not use. Two of the programmers I purchased were incompatible with the board but the cost grew immensely because by choosing to build two robots I had to buy “two of everything” and in some cases three.
I would like to give special thanks to Otto and Adam for their help and guidance as well as the IMDL colleagues which shared their ideas and knowledge.

Documentation
Mavric-IIB Board Manual: http://www.bdmicro.com/images/mavric-iib.pdf

Avrfreaks: http://www.avrfreaks.net

Atmel ATMega128 Manual http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

AVR Documentation

http://www.nongnu.org/avr-libc/user-manual/

Appendices
I looked through other people’s code and found some solutions to my problems so here is my code in CodeVision !!!!!!!:

My code

Chip type : ATmega128

Program type : Application

Clock frequency : 14.745000 MHz

Memory model : Small

External SRAM size : 0

Data Stack size : 1024

***/

#include <mega128.h>

// Alphanumeric LCD Module functions

#asm

 .equ __lcd_port=0x12 ;PORTD

#endasm

#include <lcd.h>

#include <delay.h>

#include <stdlib.h>

#define ADC_VREF_TYPE 0xE0

// Read the 8 most significant bits

// of the AD conversion result

unsigned char read_adc(unsigned char adc_input)

{

ADMUX=adc_input|ADC_VREF_TYPE;

// Start the AD conversion

ADCSRA|=0x40;

// Wait for the AD conversion to complete

while ((ADCSRA & 0x10)==0);

ADCSRA|=0x10;

return ADCH;

}

// Declare your global variables here

void main(void)

{

// Declare your local variables here

char adc_result[1];

int back, rightb, rightf, front, leftf, leftb, count=0, j, tog=0, k;

// Input/Output Ports initialization

// Port A initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTA=0x00;

DDRA=0x00;

// Port B initialization

// Func7=Out Func6=In Func5=Out Func4=Out Func3=In Func2=In Func1=In Func0=In

// State7=0 State6=T State5=0 State4=0 State3=T State2=T State1=T State0=T

PORTB=0x00;

DDRB=0xB0;

// Port C initialization

// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTC=0x02;

DDRC=0xFF;

// Port D initialization

// Func7=Out Func6=Out Func5=In Func4=In Func3=In Func2=Out Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTD=0xC4;

DDRD=0xC4;

// Port E initialization

// Func7=Out Func6=Out Func5=In Func4=Out Func3=Out Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=0 State3=0 State2=T State1=T State0=T

PORTE=0x80;

DDRE=0xD8;

// Port F initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTF=0x00;

DDRF=0x00;

// Port G initialization

// Func4=In Func3=In Func2=Out Func1=Out Func0=Out

// State4=T State3=T State2=T State1=T State0=T

PORTG=0x07;

DDRG=0x07;

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: 57.598kHz

// Mode: Phase correct PWM top=FFh

// OC0 output: Non-Inverted PWM

ASSR=0x00;

TCCR0=0x67;

TCNT0=0x00;

//OCR0= 4; SET OCR0 in the infinite loop further down

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: 1843.200 kHz

// Mode: CTC top=OCR1A

// OC1A output: Toggle

// OC1B output: Discon.

// OC1C output: Discon.

// Noise Canceler: Off

// Input Capture on Falling Edge

// Timer 1 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR1A=0x40;

TCCR1B=0x0A;

TCNT1H=0x00;

TCNT1L=0x00;

ICR1H=0x00;

ICR1L=0x00;

OCR1AH=0x00;

//OCR1AL=0x18;

OCR1BH=0x00;

OCR1BL=0x18;

OCR1CH=0x00;

OCR1CL=0x00;

// Timer/Counter 2 initialization

// Clock source: System Clock

// Clock value: 1843.200 kHz

// Mode: CTC top=OCR2

// OC2 output: Toggle on compare match

TCCR2=0x1A;

TCNT2=0x00;

//OCR2=0x18;

// Timer/Counter 3 initialization

// Clock source: System Clock

// Clock value: 14745.000 kHz

// Mode: Ph. correct PWM top=00FFh

// Noise Canceler: Off

// Input Capture on Falling Edge

// OC3A output: Non-Inv.

// OC3B output: Non-Inv.

// OC3C output: Discon.

// Timer 3 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR3A=0xA1;

TCCR3B=0x01;

TCNT3H=0x00;

TCNT3L=0x00;

ICR3H=0x00;

ICR3L=0x00;

OCR3AH=0x00;

OCR3AL=0x00;

OCR3BH=0x00;

OCR3BL=0x00;

OCR3CH=0x00;

OCR3CL=0x00;

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

// INT2: Off

// INT3: Off

// INT4: Off

// INT5: Off

// INT6: Off

// INT7: Off

EICRA=0x00;

EICRB=0x00;

EIMSK=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=0x00;

ETIMSK=0x00;

// Analog Comparator initialization

// Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;

SFIOR=0x00;

// ADC initialization

// ADC Clock frequency: 921.563 kHz

// ADC Voltage Reference: AVCC pin

// Only the 8 most significant bits of

// the AD conversion result are used

ADMUX=ADC_VREF_TYPE;

ADCSRA=0x87;

// LCD module initialization

lcd_init(20);

while (1)

 {

 // Place your code here

 //Enable motors

 PORTC.2=1;

 PORTC.3=1;

 //Raise the stick

 //Set output compare register to a small value so output waveform has short duty cycle

 OCR0 = 15;

 delay_ms(10);

 //Provide RFID Ground

 PORTE.6 = 0;

 //Dissable RFID for more power

 PORTE.7 = 1;

///

///

///

///Track down other robot//

 track_down:

 //Turn off emitters

 OCR1AL=0x00;

 OCR2=0x00;

 //Turn RFID on or off

 PORTE.7 = !PORTE.7;

 delay_ms(20);

 if (PINE.7 == 0)

 {

 for(j=0; j<1100; j++)

 {

 //Check if tag has been detected

 if(PINE.0==0)

 {

 OCR0 = 7; //Move Servo to different angle

 OCR3AL=0x00;

 OCR3BL=0x00;

 PORTC.4=0;

 PORTC.5=0;

 delay_ms(2000);

 OCR0 = 15;

 delay_ms(10);

 //Go back

 OCR3AL=0x00;

 OCR3BL=0x00;

 PORTC.4=1;

 PORTC.5=1;

 delay_ms(900);

 //Turn

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(1300);

 count = 0;

 goto run_away;

 }

 delay_ms(1);

 }

 }

 //if(PINE.7==1)

 else

 {

 delay_ms(200);

 for(k=0; k<2; k++)

 {

 back = read_adc(7);

 delay_ms(10);

 rightb = read_adc(6);

 delay_ms(10);

 rightf = read_adc(3);

 delay_ms(10);

 front = read_adc(2);

 delay_ms(10);

 leftf = read_adc(1);

 delay_ms(10);

 leftb= read_adc(0);

 delay_ms(10);

 if(PINA.0==1 || PINA.1==1 || PINA.2==1 || PINA.3==1 || PINA.4==1)

 {

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(300);

 }

 //Turn right 150 deg

 else if((back<15) && (rightb<15))

 {

 //back_right

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(1000);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(200);

 //goto track_down;

 }

 //Turn left 150 deg***

 else if((leftb<15) && (back<15))

 {

 //back_left

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(1000);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(200);

 //goto track_down;

 }

 //Turn right 180 deg***

 else if(back<15)

 {

 //back

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(1300);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(100);

 //goto track_down;

 }

 //Turn right 90 deg***

 else if((rightb<15) && (rightf<15))

 {

 //lcd_putsf("right!!!");

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(500);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(300);

 //goto track_down;

 }

 //Turn right 120 deg***

 else if(rightb <15)

 {

 //right back

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(800);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(100);

 //goto track_down;

 }

 //Turn right 15 deg

 else if((rightf<15) && (front<15))

 {

 //little_right

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(250);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(300);

 //goto track_down;

 }

 //Turn right 30 deg

 else if(rightf <15)

 {

 //front_right

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(330);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(300);

 //goto track_down;

 }

 //Turn left 15 deg

 else if((front<15) && (leftf<15))

 {

 //little_left

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(250);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(300);

 //goto track_down;

 }

 //Go straight

 else if(front <15)

 {

 //lcd_putsf("ahead!!!");

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(500);

 //goto track_down;

 }

 //Turn left 90 deg

 else if((leftf<15) && (leftb<15))

 {

 //left

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(500);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(200);

 //goto track_down;

 }

 //Turn left 30 deg

 else if(leftf <15)

 {

 //front_left

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(200);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(300);

 //goto track_down;

 }

 //Turn left 120 deg

 else if(leftb <15)

 {

 //back_left

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(800);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0xfc;

 PORTC.5=0;

 delay_ms(100);

 //goto track_down;

 }

 else

 {

 //Go back a little

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(250);

 //Stop

 OCR3AL=0x00;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=0;

 delay_ms(50); }

 }

 }

 goto track_down;

//

//

///Run away loop//

 //Go forward slowly

run_away:

 //Turn off RFID

 PORTE.7 = 1;

 OCR1AL=0x18;

 OCR2=0x18;

 //Raise the stick

 //Set output compare register to a small value so output waveform has short duty cycle

 OCR0 = 15;

 delay_ms(10);

 if(count<500)

 {

 //Go forward slowly

 OCR3AL=0x75;

 PORTC.4=0;

 OCR3BL=0x7b;

 PORTC.5=0;

 count+=1;

 delay_ms(10);

 }

 else

 {

 //Stop

 OCR3AL=0x00;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=0;

 count = 0;

 delay_ms(100);

 }

 /*//Turn left after 10 seconde

 if (count>100 && count<102)

 {

 OCR3AL=0xd0;

 PORTC.4=0;

 OCR3BL=0x50;

 PORTC.5=0;

 delay_ms(300);

 }

 //Turn right after 20 seconds

 if (count>200 && count<202)

 {

 OCR3AL=0x50;

 PORTC.4=0;

 OCR3BL=0xd0;

 PORTC.5=0;

 count=0;

 delay_ms(300);

 }*/

 if (PINA.5 == 1)

 {

 //lcd_putsf("HIT!");

 OCR3AL=0x00;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=0;

 delay_ms(2000);

 goto track_down;

 }

 if (PINA.4 == 1)

 {

 //lcd_putsf("right_back");

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(400);

 }

 if (PINA.2 == 1)

 {

 //lcd_putsf("right");

 delay_ms(50);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(600);

 }

 if (PINA.3 == 1)

 {

 //lcd_putsf("center");

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(800);

 OCR3AL=0xff;

 PORTC.4=0;

 OCR3BL=0x00;

 PORTC.5=1;

 delay_ms(900);

 }

 if (PINA.1 == 1)

 {

 //lcd_putsf("left");

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=0;

 delay_ms(600);

 }

 if (PINA.0 == 1)

 {

 //lcd_putsf("left_back");

 OCR3AL=0x00;

 PORTC.4=1;

 OCR3BL=0xff;

 PORTC.5=1;

 delay_ms(400);

 }

 goto run_away;

 };

}

